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In recent years, the role of mathematics in the life sciences has evolved a long
way from the role it played in the 1970’s, in the early days of “biomathematics”, and
is a somewhat different one now, and its perception by the mathematical community
is also different. We feel it is important for the Lecture Notes in Mathematics to
reflect this and thus underline the immense significance of the life sciences as a
field of application and interaction for mathematics in the 21st century.

We are particularly interested in going far beyond the traditional areas in which
mathematics was applied to ecology, such as population dynamics, and would like
to attract publications in areas such as cell growth, protein structures, physiology,
vision, shape recognition & gestalt theory, neural dynamics, genomics, perhaps also
some statistical aspects (this list is non-exhaustive).
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Foreword

Epidemics and the spread of infectious diseases are a serious challenge in today’s
world, but especially in Africa, particularly following the recent Ebola outbreak. It is
therefore easy to understand why there is a serious interest in mathematical models
of epidemics in the African applied mathematics community.

The current volume is the late outcome of a two-week ICPAM/CIMPA school
which took place from December 5 to December 16, 2015, in Ziguinchor, Senegal.
The topic of the school was “Stochastic models of epidemics”. The school consisted
of four courses given by Tom Britton and Etienne Pardoux on homogeneous models,
David Sirl on two-level mixing models, Viet Chi Tran on epidemics on graphs, and
finally Catherine Larédo on statistics for epidemics models. Frank Ball could not
attend the school but is a co-author with David Sirl in the current volume. The
CIMPA school was co-organized by Alassane Diedhiou and Etienne Pardoux. After
the school all lecturers (also including Frank Ball) were asked to write a chapter
on their contributions to make up a short set of lecture notes. As it turned out, all
contributions became longer than initially anticipated, and the four contributions are
henceforth referred to as Parts I–IV, each part consisting of chapters and sections.

The CIMPA course was aimed at PhD students (and Post Docs) in the mathe-
matical sciences, and we hence hope that (all or parts of) this volume can be used
for PhD courses on the topic, either as a traditional PhD course or as an individ-
ual reading course. For this reason we have inserted Examples and Exercises (some
with solutions) throughout the book.

We want to thank ICPAM/CIMPA, the Ministry of Higher Education of Senegal,
the University of Ziguinchor, who supported our school, and the students, who made
the event so unforgettable.

August 2019

Tom Britton, Stockholm
Alassane Diedhiou, Ziguinchor
Etienne Pardoux, Marseille
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Preface

The aim of these Notes is to increase the reader’s understanding of the spread of
infectious diseases using mathematics, and in particular stochastic methods.

Needless to say, outbreaks of infectious diseases have had a huge impact on hu-
man society throughout history. During the 14th century, the black plague killed be-
tween 30% and 50% of Europe’s population. In 1720 a plague epidemic removed al-
most half of the population of Marseille and a quarter of the population of Provence.
In 1918–1919, the Spanish flu killed between 50 and 100 million people (3%–5%
of the world’s population!). Smallpox had existed for more than 3,000 years, killing
many millions, before it was eradicated after a long and intense vaccination effort
led by theWHO. More recently, some of the diseases causing most harm (casualties,
suffering and/or economically) to humans have been HIV, influenza, foot and mouth
disease, malaria and measles, and other diseases have caused unexpected dramatic
outbreaks with a high mortality rate (e.g. SARS and most recently Ebola). In the
future, endemic diseases will continue to be one the main causes of mortality, dra-
matic outbreaks of new and old infectious diseases are expected to continue to occur
irregularly, the economic cost of disease outbreaks in domestic animal populations
is expected to continue to increase, and the fear of large-scale treatment failure due
to antibiotic resistance is becoming more and more realistic.

A paramount goal for public health is therefore to increase our understanding of
how various infectious diseases spread in communities, with the goal of minimizing
or even stopping their spread by various control measures (vaccination, quarantine,
isolation, closing of schools, airports, ...). An important tool in this ambition is the
use of mathematical models.

Mathematical modelling of infectious diseases has a long and successful history.
The first such mathematical model was probably Bernoulli’s model of smallpox
[6], proposed in 1760. A little more than one hundred years ago, Sir Ronald Ross,
a British medical doctor and Nobel laureate who contributed to the understanding
of malaria, wrote: “As a matter of fact all epidemiology, concerned as it is with
variation of disease from time to time and from place to place, must be considered
mathematically (...) and the mathematical method of treatment is really nothing but
the application of careful reasoning to the problems at hand.” As a matter of fact,
Ross deduced from mathematical arguments conclusions concerning malaria which

vii



viii Preface

his physician colleagues found hard to accept. Some other important mathematical
epidemiological insights through history are: the notion of the basic reproduction
number R0 and its relation to the vaccination coverage vc necessary to stop an out-
break (see e.g. Anderson and May [1]), the effect of local structures such as house-
holds on disease propagation (see e.g. Ball, Mollison and Scalia-Tomba [4]) and the
insight that highly promiscuous individuals play a surprisingly dominant role for
sexually transmitted diseases (see e.g. Pastor-Satorras and Vespignani [10]).

In the current Notes we study mathematical models for the spread of an infectious
disease in a human population (it could of course also apply to an animal population,
but we use terminology for humans). Learning this topic is also a good way to learn
mathematics and mathematical modeling. Historically, deterministic models have
received more attention, but our focus is on stochastic models. We believe that both
deterministic and stochastic models have an important role to play; which model
to use in a specific situation depends on the type of question asked, the type and
complexity of the epidemic model, and whether or not there are data from which to
infer model parameters.

We treat exclusively diseases that spread from person to person and hence we
omit water-borne diseases or diseases that spread from food (e.g. Salmonella). For
these diseases, individuals can often be classified as being susceptible (i.e. not yet
infected) or infected, and if infected, an individual can either be latent (exposed
but not yet infectious), infectious, or recovered and immune. For historical reasons,
these states are categorized as susceptible (S), exposed (E), infectious (I) and recov-
ered/immune (R). Susceptible individuals that become infected sequentially pass
through the stages E, I and R (and possibly back to S again once immunity has
waned). For simplicity, we call an individual in a given state susceptible, latent, in-
fective or recovered, respectively. The type of model studied can then be expressed
in terms of these abbreviations. For example, an SIR model has no latent (exposed)
state and individuals remain recovered and immune forever, and in an SEIS model
infected individuals are at first exposed, then infectious, after which they return to
the susceptible state without being immune. Reality is of course not this simple:
usually infectivity builds up gradually after having been latent for some time, and
after some additional time infectivity drops down towards zero. Also, after having
been immune for some time, this immunity gradually wanes and susceptibility picks
up. In these Notes we mainly stick to the simplified situation where individuals have
constant infectivity while being infectious, and complete immunity while recovered,
possibly followed by complete susceptibility.

A very important factor for determining how a disease will spread in a commu-
nity is how people mix. Individuals could either mix completely uniformly in the
community, or, more likely, mix with household members, friends, work colleagues
and neighbours at a higher rate than others. For sexually transmitted diseases, the
relevant contacts depend on the sexual network of the community. It is not possible
to say exactly which model to use for a given situation, but a general rule might
be that the more highly infectious a disease is the better the simplifying approxi-
mation of assuming homogeneous mixing works. Thus, when considering measles
and other childhood diseases (usually requiring only being in the same room for a
substantial risk of getting infected) a homogeneous mixing model would work well,
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whereas for a sexually transmitted disease (where a very intimate contact is nec-
essary, and even then there is only a small risk of transmission) conclusions made
from a homogeneous mixing model would not be very reliable.

Another important factor affecting potential disease spread is whether individuals
are similar (with respect to disease spreading) or not. For instance, individuals could
vary in terms of their immune system, thus affecting their susceptibility to disease.
Similarly, infected individuals could react differently, affecting how infectious they
become, and they could differ in terms of how much they mix with others. These
differences could either be known in advance and individuals classified accordingly
(e.g. infants, schoolchildren and adults), or unknown – for example most diseases
have both symptomatic and asymptomatic cases, often having different spreading
potential.

Finally, the community under consideration could either be fixed or changing
over time. Of course, no large community is completely constant over time, but if
we consider a short-term outbreak, such as seasonal influenza, we may perhaps ap-
proximate the community as being fixed and constant. Similarly, if considering a
short-term outbreak, what really is an SEIRS-disease can perhaps be approximated
by the simpler SEIR model if immunity does not wane on the time horizon of the
outbreak. For instance, individuals hardly ever catch influenza more than once dur-
ing the same influenza season.

The idea behind this CIMPA-school, which carries over to the current volume,
was to introduce stochastic models for the spread of infectious diseases and also
some inference procedures for such models, and at the same time make use of var-
ious techniques from probability theory. The purpose of this volume is hence two-
fold: to help the reader learn about stochastic epidemic models (with inference) and,
at the same time, enable them to see several probabilistic methods in use. The focus
of the volume is on methodology, but in a few places there are connections to real-
world epidemic outbreaks, in particular in Chapter 4 of Part III, where the spread of
HIV in Cuba is analysed by means of a network epidemic model. In several other
places we make connections to real-world problems without going into depth. The
Notes aim to be self-contained and many of the most important results in the theory
of stochastic epidemic models are derived. Needless to say, we also direct the reader
to numerous articles where additional results are proven.

The contents of the different parts of the Notes can roughly be described as fol-
lows.

Part I, Stochastic epidemic models in a homogeneous community, written by the
editors, sets the scene by defining and analysing some epidemic models in which
all individuals are identical regarding social mixing and disease susceptibility and
infectivity. This part looks at exact results for small communities, and large popula-
tion approximations: laws of large numbers and central limit theorems for outbreaks
in closed communities, but also endemic levels and extinction times (using large de-
viation techniques) for epidemics spreading in open (dynamic) populations.

Part II, Stochastic SIR epidemic in structured populations, is written by Frank
Ball and David Sirl. In this part epidemic models are defined and analysed for com-
munities that are not homogeneous, including household epidemic models, and gen-
eral two-level mixing models containing both spreading at a local scale as well as at
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a global scale. The methods include branching processes, random graphs, the theory
of susceptibility sets, laws of large numbers and central limit theorems.

Part III, Stochastic epidemics in a heterogeneous community, is written by Viet
Chi Tran. This part is exclusively devoted to epidemic models on networks, and in
particular on the configuration model network, and ends with an application to HIV
in Cuba, which uses data from sexual contact questionnaires of diagnosed HIV pa-
tients. The methodology concerns the theory of random graphs and measure-valued
processes for proving a law of large numbers.

Finally, Part IV, Statistical inference for epidemic processes in a homogeneous
community, is written by Catherine Larédo, with a contribution by Viet Chi Tran in
Chapter 4. Here the focus is on deriving inference procedures for the models de-
scribed in earlier parts, in particular Part I, with extensive simulation studies illus-
trating the theory. The methodology involves classical likelihood theory, Bayesian
inference, survival analysis and martingale theory, and computer intensive statistical
techniques such as Approximate Bayesian Computation and Markov Chain Monte
Carlo methods.

Most of the material in this volume has already appeared somewhere, but some
aspects of the presentation, including a few technical results, are new compared
to earlier publications. It is our belief that these Notes make up the most detailed
and broad treatment of stochastic epidemic models ever published in one volume,
covering both classical and new results and methods, from mathematical models to
statistical procedures.

There are of course other books and lecture notes which treat similar questions
and methods. We do not aim to give a complete list of such references, but instead
give a subjectively chosen sample. One of the first books devoted to mathematical
modelling of infectious diseases, mainly focussing on stochastic models, is Bailey’s
book [3], published in 1975. Note that this is the second edition of a book entitled
The mathematical theory of epidemics published in 1957. In the 1980s, attention to
mathematical epidemiology rose, at least partly due to the start of the HIV epidemic.
The first book to focus on inference procedures for infectious diseases was Becker
[5]. Another book from the same era which has had a huge impact is Anderson and
May [1], which exclusively deals with deterministic models. Since then, there has
been steady production of new research monographs, e.g. Andersson and Britton
[2] also looking at inference methodology, Daley and Gani [7] focusing mainly on
stochastic models, Keeling and Rohani [9] dealing also with animal populations, and
Diekmann, Heesterbeek and Britton [8] covering both deterministic and stochastic
modelling.

August 2019

Tom Britton, Stockholm
Etienne Pardoux, Marseille
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Introduction

In this Part I of the lecture notes our focus lies exclusively on stochastic epidemic
models for a homogeneously mixing community of individuals being of the same
type. The important extensions allowing for different types of individuals and al-
lowing for non-uniform mixing behaviour in the community is left for later parts in
the Notes.

In Chapter 1, we present the stochastic SEIR epidemic model, derive some im-
portant properties of it, in particular for the beginning of an outbreak. Motivated by
mathematical tractability rather than realism we then study in Chapter 2 the spe-
cial situation where the model is Markovian, and derive additional results for this
sub-model.

What happens later on in the outbreak will depend on our model assumptions,
which in turn depend on the scientific questions. In Chapter 3 we focus on short-
term outbreaks, when it can be assumed that the community is fixed and constant
during the outbreak; we call these models closed models. In Chapter 4 we are more
interested in long-term behaviour, and then it is necessary to allow for influx of
new individuals and that people die, or to include return to susceptibility. Such so-
called open population models are harder to analyse – for this reason we stick to the
simpler class of Markovian models. In this chapter we consider situations where the
deterministic model has a unique stable equilibrium, and use both the central limit
theorem and large deviation techniques to predict the time at which the disease goes
extinct in the population.

The Notes end with an extensive Appendix, giving some relevant probability
theory used in the main part of the Notes and also solutions to most of the exercises
being scattered out in the different chapters.

3



Chapter 1
Stochastic Epidemic Models

This first chapter introduces some basic facts about stochastic epidemic models. We
consider the case of a closed community, i.e. without influx of new susceptibles or
mortality. In particular, we assume that the size of the population is fixed, and that
the individuals who recover from the illness are immune and do not become suscep-
tible again. We describe the general class of stochastic epidemic models, and define
the basic reproduction number, which allows one to determine whether or not a ma-
jor epidemic may start from the initial infection of a small number of individuals.
We then approximate the early stage of an outbreak with the help of a branching
process, and from this obtain the distribution of the final size (i.e. the total number
of individuals who ever get infected) in case of a minor outbreak. Finally we discuss
the impact of vaccination.

The important problem of estimating model parameters from (various types of)
data is left to Part IV of the current volume (also discussed in Chapter 4 of Part III).
Here we assume the model parameters to be known.

1.1 The Stochastic SEIR Epidemic Model in a Closed
Homogeneous Community

1.1.1 Model Definition

Consider a closed population of N+1 individuals (N is the number of initially sus-
ceptible). At any point in time each individual is either susceptible, exposed, infec-
tious or recovered. Let S(t), E(t), I(t) and R(t) denote the numbers of individuals
in the different states at time t (so S(t)+E(t)+ I(t)+R(t) = N+ 1 for all t). The
epidemic starts at t = 0 in a specified state, often the state with one infectious in-
dividual, called the index case and thought of as being externally infected, and the
rest being susceptible: (S(0),E(0), I(0),R(0)) = (N,0,1,0).

Definition 1.1.1. While infectious, an individual has infectious contacts according
to a Poisson process with rate λ . Each contact is with an individual chosen uni-
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6 Part I. Chapter 1. Stochastic Epidemic Models

formly at random from the rest of the population, and if the contacted individual is
susceptible he/she becomes infected – otherwise the infectious contact has no ef-
fect. Individuals that become infected are first latent (called exposed) for a random
duration L with distribution FL, then they become infectious for a duration I with
distribution FI , after which they become recovered and immune for the remaining
time. All Poisson processes, uniform contact choices, latent periods and infectious
periods of all individuals are defined to be mutually independent.

The epidemic goes on until the first time τ when there are no exposed or in-
fectious individuals, E(τ) + I(τ) = 0. At this time no further individuals can get
infected so the epidemic stops. The final state hence consists of susceptible and re-
covered individuals, and we let Z denote the final size, i.e. the number of infected (by
then recovered) individuals at the end of the epidemic excluding the index case(s):
Z = R(τ)− I(0) = N−S(τ). The possible values of Z are hence 0, . . . ,N.

1.1.2 Some Remarks, Submodels and Model Generalizations

Quite often the rate of “infectious contacts” λ can be thought of as a product of a
rate c at which the infectious individual has contact with others, and the probability
p that such a contact results in infection given that the other person is susceptible, so
λ = cp. As regards to the propagation of the disease it is however only the product
λ that matters and since fewer parameters is preferable we keep only λ .

The rate of infectious contacts is λ , so the rate at which one infectious has contact
with a specific other individual is λ/N since each contact is with a uniformly chosen
other individual.

First we will look what happens in a very small community/group, but the main
focus of these notes is for a large community, and the asymptotics are hence for
N → ∞. The parameters of the model, the infection rate λ , and the latent and in-
fectious periods L and I, are defined independently of N, but the epidemic is highly
dependent on N so when this needs to be emphasized we equip the corresponding
notation with an N-index, e.g. SN(t) and τN which hence is not a power.

Some special cases of the model have received special attention in the literature.
If both L and I are exponentially distributed (with rates ν and γ say), the model
is Markovian which simplifies the mathematical analysis a great deal. This model
is called the Markovian SEIR. If L ≡ 0 and I ∼ Exp(γ) then we have the Marko-
vian SIR (whenever there is no latency period the model is said to be SIR) which is
better known under the unfortunate name the General stochastic epidemic. Another
special case of the stochastic SEIR model is where the infectious period I is non-
random. Also here there is a underlying mathematical reason – when the duration of
the infectious period is non-random and equal to ι say, then an infectious individual
has infectious contacts with each other individual at rate λ/N during a non-random
time implying that the number of contacts with different individuals are indepen-
dent. Consequently, an infectious individual has infectious contacts with each other
individual independently with probability p = 1− e−(λ/N)ι , so the total number of
contacts is Binomially distributed, and in the limit as N → ∞ the number of infec-
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tious contacts an individual has is Poisson distributed with mean λι . If further the
latent period is long in comparison to the infectious period then it is possible to
identify the infected individuals in terms of generations: the first generation are the
index cases, the second generation those who were infected by the index case(s),
and so one. When the model is described in this discrete time setting and individ-
uals infect different individuals independently with probability p, this model is the
well-known Reed–Frost model named after its inventors Reed and Frost.

The two most studied special cases are hence when the infectious period is ex-
ponentially distributed and when it is nonrandom. For real infectious diseases none
of these two extremes apply, for influenza for example, the infectious period is be-
lieved to be about 4 days, plus or minus one or two days. If one has to choose
between these choices a nonrandom infectious period is probably closer to reality.

The stochastic SEIR model in a closed homogeneous community may of course
also be generalized towards more realism. Two such extensions have already been
mentioned: allowing for individuals to die and new ones to be born, and allowing
for some social structures. Some such extensions will be treated in the other articles
of the current lecture notes but not here. But even when assuming a closed homoge-
neously mixing community of homogeneous individuals it is possible to make the
model more realistic. The most important such generalization is to let the rate of
infectious contact vary with time since infection. The current model assumes there
are no infectious contacts during the latent state, and then, suddenly when the la-
tent period ends, the rate of infectious contact becomes λ until the infectious period
ends when it suddenly drops down to 0 again. In reality, the infectious rate is usu-
ally a function λ (s) s time units after infection. In most situations λ (s) is very small
initially (corresponding to the latency period) followed by a gradual increase for
some days, and then λ (s) starts decaying down towards 0 which it hits when the
individual has recovered completely (see Figure 1.1.1 for an example where infec-
tivity starts growing after one day and is more or less over after one week). The

0 2 4 6 8

s

0

0.5

(s
)

Fig. 1.1.1 Plot of a possible infectivity curve λ (s). The time s denotes the time since infection in
unit of days.
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function λ (s) could be the same for all individuals, or it may be random and hence
a stochastic process, i.i.d. for different individuals. As regards to the temporal dy-
namics of the epidemic process, the functional form of λ (s) is important, and also
its random properties in case it is random. If one is only interested in the final size
τ , it is however possible to show that all that affects the final size is the accumulated
force of infection, i.e. the distribution of

∫ ∞
0 λ (s)ds. In particular, if we let λ I in the

stochastic SEIR model have the same distribution as
∫ ∞
0 λ (s)ds in the more general

model, then the two models have the same final size distribution. In that sense, the
extended model can be included in the stochastic SEIR model.

1.1.3 Two Key Quantities: R0 and the Escape Probability

The most important quantity for this, as well as most other epidemic models, is the
basic reproduction number (sometimes “number” is replaced by “ratio”) and de-
noted by R0. In more complicated models its definition and interpretation are some-
times debated, but for the present model it is quite straightforward: R0 denotes the
mean number of infectious contacts a typical infected has during the early stage of
an outbreak. As the population under consideration is becomes large, this number
will coincide with the mean number of infections caused by a typical infected during
the early stages of an outbreak. We derive an expression for R0, but before that we
should consider its important threshold value of 1. If R0 > 1 this means that on av-
erage an infected infects more than one individual in the beginning of an epidemic.
Then the index case on average is replaced by more than one infected, who in turn
each are replaced by more than one infected and so on. This clearly suggests that a
big community fraction can become infected. If on the other hand R0 ≤ 1, then the
same reasoning suggests that there will never be a big community outbreak. Those
results hold true which we prove in Section 1.2 (Corollaries 1.2.6 and 1.2.7).

In applications the basic reproduction number R0 is a central quantity of interest.
Many studies of disease outbreaks contain estimates of R0 for a specific disease and
community, together with modeling conclusions about preventive measures which,
if put into place, will reduce the reproduction number R down to below the critical
value of 1 when an outbreak is no longer possible (e.g. Fraser et al. [12]).

Let us now derive an expression for R0. An infected individual has infectious
contacts only when infectious, and when in this state the individual has infectious
contacts at rate λ . This means that the expected number of infectious contacts equals

R0 = E(λ I) = λι . (1.1.1)

Sometimes the rate λ of having infectious contacts is replaced by an over-all rate of
contact cmultiplied by the probability p of a contact leading to infection, so λ = c p
and R0 = c p ι (cf. the first lines of the above Subsection 1.1.2, Anderson and May
[1] and Giesecke [14]).

Another key quantity appearing later several times is the probability for a given
susceptible to escape getting infected from a specific infective. The instantaneous in-
fectious force from the infective to this specific susceptible is λ/N, and the random
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duration of the infectious period is I. Conditional upon I = x, the escape probability
is hence e−(λ/N)x, and the unconditional probability to escape infection is therefore

P(escape infection from an infective) = E(e−λ I/N) = ψI(−λ/N), (1.1.2)

where ψI(b) =E(ebI) is the moment generating function of the infectious period (so
ψ(−b) is the Laplace transform – in Part II in this volume the Laplace transform
has a separate notation, φ , so φ(b) = ψ(−b)).

Exercise 1.1.2. Consider the Markovian SEIR epidemic in which λ = 1.8, ν = 2
and γ = 1 in a village of size N = 100, (parameters inspired by Ebola with weeks as
time unit). Compute R0 and the escape probability.

Exercise 1.1.3. Repeat the previous exercise, but now for the Reed–Frost epidemic
with λ = 1.8, L ≡ 2 and I ≡ ι = 1 in a village of size N = 100, (perhaps having
more realistic distributions than in the previous exercise).

1.2 The Early Stage of an Outbreak

We now consider the situation where the community size N is large and study the
stochastic SEIR epidemic in the beginning of an outbreak. By “beginning” we mean
that less than k = k(N) individuals have been infected. Recall from the model defi-
nition that infectious individuals have infectious contacts with others independently,
each infective at rate λ . The dependence only appears because individuals can only
get infected once, so if an individual has already received an infectious contact, then
future infectious contacts with that individual no longer result in someone getting
infected. However, in the beginning of an outbreak in a large community it is very
unlikely that two infectives happen to have infectious contacts with the same in-
dividual. This suggests that during the early phase of an outbreak, infectives infect
new individuals more or less independently. This implies that the number of infected
can be approximated by a branching process in the beginning of an outbreak, where
“being born” corresponds to having been infected, and “giving birth” corresponds
to infecting someone. The current section is devoted to making this approximation
rigorous, and thus obtaining asymptotic results for the epidemic in regards to having
a minor versus a major outbreak. In the next section this approximation is exploited
in order to determine the distribution of the final size in the case of a minor out-
break. If the epidemic takes off, which happens in the case of a major outbreak, then
the approximation that individuals infect others independently breaks down. What
happens in this situation is treated in later sections.

First we define the approximating branching process and derive some properties
of it. After this we show rigorously that, as N → ∞, the initial phase of the epidemic
process converges to the initial phase of the branching process by using an elegant
coupling technique.

The approximating branching process is defined similarly to the epidemic. A
newborn individual is first unable to give birth to new individuals for a period with
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duration L (this period might be denoted childhood in the branching process set-
ting). After this childhood, the individual enters the reproductive stage which last
for I units of time. During this period individuals give birth to new individuals at
rate λ (randomly in time according to a Poisson process with rate λ ). Once the re-
productive stage has terminated the individual dies (or at least cannot reproduce and
hence plays no further role).

The number of offspring of an individual, X , depends on the duration of the
reproductive stage I. Conditional upon I= y, the number of births follow the Poisson
distribution Poi(λy), so the unconditional distribution of number of offspring is
mixed-Poisson, written as X ∼MixPoi(λ I), where I has distribution FI .

If we forget calendar time, and simply study the number of individuals born
in each generation, then our branching process is a Bienaymé–Galton–Watson
process with offspring distribution being MixPoi(λ I). The mean number of chil-
dren/offspring equals m= E(X) = E(E(X |I)) = E(λ I) = λι .

Exercise 1.2.1. Compute the offspring distribution P(X = x) explicitly for the two
cases: (i) where the infectious period is non-random, I ≡ ι , corresponding to the
continuous–time version of the Reed–Frost epidemic; and (ii) for the Markovian
SEIR where I is exponential with mean ι .

We now show an elegant coupling construction which we will use to show that
the epidemic and branching process have similar distributions in the beginning. To
this end we define the approximating branching process as well as all epidemics,
i.e. for each N = 1,2, . . ., on the same probability space. To this end, let L0,L1, . . .
be i.i.d. latent periods having distribution FL, and similarly let I0, I1, . . . be i.i.d. in-
fectious periods having distribution FI . Further, let ξ0(·),ξ1(·), . . . be i.i.d. Poisson
processes having intensity λ , and let U1,U2, . . . be i.i.d. U(0,1) random variables.
All random variables and Poisson processes are assumed to be mutually indepen-
dent. These will be used to construct the branching process as well as the stochastic
SEIR epidemic for each N as follows.

Definition 1.2.2. The approximating branching process. At time t = 0 there is one
new born ancestor having label 0. Let the ancestor have childhood length L0 and
reproductive stage for a duration I0 (so the ancestor dies at time L0 + I0), during
which the ancestor gives birth at the time points of the Poisson process ξ0(·). If
the jump times of this Poisson process are denoted T0,1 < T0,2 < ... and X0 denotes
the number of jumps prior to I0, then the ancestor gives birth at the time points L0+
T0,1, . . . ,L0+T0,X0 (the set is empty if X0 = 0). The first born individual is given label
1, and having childhood period L1, reproductive period I1 and birth process ξ1(·).
This individual gives birth according to the same rules (starting the latency period at
time L0+T0,1), and the next individual born, either to individual 0 or 1, is given label
2 and variables L2, I2 and birth process ξ2(·), and so on. This defines the branching
process, and we let L(t), I(t),R(t) respectively denote the numbers of individuals in
the childhood state, in the reproductive state and dead, respectively, at time t. The
total number of individuals born up to time t, excluding the ancestor/index case, is
denoted by Z(t) = L(t)+ I(t)+R(t)−1 in the branching process, and the ultimate
number ever born, excluding the ancestor, is denoted by Z which may be finite or
infinite.
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We now define the epidemic for any fixed N (in the epidemic childhood corre-
sponds to latent and reproductive stage to being infectious). This is done similarly
to the branching process with the exception that we now keep track of which indi-
viduals who get infected using the uniform random variablesU1,U2, . . . .

Definition 1.2.3. The stochastic SEIR epidemic withN initial susceptibles. We label
theN+1 individuals 0,1, . . . ,N, with the index case having label 0 and the others be-
ing labelled arbitrarily. As for the branching process, the index case is given latency
period L0, infectious period I0 and contact process ξ0(·) and the epidemic is started
at time t = 0. The infectious contacts of the index case occur at the time points
L0 + T0,1, . . . ,L0 + T0,X0 . The first infectious contact is with individual [U1N] + 1,
the integer part of NU1 plus 1 (this picks an individual uniformly among 1, . . . ,N).
This individual, k say, then becomes infected (and latent) and is given latent period,
infectious period and contact process L1, I1 and ξ1(·). The next infectious contact
(from either the index case or individual k) will be with individual [U2N] + 1. If
the contacted person is individual k then nothing happens, but otherwise this new
individual gets infected (and latent), and so on. Infectious contacts only result in
infection if the contacted individual is still susceptible. When a contact is with an
already infected individual the branching process has a birth whereas there is no
infection in the epidemic – we say a “ghost” was infected when comparing with the
branching process. Descendants of all ghosts are also ignored in the epidemic. The
epidemic goes on until there are no latent or infectious individuals. This will hap-
pen within a finite time (bounded by ∑N

j=0(Lj + I j)). The final number of infected
individuals excluding the index case is as before denoted ZN ∈ [0, . . . ,N]. Similar to
before we let LN(t), IN(t),RN(t) denote the numbers of latent, infectious and recov-
ered individuals at time t, and now we can also define the number of susceptibles
SN(t) = N+1−LN(t)− IN(t)−RN(t).

In our model the index case cannot be contacted. This is of course unrealistic but
simplifies notation. In the limit as N gets large this assumption has no effect. We
now state two important results for these constructions of the branching process and
epidemics.

Theorem 1.2.4. The definition above agrees with the earlier definition of the Stochas-
tic SEIR epidemic in a homogeneous community.

Proof. The latent and infectious periods have the desired distributions, and an in-
fective has infectious contacts with others at overall rate λ , and each time such a
contact is with a uniformly selected individual as desired. '(

We now prove that the branching process and the epidemic process (with popu-
lation size N) are identical up to a time point which tends to infinity in probability
as N → ∞. To this end, we let MN denote the number of infections prior to the first
ghost (i.e. how many uniformly selected individuals [UkN] there were before some-
one was reselected. If this never happens we setMN = ∞. Let TN denote the time at
which the first ghost appears (and if this never happens we also set TN = ∞).

Theorem 1.2.5. The branching process and N-epidemic agree up until TN:
(LN(t), IN(t),RN(t)) = (L(t), I(t),R(t)) for all t ∈ [0,TN). Secondly, TN → ∞ and
MN → ∞ in probability as N → ∞.
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Proof. The first statement of the proof is obvious. The only difference between the
epidemic and the branching process in our construction is that specific individuals
are contacted in the epidemic, and up until the first time when some individual is
contacted again, each infectious contact results in infection just as in the branching
process.

As for the second part of the theorem we first compute the probability that MN

will tend to infinity, and then that the time TN until the first ghost appears also tends
to infinity. It is easy to compute P(MN > k) since this will happen if and only if all
the first k contacts are with distinct individuals:

P(MN > k) = 1× N−1
N

× · · ·× N− k
N

=
k

∏
j=0

(
1− j

N

)
.

(This formula is identical to the celebrated (...) birthday problem if N+1= 365 and
k is the size of the class.) For fixed k we see that this probability tends to 1 as N→∞.
We can in fact say more. We have the following lower bound (which is easily proved
by recurrence):

P(MN > k) =
k

∏
j=0

(
1− j

N

)
≥ 1−

k

∑
j=1

j
N

= 1− (k+1)k
2N

.

As a consequence, we see that P(MN > k(N))→ 1 as long as k = k(N) = o(
√
N).

In particular MN → ∞ in probability as N → ∞. In what follows we write w.l.p.
for “with large probability”, meaning with a probability tending to 1 as N → ∞.
The consequence hence implies that all infectious contacts up to k(N) will w.l.p.
be with distinct individuals and thus will result in infections. So, up until k(N) in-
dividuals have been infected, the epidemic can be approximated by a branching
process for any k(N) = o(

√
N). Let Z(t) denote the number of individuals born be-

fore t in the branching process (excluding the ancestor) and ZN(t) = N−SN(t) the
number of individuals that have been infected before t (excluding the index case)
in the N-epidemic. Since the epidemic and branching process agree up until TN it
follows that Z(t) = ZN(t) for t < TN . But, since k(N) < MN w.l.p. it follows that
inf{t;Z(t) = k(N)} ≤ TN w.l.p. If the branching process is (sub)critical, then Z(t)
remains bounded as t → ∞, so TN =+∞ w.l.p. Consider now the supercritical case.
From Section A.1.2 (Proposition A.1.4) we know that Z(t) = Op(ert) where the
Malthusian parameter r solves the equation

∫ ∞

0
e−rsλ (s)ds= 1. (1.2.1)

The function λ (s) is the rate at which an individual gives birth s time units after
being born, so λ (s) = λP(infectious at s) and hence λ (s) = λP(L < s < L+ I)
for our model. We thus have that k(N) ≤ cerT

N w.l.p., which implies that TN ≥
logk(N)/r− logc. So if for example k(N) = N1/3, which clearly satisfies k(N) =
o(
√
N), it follows that TN → ∞ in probability. '(
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Theorem 1.2.5 shows that the epidemic behaves like the branching process up to
a time point tending to infinity as N → ∞, and that the number of infections/births
by then also tends to infinity. This implies that we can use theory for branching
processes to obtain results for the early part of the epidemic. We state these im-
portant results in the following corollaries; the first corollary is for the subcritical
and critical cases and the second corollary is for the supercritical case. Recall that
R0 = λE(I), the basic reproduction number in the epidemic and the mean offspring
number in the branching process.

Corollary 1.2.6. If R0 ≤ 1, then (LN(t), IN(t),RN(t)) = (L(t), I(t),R(t)) for all t ∈
[0,∞) w.l.p. As a consequence, P(ZN = k)→ P(Z = k) as N → ∞, and in particular
ZN is bounded in probability.

Proof. In Theorem 1.2.5 it was shown that the epidemic and branching process
agree up until there has been MN births, where MN > N1/3 w.l.p. for example. But
from branching process theory (Proposition A.1.1) we know that this will happen
with a probability tending to 0 with N when R0 ≤ 1, implying that TN =∞ w.l.p. '(

Corollary 1.2.7. If R0 > 1, then for finite k: P(ZN = k) → P(Z = k) as N → ∞.
Further, {ZN → ∞} with the same probability as {Z = ∞}, which is the complement
to the extinction probability, the latter being the smallest solution to the equation
z= g(z) described in Proposition A.1.1.

Proof. Also this corollary is a direct consequence of Theorem 1.2.5 and properties
of branching processes. If only k births occur, then there will be no ghost w.l.p.,
implying that the epidemic and the branching process agree forever w.l.p. On the
other hand, the coupling construction showed that MN → ∞ on the other part of the
sample space, and Z ≥ ZN ≥MN which completes the proof. '(

The two corollaries state that the epidemic and branching process coincide for-
ever as long as the branching process stays finite. If the branching process grows
beyond all limits (only possible when R0 > 1) then the epidemic and branching pro-
cess will not remain identical even though also the epidemic tends to infinity with
N. For any fixed N we have 0 ≤ ZN ≤ N which clearly is different from Z = ∞ in
that case. The distribution of ZN on the part of the sample space where ZN → ∞ is
treated below in Section 3.3.

The two corollaries show that the final number infected ZN will be small with
a probability equal to the extinction probability of the approximating branching
process, and it will tend to infinity with the remaining (explosion) probability. In
Section 3.3 we study the distribution of ZN (properly normed) and then see that the
distribution is clearly bimodal with one part close to 0 and the other part beingO(N).
These two parts are referred to as minor outbreak and major outbreak respectively.

What happens during the early stage of an outbreak is particularly important
when considering so-called emerging epidemic outbreaks. Then statistical inference
based on this type of branching process approximation is often used. For example,
in [38] a branching process approximation that is very similar to the SEIR branching
process of Definition 1.2.2 is used for modelling the spread of Ebola during the early
stage of the outbreak in West Africa in 2014.
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Exercise 1.2.8. Use the branching process approximation of the current section to
compute the probability of a major outbreak of the SEIR epidemic assuming that
I ≡ ι (the continuous time Reed–Frost case), and I ∼ Exp(γ) (the Markovian SIR)
with γ = 1/ι . Only one of them will be explicit. Compute things numerically for
R0 = 1.5 and ι = 1.

Exercise 1.2.9. Use the branching process approximation of the current section to
compute the exponential growth rate r for the following two cases: L≡ 0 and I ≡ ι
(the continuous time Reed–Frost), and L≡ 0 and I ∼ Exp(γ = 1/ι) (the Markovian
SIR). Compute r numerically for the two cases when R0 = 1.5 and ι = γ = 1.

1.3 The Final Size of the Epidemic in Case of No Major
Outbreak

Let ZN denote the final size of the epidemic (i.e. the total number of individuals
that get infected during the outbreak) but now also including the initially infected
individual. In the case of no major outbreak, if the total population size N is large
enough, ZN is well approximated by the total number of individuals in a branching
process, as we saw in the previous section. Hence we consider Z as the total number
of individuals ever born in a branching process (including the ancestor), where the
number of offspring of the k-th individual is Xk. Let X1,X2, . . . be i.i.d. N-valued
random variables. We start by establishing an identity which is an instance of Kem-
perman’s formula, see e.g. Pitman [28] page 123.

Proposition 1.3.1. For all k ≥ 1,

P(Z = k) =
1
k
P(X1+X2+ · · ·+Xk = k−1).

Proof. Consider the process of depth–first search of the genealogical tree of the
infected individuals. This procedure can be defined as follows. The tree is explored
starting from the root. Suppose we have visited k vertices. The next visit will be to
the leftmost still unexplored son of this individual, if any; otherwise to the leftmost
unexplored son of the most recently visited node among those having not yet visited
son(s), see Figure 1.3.1. X1 is the number of sons of the root, who is the first visited
individual. Xk is the number of sons of the k-th visited individual. This exploration
of the tree ends at step k if and only if X1 ≥ 1, X1 + X2 ≥ 2, X1 + X2 + X3 ≥ 3,
... X1+X2+ · · ·Xk−1 ≥ k− 1, and X1+X2+ · · ·+Xk = k− 1. Let us rewrite those
conditions. Define

Yi = Xi−1, i≥ 1,
Sk = Y1+Y2+ · · ·+Yk.

A trajectory {Yi, 1 ≤ i ≤ k} explores a tree of size k if and only if the following
conditions are satisfied
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Fig. 1.3.1 Top: the tree. Bottom: the random walk Sk. Here X1 = 3, X2 = 2, X3 = 0, X4 = 0, X5 = 1,
X6 = 2, X7 = X8 = X9 = 0, Y1 = 2, Y2 = 1, Y3 = Y4 =−1, Y5 = 0, Y6 = 1, Y7 = Y8 = Y9 =−1.

(Ck) S0 = 0,S1 ≥ 0,S2 ≥ 0, . . . ,Sk−1 ≥ 0,Sk =−1.

Indeed, it is easy to convince oneself that it is the case if there is only one generation:
if the ancestor has k−1 children, thenY1 = k−2, andY2 = · · ·=Yk =−1, hence (Ck)
holds. If one attaches one generation trees to some of the leaves of the previous tree,
then one replaces a unique −1 step by an excursion upwards which finishes at the
same level as the replaced step. Iterating this procedure, we see that the exploration
of a general tree with k nodes satisfies (Ck).

The statement of the proposition is equivalent to

P(Z = k) =
1
k
P(Y1+Y2+ · · ·+Yk =−1).
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Denote by Vk the set of sequences of k integers ≥−1 which satisfy conditions (Ck),
and Uk the set of sequences of k integers ≥ −1 which satisfy the unique condition
Sk =−1. We use circular permutations operating on the Yi’s. For 1≤ i,!≤ k, let

(i+ !)k =

{
i+ !, if i+ !≤ k;
i+ !− k, if i+ !> k.

For each 1≤ !≤ k, let Z!
i =Y(i+!)k , S

!
j =∑ j

i=1Z
!
i for 1≤ i≤ k. Clearly S!k =−1 for all

! as soon as (Ck) is satisfied. On the other hand Sk ≡ S is the only trajectory which
satisfies conditions (Ck). The other S! hit the value −1 before rank k, see Figure
1.3.1. The Z!’s are sequences of integers ≥ −1 of length k, whose sum equals −1.
Finally to each element ofVk we have associated k distinct elements ofUk, all having
the same probability.

Reciprocally, to one element S of Uk\Vk, choosing ! = argmin
1≤i≤k

Si and using the

above transformation, we deduce that S! ∈Vk.
Finally, to each trajectory of Vk, we associate k trajectories of Uk, who all have

the same probability, and which are such that the inverse transformation gives back
the same trajectory of Vk. The result is proved. '(

Note that from branching process theory (Proposition A.1.1), we have clearly

∑
k≥1

P(Z = k)

{
= 1, if ER0 ≤ 1;
< 1, if ER0 > 1,

which is not so obvious from the proposition.
We now deduce the exact law of Z from Proposition 1.3.1 in two cases which

are probably the two most interesting cases for epidemics models. First we consider
the case where the Xis are Poisson, which is the situation of the continuous time
Reed–Frost model, where the infectious period is non-random. Second we consider
the case where the Xis are geometric, which is the case in the Markovian model.

Example 1.3.2. Suppose that the joint law of the Xis is Poi(µ), with 0< µ < 1. Then
X1+ · · ·+Xk ∼ Poi(kµ), and consequently

P(Z = k) =
1
k
P(X1+ · · ·+Xk = k−1)

= e−µk (µk)k−1

k!
.

This law of Z is called the Borel distribution with parameter µ . Note that

EZ = 1+µ+µ2+ · · ·

=
1

1−µ
.

Example 1.3.3. Consider now the case where Xi ∼ G (p), where we mean here that
P(Xi = k) = (1− p)k p, k = 0,1, . . .. The law of Xi+1 is the geometric distribution
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with parameter p whose support is N, in other words P(Xi+1> k) = (1− p)k. Then
k+X1+ · · ·+Xk follows the negative binomial distribution with parameters (k, p).
Hence

P(Z = k) =
1
k
P(k+X1+ · · ·+Xk = 2k−1)

=
1
k

(
2k−2
k−1

)
pk(1− p)k−1

=
(2k−2)!
k!(k−1)!

pk(1− p)k−1.

In the case p> 1/2, EZ = (2p−1)−1p.

1.4 Vaccination

One important reason for modelling the spread of infectious diseases is to better
understand effects of different preventive measures, such as for example vaccina-
tion, isolation and school closure. When a new outbreak occurs, epidemiologists
(together with mathematicians and statisticians) estimate model parameters and then
use these to predict effects of various preventive measures, and based on these pre-
dictions, health authorities decide upon which preventive measures to put in place,
cf. [38].

We refer the reader to Part IV in this volume for estimation methods, but in the
current section we touch upon the area of modeling prevention. Our focus is on
vaccination, and we consider only vaccination prior to the arrival of an outbreak;
the situation where vaccination (or other preventive measures) are put into place
during the outbreak is not considered. “Vaccination” can be interpreted in a wider
sense. From a mathematical and spreading point of view, the important feature is
that the individual cannot spread the disease further, which could also be achieved
by e.g. isolation or medication. Modelling effects of vaccination is also considered
in Part II, Section 2.4, and in Part III, Section 2.6, in the current volume.

Suppose that a fraction v of the community is vaccinated prior to the arrival of
the disease. We assume that the vaccine is perfect in the sense that it gives 100%
protection from being infected and hence of spreading the disease (but see the ex-
ercise below). This implies that only a fraction 1− v are initially susceptible, and
the remaining fraction v are immunized (as discussed briefly in Section 2.1). Hence
we can neglect the latter fraction and consider only the initial susceptible part of
the community of size N′ = N(1− v). However, it is not only the number of ini-
tially susceptibles that changes, the rate of having contact with initial susceptibles
has also changed to λ ′ = λ (1− v), since a fraction v of all contacts are “wasted”
on vaccinated people. The spread of disease in a partly-vaccinated community can
therefore be modelled using exactly the same SEIR stochastic model with the only
difference being that we have a different population size N′ and a different contact
rate parameter λ ′.



18 Part I. Chapter 1. Stochastic Epidemic Models

From this we conclude the new reproduction number, which we denote Rv to
show the dependence on v, satisfies

Rv = λ ′E(I) = λ (1− v)E(I) = (1− v)R0.

As a consequence, a major outbreak in the community is not possible if Rv ≤ 1,
which (when R0 > 1) is equivalent to v ≥ 1− 1/R0. This limit, called the critical
vaccination coverage and denoted

vc = 1− 1
R0

, (1.4.1)

is hence a very important quantity: if more than this fraction is vaccinated before
an outbreak, then the whole community is protected from a major outbreak and not
only the vaccinated, a situation called herd immunity. Equation (1.4.1) is well known
among infectious disease epidemiologists (e.g. Giesecke [14]) and is used by public
health authorities all over the world to determine the minimal yearly vaccination
coverage in vaccination programs of childhood diseases.

If v < vc there is still a possibility of a major outbreak. The probability for such
an outbreak is obtained using earlier results with λ replaced by λ ′ = λ (1− v): the
probability of a minor outbreak is the solution sv to the equation s = gv(s), where
gv(·) is the probability generating function of Xv ∼ MixPoi(λ (1− v)I), the num-
ber of offspring (= new infections) in the case that a fraction v are immunized by
vaccination.

In the case when there is a major outbreak, the relative size zv of the outbreak
(among the initially susceptible!) is given by the unique positive solution to the
equation

1− z= e−Rvz, or equivalently 1− z= e−(1−v)R0z, (1.4.2)

this result is shown in later sections, cf. Equation (2.1.3). The community fraction
getting infected is hence (1− v)zv.

We summarize our result in the following theorem where we let ZN
v denote the

final number infected when a fraction v are vaccinated prior to the outbreak.

Theorem 1.4.1. If v ≥ vc = 1− 1/R0, then ZN
v /N → 0 in probability. If v < vc =

1−1/R0, then ZN
v /N ⇒ Z∞

v which has a two-point distribution: P(Z∞
v = 0) = sv and

P(Z∞
v = (1− v)zv) = 1− sv, where sv and zv have been defined above.

Exercise 1.4.2. Consider the Markovian SEIR epidemic with λ = 2, L ∼ Exp(2)
and I ∼ Exp(1). Compute the critical vaccination coverage vc. Compute also nu-
merically the probability of a major outbreak, and the community-fraction that will
get infected in the case of a major outbreak when v= 0.333.

Exercise 1.4.3. Suppose that the vaccine gives only partial protection to catching
and spreading the disease. Suppose that the vaccine has the effect the risk of getting
infected by a contact is only 20% of the risk of getting infected when not vaccinated,
but that the vaccine has no effect on infectivity if the person gets infected (such a
vaccine is said to be a “leaky vaccine” having 80% efficacy on susceptibility and
0% efficacy on infectivity). Compute the reproduction number Rv in the case that
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a fraction v is vaccinated with such a vaccine. (Another vaccine response model is
“all-or-nothing” where a fraction is assumed to receive 100% effect and the remain-
ing fraction receive no effect from vaccination, for example due to the cold chain
being broken for a live vaccine.)



Chapter 2
Markov Models

This chapter describes the important class of Markov models. It starts with a pre-
sentation of the deterministic ODE models. We then formulate precisely the random
Markov epidemic model as a Poisson process driven stochastic differential equation,
and establish the law of large numbers (later referred to as LLN), whose limit is pre-
cisely the already described ODE model. The next section studies the fluctuations
around this LLN limit, which is described by the central limit theorem. Finally we
give a diffusion approximation result, i.e. a diffusion process (solution of a Brown-
ian motion driven stochastic differential equation) which, again in the case of a large
population, is a good approximation of our Poisson process driven model. One of
the earliest references for those three approximation theorems is Kurtz [22]. See
also chapter 11 of Ethier and Kurtz [11].

2.1 The Deterministic SEIR Epidemic Model

Before analysing the stochastic SEIR model assuming N → ∞ in greater detail in
the following subsections, we first derive heuristically a deterministic counterpart
for the Markovian version and study some of its properties, which are relevant also
for the asymptotic case of the stochastic model.

Consider the Markovian stochastic SEIR model. There are three types of events:
a susceptible gets infected and becomes exposed, an exposed becomes infectious
when the latent period terminates, and an infectious individual recovers and be-
comes immune. Since the model is Markovian all these events happen at rates
depending only on the current state, and these rates are respectively given by:
λS(t)I(t)/N, νE(t) and γI(t). When an infection occurs, the number of suscep-
tibles decreases by 1 and the number of exposed increases by 1; when a latency
period ends, the number of exposed decreases by 1 and the number of infectives
increases by 1; and finally when there is a recovery, the number of infectives de-
creases by 1 and the number of recovered increases by 1. If we instead look at
“proportions” (to simplify notation we divide by N rather than the more appropri-
ate choice N+1), the corresponding changes are −1/N and +1/N. This reasoning

21© Springer Nature Switzerland AG 2019 
T. Britton, E. Pardoux (eds.), Stochastic Epidemic Models with Inference,  
Lecture Notes in Mathematics 2255, https://doi.org/10.1007/978-3-030-30900-8_2 
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justifies a deterministic model for proportions where one should think of an infinite
population size allowing the proportions to be continuous. The deterministic SEIR
epidemic (s(t),e(t), i(t),r(t)) is given by

s′(t) =−λ s(t)i(t),
e′(t) = λ s(t)i(t)−νe(t),
i′(t) = νe(t)− γi(t),
r′(t) = γi(t).

We start with all fractions being non-negative and summing to unity, which implies
that s(t)+ e(t)+ i(t)+ r(t) = 1 and all being nonnegative for all t. It is important
to stress that this system of differential equations only approximates theMarkovian
SEIR model. If for example the latent and infectious stages are non-random, then a
set of differential-delay equations would be the appropriate approximation. If these
durations are random but not exponential one possible pragmatic assumption is to
use a gamma distribution where the shape parameter is an integer (so it can be seen
as a sum of i.i.d. exponentials). Then the deterministic approximation would be a set
of differential equations where the state space has been expanded. Just like for the
stochastic SEIR model, the deterministic model has to start with a positive fraction
of exposed and/or infectives for anything to happen. Most often it is assumed that
there is a very small fraction ε of latent and/or infectives.

The case where there is no latent period meaning that ν → ∞, the deterministic
SIR epidemic (or deterministic general epidemic), sometimes called the Kermack–
McKendrick equations, has perhaps received more attention in the literature:






s′(t) =−λ s(t)i(t),
i′(t) = λ s(t)i(t)− γi(t),
r′(t) = γi(t).

(2.1.1)

This system of differential equations (and the SEIR system on the previous page)
are undoubtedly the most commonly analysed epidemic models (e.g. Anderson and
May [1]), and numerous related extended models, capturing various heterogeneous
aspects of disease spreading, are published every year in mathematical biology jour-
nals.

The deterministic SEIR and SIR share the two most important properties in that
they have the same basic reproduction number R0 and give the same final size (as-
suming the initial number of infectives/exposed are positive but negligible in both
cases), which we now show. In Figure 2.1.1 both the SEIR and SIR systems are
plotted for the same values of λ = 1.5 and γ = 1 (so R0 = 1.5), and with ν = 1 in
the SEIR system.

From the differential equations we see that s(t) is monotonically decreasing and
r(t) monotonically increasing. The differential for i(t) in the SIR model can be
written i′(t) = γi(t)

(
λ
γ s(t)−1

)
. The initial value is i(0) = ε ≈ 0 and s(0) = 1−ε ≈

1. From this we see that for having i′(0) > 0 we need that λ/γ > 1. If this holds,
i(t) grows up until s(t) < γ/λ after which i(t) decays down to 0. If on the other
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Fig. 2.1.1 Plot of the deterministic SIR (left) and SEIR (right) systems for λ = 1.5 and γ = 1, and
with ν = 1 in the SEIR model. The dash-dotted curve is the fraction of susceptibles, the solid curve
the fraction of infectives, the dashed curve the fraction of recovered, and the lowest curve in the
right figure is the fraction of exposed (latent).

hand λ/γ ≤ 1, then i(t) is decreasing from the start and since its initial value is
ε ≈ 0, nothing much will happen so s(∞) ≈ s(0) ≈ 1 and r(∞) ≈ r(0) = 0. We
hence see that also in the deterministic model, R0 = λ/γ plays an important role in
that whether or not R0 exceeds 1 determines whether there will be a substantial or a
negligible fraction getting infected during the outbreak. Note that this is the same R0
as for the Markovian SEIR epidemic. There the infectious period is exponentially
distributed with parameter γ , so ι := E(I) = 1/γ .

An important difference between deterministic and stochastic epidemic models
lies in the initial values. Stochastic models usually start with a small number of in-
fectious individuals (in the model of the current Notes we assumed one initial infec-
tive: I(0) = 1). This implies that the initial fraction of infectives tend to 0 as N → ∞.
In the deterministic setting we however have to assume a fixed and strictly positive
fraction ε of initially infectives (if we start with a fraction 0 of infectives nothing
happens in the deterministic model). This implicitly implies that the deterministic
model starts to approximate the stochastic counterpart only when the number of in-
fectives in the stochastic model has grown up to a fraction ε , so a number Nε . The
earlier part of the stochastic model cannot be approximated by this deterministic
model, and as we have seen it might in fact never reach this level (if there is only a
minor outbreak).

In order to derive an expression for the ultimate fraction getting infected we
use the differential for s(t) (and below also the one for r(t)). Dividing by s and
multiplying by dt gives the following differential: ds/s = −λ idt. Integrating both
sides and recalling that R0 = λ/γ , we obtain
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logs(t)− logs(0) =−λ
∫ t

0
i(t)dt

=−R0

∫ t

0
r′(s)ds

=−R0(r(t)− r(0)) =−R0r(t).

And since s(0) = 1− ε ≈ 1 and r(∞) = 1− s(∞) we obtain the following equation
for the final size z= r(∞) = 1− s(∞):

1− z= e−R0z. (2.1.2)

In Section 3.3.1 we show that this final size equation coincides with that of the
LLN limit of the final fraction getting infected in the stochastic model (cf. Equation
(3.3.2), which is identical to (2.1.2)).

The equation always has a root at z= 0 corresponding to no (or minor) outbreak.
It can be shown (cf. Exercise 2.1.1) that if and only if R0 > 1 there is a second
solution to (2.1.2), corresponding to the size of a major outbreak, and this solution
z∗ is strictly positive and smaller than 1. For a given value of R0 > 1 the solution z∗
has to be computed numerically. In Figure 2.1.2 the solution is plotted as a function
of R0.
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Fig. 2.1.2 Plot of the final size solution z∗ to Equation (2.1.2) as a function of R0.

It is important to point out that the final size equation (2.1.2) assumes that, at t =
0, all individuals (except the very few initially latent and infectives) are susceptible.
If a fraction v is initially immune (perhaps due to natural immunity, or vaccination
as described in Section 1.4) then r(0) = v and s(0) = 1−v, resulting in the equation
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1− z= e−R0z(1−v), (2.1.3)

where its solution zv now is interpreted as the fraction among the initially susceptible
that get infected. The overall fraction getting infected is hence zv(1− v). Using the
same argument as for the final size without immunity, we conclude that z= 0 is the
only solution if R0(1− v)≤ 1. This is equivalent to v≥ 1−1/R0. If immunity was
caused by vaccination, this hence suggests that a fraction exceeding vc = 1−1/R0
should be vaccinated; then there will be no outbreak! For this reason, the quantity
vc = 1−1/R0 is often called the critical vaccination coverage, and if this coverage is
reached, so-called herd immunity is achieved. Herd immunity implies that not only
the vaccinated are protected, but so are also the unvaccinated, since the community
is protected from epidemic outbreaks.

Exercise 2.1.1. Show that z= 0 is the only solution to (2.1.2) when R0 ≤ 1 and that
there is a unique positive solution if R0 > 1. (Hint: Study suitable properties of the
function f (z) = e−R0z+ z−1.)

Exercise 2.1.2. Compute the final size numerically for R0 = 1.5 (e.g. influenza),
R0 = 3 (e.g. rubella) and R0 = 15 (e.g. measles).

2.2 Law of Large Numbers

Consider a general compartmental model, which takes the form

Z N
t = zN +

k

∑
j=1

h jPj

(∫ t

0
βN, j(s,Z N

s )ds
)
,

where the Pjs are mutually independent standard (i.e. unit rate) Poisson processes,
and βN, j(t,Z N

t ) is the rate of jumps in the direction h j at time t, h j being a d-
dimensional vector.Z N

t takes values in Zd
+. The i-th component ofZ N

t is the num-
ber of individuals in the i-th compartment at time t. N is a scale parameter. In the
case of models with fixed total population size, N = ∑d

i=1Z
N,i
t is the total population

at any time t. Note that the above formula for Z N
t can be rewritten equivalently,

following the comments at the end of Section A.2 in the Appendix below, as

Z N
t = zN +

k

∑
j=1

h j

∫ t

0

∫ βN, j(s,Z N
s )

0
Qj(ds,du),

where Q1, . . . ,Qk are mutually independent Poisson random measures on R2
+, with

mean measure dsdu.
We now define

ZN
t = N−1Z N

t

the vector of rescaled numbers of individuals in the various compartments. In the
case of a constant population size equal to N, the components of the vector ZN

t are
the proportions of the total population in the various compartments at time t. The
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equation for ZN
t reads, with xN = N−1zN ,

ZN
t = xN +

k

∑
j=1

h j

N
Pj

(∫ t

0
βN, j(s,NZN

s )ds
)
.

Example 2.2.1 (The SIR model).
One important example is that of the SIR model with constant population size.

Suppose there is no latency period and that the duration of infection satisfies
I ∼ Exp(γ). In that case, let S(t), I(t), and R(t)) denote respectively the number
of susceptibles, infectives and recovered at time t.

In this model, two types of events happen:

1. infection of a susceptible (such an event decreases S(t) by one, and increases
I(t) by one, so h1 = (−1,1,0)); these events happen at rate

βN,1(t,Zt) =
λ
N
S(t)I(t), where λ = cp;

2. recovery of an infective (such an event decreases I(t) by one, and increases R(t)
by one, so h2 = (0,−1,1)); these events happen at rate

βN,2(t,Zt) = γI(t).

Hence we have the following equations, with P1(t) and P2(t) two standard mutually
independent Poisson processes:

S(t) = S(0)−P1
(

λ
N

∫ t

0
S(r)I(r)dr

)
,

I(t) = I(0)+P1
(

λ
N

∫ t

0
S(r)I(r)dr

)
−P2

(
γ
∫ t

0
I(r)dr

)
,

R(t) = R(0)+P2
(

γ
∫ t

0
I(r)dr

)
.

We can clearly forget about the third equation, since R(t) = N−S(t)− I(t).
We now define (SN(t), IN(t)) = (N−1S(t),N−1I(t)). We have

SN(t) = SN(0)− 1
N
P1
(
Nλ

∫ t

0
SN(r)IN(r)dr

)
,

IN(t) = IN(0)+
1
N
P1
(
Nλ

∫ t

0
SN(r)IN(r)dr

)
− 1

N
P2
(
Nγ
∫ t

0
IN(r)dr

)
.

The above model assumes that λ and γ are constant, but in applications at least
λ may depend upon t.

Example 2.2.2 (The SEIRS model with demography).
We now describe one rather general example. We add to the preceding example

the state E and the fact that removed individuals lose their immunity at a certain
rate, which gives the SEIRS model. In addition, we add demography. There is an



2.2 Law of Large Numbers 27

influx of susceptible individuals at rate µN, and each individual, irrespective of its
type, dies at rate µ . This gives the following stochastic differential equation

S(t) = S(0)−Pse
(

λ
N

∫ t

0
S(r)I(r)dr

)
+Prs

(
ρ
∫ t

0
R(r)dr

)

+Pb(µNt)−Pds

(
µ
∫ t

0
S(r)dr

)
,

E(t) = E(0)+Pse
(

λ
N

∫ t

0
S(r)I(r)dr

)
−Pei

(
ν
∫ t

0
E(r)dr

)

−Pde

(
µ
∫ t

0
E(r)dr

)
,

I(t) = I(0)+Pei
(

ν
∫ t

0
E(r)dr

)
−Pir

(
γ
∫ t

0
I(r)dr

)
−Pdi

(
µ
∫ t

0
I(r)dr

)
,

R(t) = R(0)+Pir
(

γ
∫ t

0
I(r)dr

)
−Prs

(
ρ
∫ t

0
R(r)dr

)
−Pdr

(
µ
∫ t

0
R(r)dr

)
.

In this system, the various Poisson processes are standard and mutually independent.
The indices should be self-explanatory. Note that the rate of births is µ ×N rather
than µ× the actual number of individuals in the population, in order to avoid the
pitfalls of branching processes (either exponential growth or extinction). Also, the
probability S(t)/N(t) that an infective meets a susceptible (where N(t) denotes the
total population at time t) is approximated by S(t)/N for the sake of mathematical
simplicity. Note however that N(t)

N → 1 a.s. as N → ∞, see Exercise 4.1.1 below. The
equations for the proportions in the various compartments read

SN(t) = SN(0)− 1
N
Pse
(
Nλ

∫ t

0
SN(r)IN(r)dr

)
+

1
N
Prs
(
Nρ

∫ t

0
RN(r)dr

)

+
1
N
Pb(µNt)−

1
N
Pds

(
µN

∫ t

0
SN(r)dr

)
,

EN(t) = EN(0)+
1
N
Pse
(
Nλ

∫ t

0
SN(r)IN(r)dr

)

− 1
N
Pei
(

νN
∫ t

0
EN(r)dr

)
− 1

N
Pde

(
µN

∫ t

0
EN(r)dr

)
,

IN(t) = IN(0)+
1
N
Pei
(

νN
∫ t

0
EN(r)dr

)
− 1

N
Pir
(
Nγ
∫ t

0
IN(r)dr

)

− 1
N
Pdi

(
µN

∫ t

0
IN(r)dr

)
,
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RN(t) = RN(0)+
1
N
Pir
(
Nγ
∫ t

0
IN(r)dr

)
− 1

N
Prs
(
Nρ

∫ t

0
RN(r)dr

)

− 1
N
Pdr

(
µN

∫ t

0
RN(r)dr

)
.

Example 2.2.3 (A variant of the SEIRS model with demography).
In the preceding example, we decided to replace the true proportion of suscep-

tibles by its approximation S(t)/N, in order to avoid complications. There is an-
other option, which is to force the population to remain constant. The most natu-
ral way to achieve this is to assume that each death event coincides with a birth
event. Every susceptible, exposed, infected, removed individual dies at rate µ . Each
death is compensated by the birth of a susceptible. The equation for the evolution of
(S(t),E(t), I(t),R(t)) reads

S(t) = S(0)−Pse
(

λ
N

∫ t

0
S(r)I(r)dr

)
+Prs

(
ρ
∫ t

0
R(r)dr

)

+Pds

(
µ
∫ t

0
S(r)dr

)
+Pde

(
µ
∫ t

0
E(r)dr

)
+Pdi

(
µ
∫ t

0
I(r)dr

)

+Pdr

(
µ
∫ t

0
R(r)dr

)
−Pds

(
µ
∫ t

0
S(r)dr

)
,

E(t) = E(0)+Pse
(

λ
N

∫ t

0
S(r)I(r)dr

)
−Pei

(
ν
∫ t

0
E(r)dr

)

−Pde

(
µ
∫ t

0
E(r)dr

)
,

I(t) = I(0)+Pei
(

ν
∫ t

0
E(r)dr

)
−Pir

(
γ
∫ t

0
I(r)dr

)
−Pdi

(
µ
∫ t

0
I(r)dr

)
,

R(t) = R(0)+Pir
(

γ
∫ t

0
I(r)dr

)
−Prs

(
ρ
∫ t

0
R(r)dr

)
−Pdr

(
µ
∫ t

0
R(r)dr

)
.

The equations for the proportions in the various compartments read

SN(t) = SN(0)− 1
N
Pse
(
Nλ

∫ t

0
SN(r)IN(r)dr

)

+
1
N
Prs
(
Nρ

∫ t

0
RN(r)dr

)
+

1
N
Pds

(
Nµ

∫ t

0
SN(r)dr

)

+
1
N
Pde

(
Nµ

∫ t

0
EN(r)dr

)
+

1
N
Pdi

(
Nµ

∫ t

0
IN(r)dr

)

+
1
N
Pdr

(
Nµ

∫ t

0
RN(r)dr

)
− 1

N
Pds

(
Nµ

∫ t

0
SN(r)dr

)
,

EN(t) = EN(0)+
1
N
Pse
(
Nλ
∫ t

0
SN(r)IN(r)dr

)
− 1
N
Pei
(
Nν
∫ t

0
EN(r)dr

)

− 1
N
Pde

(
Nµ

∫ t

0
EN(r)dr

)
,
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IN(t) = IN(0)+
1
N
Pei
(

ν
∫ t

0
EN(r)dr

)
− 1

N
Pir
(

γ
∫ t

0
IN(r)dr

)

− 1
N
Pdi

(
Nµ

∫ t

0
IN(r)dr

)
,

RN(t) = RN(0)+
1
N
Pir
(
Nγ
∫ t

0
IN(r)dr

)
− 1

N
Prs
(
Nρ

∫ t

0
RN(r)dr

)

− 1
N
Pdr

(
Nµ

∫ t

0
RN(r)dr

)
.

In the three above examples, for each j, βN, j(t,Nz) = Nβ j(t,z), for some β j(t,z)
which does not depend upon N. We shall assume from now on that this is the case
in our general model, namely that

βN, j(t,Nz) = Nβ j(t,z), for all 1≤ j ≤ k, N ≥ 1, z ∈ Rd
+.

Remark 2.2.4. We could assume more generally that

βN, j(t,Nz) = Nβ̃N, j(t,z), where β̃N, j(t,z)→ β j(t,z),

locally uniformly as N → ∞.

Finally our model reads

ZN
t = xN +

k

∑
j=1

h j

N
Pj

(∫ t

0
Nβ j(s,ZN

s )ds
)
. (2.2.1)

We note that in the first example above, 0 ≤ ZN
j (t) ≤ 1 for all 1 ≤ j ≤ k, t ≥ 0,

N ≥ 1. In the second example however, such a simple upper bound does not hold,
but a much weaker assumption will suffice.

We assume that all β j are locally bounded, which is clearly satisfied in all exam-
ples we can think of, so that for any K > 0,

C(T,K) := sup
1≤ j≤k

sup
0≤t≤T

sup
|z|≤K

β j(t,z)< ∞. (2.2.2)

We first prove the Law of Large Numbers for Poisson processes.

Proposition 2.2.5. Let {P(t), t ≥ 0} be a rate λ Poisson process. Then

t−1P(t)→ λ a.s. as t → ∞.

Proof. Consider first for n ∈ Z+

n−1P(n) = n−1
n

∑
i=1

[P(i)−P(i−1)]

→ λ a.s. as n→ ∞
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from the standard strong Law of Large Numbers, since the random variables P(i)−
P(i−1), 1≤ i≤ n are i.i.d. Poisson with parameter λ . Now

t−1P(t) =
[t]
t
[t]−1P([t])+ t−1{P(t)−P([t])},

so
∣∣t−1P(t)−λ

∣∣≤
∣∣∣∣
[t]
t
[t]−1P([t])−λ

∣∣∣∣+ t−1{P([t]+1)−P([t])}.

But

t−1{P([t]+1)−P([t])}= t−1P([t]+1)− t−1P([t])

is the difference of two sequences which converge a.s. towards the same limit, hence
it converges to 0 a.s. '(

Define the continuous time martingales (see Section A.4.2 in the Appendix)
Mj(t) = Pj(t)− t, 1≤ j ≤ k. We have

ZN
t = xN +

∫ t

0
b(s,ZN

s )ds+
k

∑
j=1

h j

N
Mj

(∫ t

0
Nβ j(s,ZN

s )ds
)
,

where

b(t,x) =
k

∑
j=1

h jβ j(t,x).

Consider the k-dimensional processM N(t) whose j-th component is defined as

M N
j (t) :=

1
N
Mj

(
N
∫ t

0
β j(r,ZN

r )dr
)
.

From the above, we readily deduce the following.

Proposition 2.2.6. For any K > 0, let τK := inf{t > 0, |ZN
t |≥K}. As N → ∞, for all

T > 0, provided (2.2.2) holds,

sup
0≤t≤T∧τK

|M N(t)|→ 0 a.s.

Proof. In order to simplify the notation we treat the case d = 1. It follows from
(2.2.2) that, ifM(t) = P(t)− t and N is large enough,

sup
0≤t≤T∧τK

|M N(t)|≤ 1
N

sup
0≤r≤NTC(T,K)

|M(r)|.

From the previous proposition, for all t > 0,

P(Nt)
N

→ t a.s. as N → ∞.
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Note that we have pointwise convergence of a sequence of increasing functions
towards a continuous (and of course increasing) function. Consequently from the
second Dini Theorem (see e.g. pages 81 and 270 in Polya and Szegö [30]), this
convergence is uniform on any compact interval, hence for all T > 0,

1
N

sup
0≤r≤NTC(T,K)

|M(r)|→ 0 a.s.

'(

Concerning the initial condition, we assume that for some x ∈ [0,1]d , xN =
[Nx]/N, where [Nx] is of course a vector of integers. We can now prove the fol-
lowing theorem.

Theorem 2.2.7 (Law of Large Numbers). Assume that the initial condition is given
as above, that b(t,x) = ∑k

j=1 β j(t,x)h j is locally Lipschitz as a function of x, locally
uniformly in t, that (2.2.2) holds and that the unique solution of the ODE

dzt
dt

= b(t,zt), z0 = x

does not explode in finite time. Let ZN
t denote the solution of the SDE (2.2.1). Then

ZN
t → zt a.s. locally uniformly in t, where {zt , t ≥ 0} is the unique solution of the

above ODE.

Needless to say, our theorem applies to the general model (2.2.1). We shall de-
scribe below three specific models to which we can apply it. Note that if the initial
fraction of infected is zero, then the fraction of infected is zero for all t ≥ 0.

Proof. We have

ZN
t = xN +

∫ t

0
b(s,ZN

s )ds+
k

∑
j=1

h jM
N
j (t).

Let us fix an arbitrary T > 0. We want to show uniform convergence on [0,T ]. Let
K := sup0≤t≤T |zt |+C, where C > 0 is arbitrary, and let τK = inf{t > 0, |ZN

t |≥ K}.
Since b(t, ·) is locally Lipschitz,

cT,K := sup
0≤t≤T,x 1=x′,|x|,|x′|≤K

|b(t,x)−b(t,x′)|
|x− x′| < ∞.

For any 0≤ t ≤ T , if we define YN
t = ∑k

j=1 h jM N
j (t), we have

|ZN
t∧τK − zt∧τK |≤ |xN − x|+ cT,K

∫ t∧τK

0
|ZN

s − zs|ds+ |YN
t∧τK |

≤ εN exp(cT,Kt),
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where εN := |xN−x|+sup0≤t≤T∧τK |Y
N
t | and we have used Gronwall’s Lemma 2.2.9

below. It follows from our assumption on xN and Proposition 2.2.6 that εN → 0 as
N → ∞. The result follows, since as soon as εN exp(cT,KT )≤C, τK ≥ T . '(

Remark 2.2.8. Showing that a stochastic epidemic model (for population propor-
tions) converges to a particular deterministic process is important also for applica-
tions. This motivates the use of deterministic models, which are easier to analyse,
in the case of large populations.

Lemma 2.2.9 (Gronwall). Let a,b ≥ 0 and ϕ : [0,T ] → R be such that for all
0≤ t ≤ T ,

ϕ(t)≤ a+b
∫ t

0
ϕ(r)dr.

Then ϕ(t)≤ aebt .

Proof. We deduce from the assumption that

e−btϕ(t)−be−bt
∫ t

0
ϕ(r)dr ≤ ae−bt ,

or in other words
d
dt

(
e−bt

∫ t

0
ϕ(r)dr

)
≤ ae−bt .

Integrating this inequality, we deduce

e−bt
∫ t

0
ϕ(r)dr ≤ a

1− e−bt

b
.

Multiplying by bebt and exploiting again the assumption yields the result. '(

Example 2.2.10 (The SIR model). It is clear that Theorem 2.2.7 applies to Example
2.2.1. The limit of (SN(t), IN(t)) is the solution (s(t), i(t)) of the ODE

s′(t) =−λ s(t)i(t),
i′(t) = λ s(t)i(t)− γi(t).

Example 2.2.11 (The SEIRS model with demography (continued)). Again Theorem
2.2.7 applies to Example 2.2.2. The limit of (SN(t),EN(t), IN(t), RN(t)) is the solu-
tion (s(t),e(t), i(t),r(t)) of the ODE

s′(t) = µ(1− s(t))−λ s(t)i(t)+ρr(t),
e′(t) = λ s(t)i(t)− (ν +µ)e(t),
i′(t) = νe(t)− (γ +µ)i(t),
r′(t) = γi(t)− (ρ +µ)r(t).

Note that of we define the total renormalized population as n(t) = s(t) + e(t) +
i(t)+ r(t), then it is easy to deduce from the above ODE that n′(t) = µ(1− n(t)),
consequently n(t) = 1+ e−µt(n(0)− 1). If n(0) = 1, then n(t) ≡ 1, and we can
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reduce the above model to a three-dimensional model (and to a two-dimensional
model as in the previous example if we are treating the SIR or the SIRS model with
demography).

We note that this “Law of Large Numbers” approximation is only valid when
s, i > 0, i.e. when significant fractions of the population are infective and are sus-
ceptible, in particular at time 0. The ODE is of course of no help to compute the
probability that the introduction of a single infective results in a major epidemic.

The vast majority of the literature on mathematical models in epidemiology con-
siders ODEs of the type of equations which we have just obtained. The probabilistic
point of view is more recent.

Exercise 2.2.12. Let us consider Ross’s model of malaria, which we write in a
stochastic form. Denote by H(t) the number of humans (hosts) who are infected
by malaria, and by V (t) the number of mosquitos (vectors) who are infected by
malaria at time t. Let NH denote the total number of humans, and NV denote the
total number of mosquitos, which are assumed to be constant in time. The humans
(resp. the mosquitos) which are not infected are all supposed to be susceptibles. Let
m= NV/NH and denote by a the mean number of bites of humans by one mosquito
per time unit, pVH the probability that the bite of a susceptible human by an infected
mosquito infects the human, and by pHV the probability that a susceptible mosquito
gets infected while biting an infected human. We assume that the infected humans
(resp. mosquitos) recover at rate γ (resp. at rate µ).

1. What is the mean number of bites that a human suffers per time unit?
2. Given 4 mutually independent standard Poisson processes P1(t), P2(t), P3(t) and

P4(t), justify the following as a stochastic model of the propagation of malaria.

H(t) = H(0)+P1
(
apVH

∫ t

0
V (s)

NH −H(s)
NH

ds
)
−P2

(
γ
∫ t

0
H(s)ds

)

V (t) =V (0)+P3
(
ampHV

∫ t

0
H(s)

NV −V (s)
NV

ds
)
−P4

(
µ
∫ t

0
V (s)ds

)
.

3. Define now (with NH = N, NV = mN)

hN(t) =
H(t)
NH

, vN(t) =
V (t)
NV

.

Write the equation for the pair (hN(t),vN(t)). Show that as N → ∞, with m
constant, (hN(t),vN(t))→ (h(t),v(t)), the solution of Ross’s ODE:

dh
dt

(t) = apVHmv(t)(1−h(t))− γh(t),

dv
dt

(t) = apHVh(t)(1− v(t))−µv(t).
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2.3 Central Limit Theorem

In the previous section we have shown that the stochastic process describing the
evolution of the proportions of the total population in the various compartments
converges, in the asymptotic of large population, to the deterministic solution of
a system of ODEs. In the current section we look at fluctuations of the difference
between the stochastic epidemic process and its deterministic limit.

We now introduce the rescaled difference between ZN
t and zt , namely

UN
t =

√
N(ZN

t − zt).

We wish to show thatUN
t converges in law to a Gaussian process. It is clear that

UN
t =

√
N(xN − x)+

√
N
∫ t

0
[b(s,ZN

s )−b(s,zs)]ds+
k

∑
j=1

h jM̃
N
j (t),

where for 1≤ j ≤ k,

M̃ N
j (t) =

1√
N
Mj

(
N
∫ t

0
β j(r,ZN

r )dr
)
.

We certainly need to find the limit in law of the k dimensional process M̃ N
t , whose

j-th coordinate is M̃ N
j (t). We prove the following proposition below.

Proposition 2.3.1. As N → ∞,

{M̃ N
t , t ≥ 0}⇒ {M̃t , t ≥ 0}

meaning weak convergence for the topology of locally uniform convergence, where
for 1 ≤ j ≤ k, M̃ j(t) =

∫ t
0
√

β j(s,zs)dBj(s) and the processes B1(t), . . . ,Bk(t) are
mutually independent standard Brownian motions.

Let us first show that the main result of this section is indeed a consequence of
this proposition.

Theorem 2.3.2 (Central Limit Theorem). In addition to the assumptions of Theo-
rem 2.2.7, we assume that x→ b(t,x) is of class C1, locally uniformly in t. Then, as
N → ∞, {UN

t , t ≥ 0}⇒ {Ut , t ≥ 0}, where

Ut =
∫ t

0
∇xb(s,zs)Usds+

k

∑
j=1

h j

∫ t

0

√
β j(s,zs)dBj(s), t ≥ 0. (2.3.1)

Proof. We shall fix an arbitrary T > 0 throughout the proof. Let VN(s) :=√
N[b(s,ZN

s )−b(s,zs)] and Ñ N
t := ∑k

j=1 h jM̃ N
j (t). We have

UN
t =UN

0 +
∫ t

0
VN(s)ds+ Ñ N

t .

Let us admit for the moment the following lemma.
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Lemma 2.3.3. For each N ≥ 1, 0 ≤ t ≤ T there exists a random d× d matrix AN
t

such that
VN
t = ∇b(t,zt)UN

t +AN
t U

N
t .

Moreover, sup0≤t≤T ‖AN
t ‖→ 0, a.s., as N → ∞.

We clearly have

UN
t =UN

0 +
∫ t

0
[∇b(s,zs)+AN

s ]U
N
s ds+ Ñ N

t .

It then follows from Gronwall’s Lemma that

sup
0≤t≤T

|UN
t |≤

(
|UN

0 |+ sup
0≤t≤T

|Ñ N
t |
)
exp
(

sup
0≤t≤T

‖∇b(t,zt)+AN
t ‖T

)
.

The right-hand side of this inequality is tight,1 hence the same is true for the left-
hand side. From this and Lemma 2.3.3 it follows that RN

t := AN
t UN

t tends to 0 in
probability as N → ∞, uniformly for 0≤ t ≤ T . Consequently

UN
t =

∫ t

0
∇xb(s,zs)UN

s ds+WN
t , where

WN
t =UN

0 +
∫ t

0
RN
s ds+ Ñ N

t .

The following two hold

1. sup0≤t≤T |UN
0 +

∫ t
0 R

N
s ds|→ 0 in probability, and from Proposition 2.3.1 Ñ N

t ⇒
Ñt , henceWN

t ⇒ Ñt for the topology of uniform convergence on [0,T ].
2. The mapping y 3→ Φ(y), which to y ∈C([0,T ];Rd) associates x ∈C([0,T ];Rd),

the solution of the ODE

x(t) =
∫ t

0
∇b(s,zs)x(s)ds+ y(t),

is continuous.
Indeed, we can construct this mapping by first solving the ODE

ż(t) = ∇b(t,zt)[z(t)+ y(t)], z(0) = 0,

and then defining x(t) = z(t)+ y(t).

Since
UN = Φ(WN),

the result follows from 1. and 2., and the fact that T is arbitrary. '(

Proof of Lemma 2.3.3. For 1≤ i≤ d, 0≤ t ≤T , define the random function ρi,t(θ)=
bi(t,zt + θ(ZN

t − zt)), 0 ≤ θ ≤ 1. The mean value theorem applied to the function

1 A sequence ξn of R+-valued random variables is tight if for any ε > 0, there exists an Mε such
that P(ξn >Mε )≤ ε , for all n≥ 1, see Section A.5 in the Appendix.
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ρi,t implies that for all 0≤ i≤ d, 0≤ t ≤ T , there exists a random 0< θ̄i,t < 1 such
that

bi(t,ZN
t )−bi(t,zt) = 〈∇bi(t,zt + θ̄i,t(ZN

t − zt)),ZN
t − zt〉.

Applying the same argument for all 1≤ i≤ d yields the first part of the Lemma. The-
orem 2.2.7 and the continuity in z of ∇b(t,z) uniformly in t imply that
∇bi(t,zt + θ̄i,t(ZN

t − zt))−∇bi(t,zt)→ 0 a.s., uniformly in t, as N → ∞. '(

It remains to prove Proposition 2.3.1. Let us first establish a central limit theorem
for standard Poisson processes. Let {Pj(t), t ≥ 0}1≤ j≤k be k mutually independent
standard Poisson processes and M(t) denote the k-dimensional process whose j-th
component is Pj(t)− t.

Lemma 2.3.4. As N → ∞,
M(Nt)√

N
⇒ B(t),

where B(t) is a k-dimensional standard Brownian motion (in particular B(t) ∼
N (0, tI), with I the d× d identity matrix) and the convergence is in the sense of
convergence in law in D([0,+∞);Rk).

For a definition of the space D([0,+∞);Rk) of the Rk-valued càlàg functions of
t ∈ [0,∞) and its topology, see section A.5 in the Appendix.

Proof. It suffices to consider each component separately, since they are indepen-
dent. So we do as if k= 1. We first note that our process is a martingale, whose asso-
ciated predictable increasing process is given by 〈N−1/2M(N·),N−1/2M(N·)〉t = t.
Hence it is tight.

Let us now compute the characteristic function of the random variable
N−1/2M(Nt). We obtain

E
(
exp
[
iuN−1/2M(Nt)

])
= exp

(
Nt
[
ei

u√
N −1− i

u√
N

])
→ exp

(
−t

u2

2

)
,

as N → ∞. This shows that N−1/2M(Nt) converges in law to anN (0, t) r.v.
Now let n ≥ 1 and 0 < t1 < · · · < tn. The random variables N−1/2M(Nt1),

N−1/2M(Nt2)−N−1/2M(Nt1), . . . ,N−1/2M(Ntn)−N−1/2M(Ntn−1) are mutually in-
dependent and, if B(t) denotes a standard one dimensional Brownian motion,
the previous argument shows that, with M(0) = B(0) = 0, for any 1 ≤ k ≤ n,
N−1/2(M(Ntk)−M(Ntk−1)) ⇒ B(tk)−B(tk−1). Thus, since the random variables
B(t1),B(t2)−B(t1), . . . ,B(tn)−B(tn−1) are mutually independent, we have shown
that

(
M(Nt1)√

N
,
M(Nt2)−M(Nt1)√

N
, . . . ,

M(Ntn)−M(Ntn−1)√
N

)

⇒ (B(t1),B(t2)−B(t1), . . . ,B(tn)−B(tn−1))

as N → ∞. This proves that the finite dimensional distributions of the process
N−1/2M(Nt) converge to those of B(t). Together with tightness, this shows the
lemma. '(
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Proof of Proposition 2.3.1. With the notation of the previous lemma,

M N
j (t) = N−1/2Mj

(
N
∫ t

0
β j(s,ZN

s )ds
)
.

We write

M N
j (t) = N−1/2Mj

(
N
∫ t

0
β j(s,zs)ds

)
+
˜̃
M

N

j (t),

where

˜̃
M

N

j (t) = N−1/2Mj

(
N
∫ t

0
β j(s,ZN

s )ds
)
−N−1/2Mj

(
N
∫ t

0
β j(s,zs)ds

)
.

ForC > 0, let τN,C = inf{t > 0, |ZN
t |>C}. We assume for a moment the identity

E
(∣∣∣∣
˜̃
M

N

j (t ∧ τN,C)
∣∣∣∣
2)

=E
(∫ t∧τN,C

0

∣∣∣∣β j(s,ZN
s )ds−

∫ t

0
β j(s,zs)ds

∣∣∣∣

)
. (2.3.2)

The above right-hand side is easily shown to converge to 0 as N → ∞. Jointly with
Doob’s inequality from Proposition A.4.8 in the Appendix, this shows that for all
T > 0, ε > 0,

P
(

sup
0≤t≤T

∣∣∣∣
˜̃
M

N

j (t)
∣∣∣∣> ε

)
≤ P(τN,C < T )+P

(
sup

0≤t≤T∧τN,C

∣∣∣∣
˜̃
M

N

j (t)
∣∣∣∣> ε

)

≤ P(τN,C < T )

+
4
ε2

E
(∫ t∧τN,C

0

∣∣∣∣β j(s,ZN
s )ds−

∫ t

0
β j(s,zs)ds

∣∣∣∣

)
.

It follows from Theorem 2.2.7 that for C > 0 large enough, both terms on the right

tend to 0, as N → ∞. Consequently sup0≤t≤T

∣∣∣∣
˜̃
M

N

j (t)
∣∣∣∣→ 0 in probability as N → ∞.

It remains to note that an immediate consequence of Lemma 2.3.4 is that

N−1/2Mj

(
N
∫ t

0
β j(s,zs)ds

)
⇒ Bj

(∫ t

0
β j(s,zs)ds

)

in the sense of weak convergence in the space D((0,+∞);R), and the coordi-
nates are mutually independent. However the two processes Bj

(∫ t
0β j(s,zs)ds

)
and∫ t

0
√

β j(s,zs)dBj(s) are two centered Gaussian processes which have the same co-
variance functions. Hence they have the same law.

We finally need to establish (2.3.2). Following the development in Section A.2 in

the Appendix, we can rewrite the local martingale ˜̃M
N

j (t) as follows, forgetting the
index j, and the time parameter of β for the sake of simplifying notations
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˜̃
M

N
(t) = N−1/2

∫ t

0

∫ ∞

0
1{Nβ (zs)≤u≤Nβ (ZNs−)}

Q(ds,du)

−N−1/2
∫ t

0

∫ ∞

0
1{Nβ (ZNs−)≤u≤Nβ (zs)}Q(ds,du),

where Q(ds,du) = Q(ds,du)−dsdu and Q is a standard Poisson point measure on
R2
+. Noting that the square of each jump of the above martingale equals N−1, we

deduce from Proposition A.4.9 in the Appendix that

E
(∣∣∣∣
˜̃
M

N
(t ∧ τN,C)

∣∣∣∣
2)

= N−1E
∫ t∧τN,C

0

∫ N[β (ZNs−∨β (zs)]

N[β (ZNs−∧β (zs)]
Q(ds,du)

= N−1E
∫ t∧τN,C

0

∫ N[β (ZNs ∨β (zs)]

N[β (ZNs ∧β (zs)]
dsdu,

which yields (2.3.2). '(

Example 2.3.5. The SIR model. It is clear that Theorem 2.3.2 applies to Example

2.2.1. If we define
(
Ut
Vt

)
= limN→∞

√
N
(
SN(t)− s(t)
IN(t)− i(t)

)
, we have

Ut =−λ
∫ t

0
[i(r)Ur+ s(r)Vr)]dr−

∫ t

0

√
λ s(r)i(r)dB1(r),

Vt =
∫ t

0
[λ (i(r)Ur+ s(r)Vr)− γVr]dr+

∫ t

0

√
λ s(r)i(r)dB1(r)

−
∫ t

0

√
γi(r)dB2(r).

Remark 2.3.6. Consider now the SIR model, started with a fixed small number of in-
fectious individuals, all others being susceptible, so that (SN(0), IN(0))→ (1,0), as
N → ∞. The solution of the ODE from Example 2.2.10 starting from (s(0), i(0)) =
(1,0) is the constant (s(t), i(t)) ≡ (1,0). So in that case the coefficients of the
noise in the last example are identically 0, and, the initial condition of the stochas-
tic model being deterministic, it is natural to assume that (U0,V0) = (0,0). Then
(Ut ,Vt)≡ (0,0). Consequently Theorem 2.3.2 tells us that, as N→∞, for any T > 0,

√
N
(
SN(t)−1
IN(t)−0

)
→ 0, in probability, uniformly w.r.t. t ∈ [0,T ].

In the case R0 > 1, i.e. λ > γ , with positive probability the epidemic gets off. How-
ever, as we shall see in Section 3.4 below, this take time of the order of log(N), and
there is no contradiction with the present result.

We close this section by a discussion of some of the properties of solutions of
linear SDEs of the above type, following some of the developments in section 5.6
of Karatzas and Shreve [17]. Suppose that {A(t), t ≥ 0} and {C(t), t ≥ 0} are d×d
matrix-valued measurable and locally bounded deterministic functions of t. With
{B(t), t ≥ 0} being a d-dimensional Brownian motion, we consider the SDE
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dXt = A(t)Xtdt+C(t)dBt , t ≥ 0,

X0 being a given d-dimensional Gaussian random vector independent of the Brow-
nian motion {B(t)}. The solution to this SDE is the Rd-valued process given by the
explicit formula

X(t) = Γ (t,0)X0+
∫ t

0
Γ (t,s)C(s)dBs,

where the d×d matrix Γ (t,s) is defined for all 0≤ s≤ t as follows. For each fixed
s≥ 0, {Γ (t,s), t ≥ s} solves the linear ODE

dΓ (t,s)
dt

= A(t)Γ (t,s), Γ (s,s) = I,

where I denotes the d× d identity matrix. It follows that {Xt , t ≥ 0} is a Gaussian
process, and for each t > 0, the mean and the covariance matrix of the Gaussian
random vector Xt are given by (denoting byC∗ the transpose of the matrixC)

E(Xt) = Γ (t,0)E(X0),

Cov(Xt) = Γ (t,0)Cov(X0)Γ ∗(t,0)+
∫ t

0
Γ (t,s)C(s)C∗(s)Γ ∗(t,s)ds.

Assume now that A(t) ≡ A and C(t) ≡ C are constant matrices. Then Γ (t,s) =
exp((t− s)A). If we define V (t) := Cov(Xt), we have that

V (t) = etA
[
V (0)+

∫ t

0
e−sACC∗e−sA∗ds

]
etA

∗
.

If we assume moreover that all the eigenvalues of A have negative real parts, then it
is not hard to show that as t → ∞,

V (t)→V :=
∫ ∞

0
esACC∗esA

∗
ds.

In that case the Gaussian law with mean zero and covariance matrixV is an invariant
distribution of Gauss–Markov process Xt . This means in particular that if X0 has that
distribution, then the same is true for Xt for all t > 0. We now show the following
result, which is often useful for computing the covariance matrix V in particular
cases.

Lemma 2.3.7. Under the above assumptions on the matrix A, V is the unique d×d
positive semidefinite symmetric matrix which satisfies

AV +VA∗+CC∗ = 0.

Proof. Uniqueness follows from the fact that the difference V̄ of two solutions sat-
isfies AV̄ + V̄A∗ = 0. This implies that for all x ∈ Rd , 〈AV̄x,x〉 = 0. Since none of
the eigenvalues of A∗ is zero, this implies that 〈V̄ x,x〉 = 0 for all eigenvectors x of
A∗, hence for all x ∈ Rd . Since V̄ is symmetric, this implies that V̄ = 0.
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To show thatV satisfies the wished identity, assume that the law of X0 is Gaussian
with mean 0 and Covariance matrix V . Then V is also the covariance matrix of Xt .
Consequently

V = etAVetA
∗
+
∫ t

0
e(t−s)ACC∗e(t−s)A∗ds.

Differentiating with respect to t, and letting t = 0 yields the result. '(

We leave the last result as an exercise for the reader.

Exercise 2.3.8. Consider again the case of time varying matrices A(t) andC(t). We
assume that A(t)→ A and C(t)→C as t → ∞, and moreover that the real parts of
all the eigenvalues of A are negative. Conclude that the law of Xt converges to the
Gaussian law with mean 0 and covariance matrix V defined as above.

2.4 Diffusion Approximation

We consider again the vector of proportions in our model as

ZN(t) = x+
1
N

k

∑
j=1

h jPj

(∫ t

0
Nβ j(ZN(s))ds

)
. (2.4.1)

From the strong law of large numbers, sup0≤t≤T ‖ZN(t)− zt‖ → 0 almost surely as
N → ∞, for all T > 0, where zt solves the ODE

żt = b(zt), z0 = x; where b(x) =
k

∑
j=1

h jβ j(x).

We now consider a diffusion approximation XN
t of the above model, which solves

the SDE

XN
t = x+

∫ t

0
b(XN

s )ds+
k

∑
j=1

h j√
N

∫ t

0

√
β j(XN

s )dB
j
s ,

where B1, . . . ,Bk are mutually independent standard Brownian motions. Let us de-
fine the Wasserstein-1 distance on the interval [0,T ] between two Rd-valued pro-
cessesUt and Vt as

W1,T (U,V ) = infE(‖U−V‖T ) ,

where, if x : [0,T ]→Rd , ‖x‖T = sup0≤t≤T ‖x(t)‖, and the above infimum is over all
couplings of the two processes U(t) and V (t), i.e. over all ways of defining jointly
the two processes, while respecting the two marginal laws ofU and V . We shall use
the two following well–known facts about the Wasserstein distance: it is a distance
(and satisfies the triangle inequality); if Un is a sequence of random elements of
D([0,T ];Rd) which converges in law to a continuous processU , and is such that the
sequence of random variables ‖Un‖T is uniformly integrable, thenW1,T (Un,U)→ 0
as n→ ∞.

The aim of this section is to establish the following theorem.
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Theorem 2.4.1. For all T > 0, as N → ∞,
√
NW1,T (ZN ,XN)→ 0,

or in other words, W1,T (ZN ,XN) = o(N−1/2).

Proof. We have proved in Theorem 2.2.7 that sup0≤t≤T ‖ZN
t − zt‖T → 0 almost

surely, as N → ∞, and moreover
√
N(ZN − z) ⇒ U as N → ∞, where the above

convergence holds for the topology of uniform convergence on the interval [0,T ],
andU is the Gaussian process solution of the SDE

Ut =
∫ t

0
∇b(zs)Usds+

k

∑
j=1

h j

∫ t

0

√
β j(zs)dBj

s .

It is not hard to prove the following.

Exercise 2.4.2. As N → ∞, sup0≤t≤T ‖XN
t − zt‖T → 0 almost surely, and moreover√

N(XN − z)⇒U .

We first note that from the triangle inequality

W1,T (
√
N(ZN − z),

√
N(XN − z))≤W1,T (

√
N(ZN − z),U)

+W1,T (
√
N(XN − z),U)

→ 0,

as N → ∞. Moreover

W1,T (
√
N(ZN−z),

√
N(XN−z)) = inf

couplings
E‖

√
N(ZN−z)−

√
N(XN−z)‖T

= inf
couplings

√
NE‖(ZN − z)− (XN − z)‖T

= inf
couplings

√
NE‖ZN −XN‖T

=
√
NW1,T (ZN ,XN).

Theorem 2.4.1 follows from the two last computations. '(

Remark 2.4.3. If we combine the law of large numbers and the central limit theorem
which have been established in the previous two sections, we conclude that ZN

t −
zt −N−1/2Ut = ◦(N−1/2). In other words, if we replace ZN

t by the Gaussian process
zt +N−1/2Ut , the error we make, at least on any given finite time interval, is small
compared to N−1/2. The same is true for the diffusion approximation XN

t .



Chapter 3
General Closed Models

In this chapter we go back to the general model, i.e. not assuming exponential la-
tent and infectious periods implying that the epidemic process is Markovian. We
consider models which are closed in the sense that there is no influx of new suscep-
tibles during the epidemic. No birth, no immigration, and the removed individual are
either dead or recovered, with an immunity which they do not lose in the considered
time frame.

In this context, the epidemic will stop sooner or later. The questions of main
interest are: the evaluation of the duration of the epidemic, and the total number of
individuals which are ever infected. The first section gives exact results concerning
the second issue in small communities. The rest of the chapter is concerned with
large communities. We present the Sellke construction, and then use it to give a law
of large number and a central limit theorem for the number of infected individuals.
Finally we study the duration of the epidemic.

3.1 Exact Results for the Final Size in Small Communities

In earlier sections it is often assumed that the population size N is large. In other
situations this is not the case, for example in planned infectious disease experiments
in veterinary science the number of studied animals is of the order 5–20 (e.g. Quenee
et al. [29]), and in such cases law of large numbers and central limit theorems have
not yet kicked in, which motivates the current section about exact results in small
populations.

It turns out that it is quite complicated to derive expressions for the distribu-
tion of the final size, even when N is quite small. The underlying reason for this is
that there are many ways in which an outbreak can result in exactly k initially sus-
ceptible individuals getting infected. We illustrate this by computing the final size
distribution {p(N)k } for the Reed–Frost model for N = 1, 2 and 3. We then derive a
recursive formula for the final outcome of the full model valid for general N and k
(but numerically unstable for N larger than, say, 40).
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Consider the Reed–Frost epidemic where the probability to infect a given sus-
ceptible equals p (= 1−e−λι/N). And let N = 1, one susceptible and one infectious
individual to start with. The possible values of Z are then 0 and 1, and obviously we
have p(1)0 =P(Z= 0|N = 1) = 1− p and p(1)1 = p. For N = 2 things are slightly more
complicated. No one getting infected is easy: p(2)0 = (1− p)2, since both individuals
have to escape infection from the index case. For Z = 1 to occur, the index case must
infect exactly one of the two remaining, but further, this individual must not infect
the third person: p(2)1 =

(2
1
)
p(1− p) ∗ (1− p). Finally, the probability of Z = 2 is

of course the complimentary probability, but it can also be obtained by considering
the two possibilities for this to happen: either the index case infects both, or else
the index case infects exactly one of the two, and that individual in turn infects the
remaining individual: p(2)2 = p2+2p(1− p)∗ p.

For N = 3 initial susceptibles the situation becomes even more complicated. It
is best to write down the different epidemic generation chains at which individuals
get infected. We always have one index case. The chain in which the index case
infects two individuals who in turn together infect the last individual, is denoted
1 → 2 → 1 → 0. The probability for such a chain can be computed sequentially
for each generation keeping in mind: how many susceptibles there are at risk, how
many that get infected and what is the risk of getting infected (the complimentary
probability of escaping infection). The probability for the chain just mentioned is
given by

P(1→ 2→ 1→ 0|N = 3) =
(
3
2

)
p2(1− p)1 ∗ (1− (1− p)2).

The last factor comes from the final individual getting infected when there were
two infected individuals in the previous generation (so the escape probability equals
(1− p)2). We hence see that the probability of a chain is the product of (different)
binomial probabilities. The final size probabilities are then obtained by writing down
the different possible chains giving the desired final outcome:

p(3)0 = P(1→ 0) = (1− p)3

p(3)1 = P(1→ 1→ 0) =
(
3
1

)
p(1− p)2 ∗ (1− p)2

p(3)2 = P(1→ 2→ 0)+P(1→ 1→ 1→ 0)

=

(
3
2

)
p2(1− p)∗ ((1− p)2)+

(
3
1

)
p(1− p)2 ∗

(
2
1

)
p(1− p)∗ (1− p)

p(3)3 = P(1→ 3→ 0)+P(1→ 2→ 1→ 0)+P(1→ 1→ 2→ 0)
+P(1→ 1→ 1→ 1→ 0)

= . . .

Exercise 3.1.1. Compute p(3)3 explicitly by computing the probabilities of the dif-
ferent chains. Check that ∑3

k=0 p
(k)
3 = 1 for any p ∈ [0,1].
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For general N it is possible to write down the outcome probability for a specific
chain as follows. If we denote the number of susceptibles and infectives in gener-
ation k by (Sk, Ik), then the epidemic starts with (S0, I0) = (s0, i0) = (N,1). From a
chain 1→ i1 → . . . i j → 0 (so i j+1 = 0) the number of susceptibles in generation k is
also known from the relation sk = s0−∑k

j=1 ik. We use this when we compute the bi-
nomial probabilities of a given generation of the chain, these binomial probabilities
depend on: how many were at risk, how many infectives there were in the previous
generation, and how many to be infected in the current. Finally, the probability of a
chain is the product of the different binomial probabilities of the different genera-
tions. From this we obtain the following so called chain-binomial probabilities

P(1→ i1 → . . . i j → 0) =
j+1

∏
k=1

(
sk−1

ik

)(
1− (1− p)ik−1

)ik ((1− p)ik−1
)sk−1−ik .

As seen, these expression are quite long albeit explicit. However, computing the fi-
nal outcome probabilities pN(k), k = 0, . . . ,N, is still tedious since there are many
different possible chains resulting in exactly k getting infected at the end of the epi-
demic. Further, things become even more complicated when considering different
distributions of the infectious period than a constant infectious period as is assumed
for the Reed–Frost epidemic model.

However, it is possible to derive a recursive formula for the final number infected
pN(k), see e.g. Ball [5], which we now show. The derivation of the recursion of the
final size uses two main ideas: a Wald’s identity for the final size and the total infec-
tion pressure, and the exchangeability of individuals making it possible to express
the probability of having k infections among the initially N susceptibles in terms of
the probability of getting all k infected in the subgroup containing those k individu-
als and the index case, and the probability that the remaining N−1− k individuals
escape infection from that group.

Let us start with the latter. Fix N and write λ̄ = λ/N. As before we let ZN

denote the total number infected excluding the index case(s), explicitly showing
the dependence on the number of initially susceptible N. Since individuals are ex-
changeable we can label the individuals according to the order in which they get
infected. The index case is labelled 0, the individuals who get infected during the
outbreak are labelled: 1, . . . ,ZN , and those who avoid infection according to any or-
der ZN + 1, . . . ,N. With this labelling we define the total infection pressure AN by

AN = λ̄
ZN

∑
i=0

Ii (3.1.1)

i.e. the infection pressure, exerted on any individual, during the complete outbreak
(sometimes referred to as the “total cost" or the “severity” of the epidemic).

As earlier we let p(N)i = P(ZN = i) denote the probability that exactly k initial
susceptibles out of N get infected during the outbreak. Reasoning in terms of subsets
among the initial susceptibles as described earlier, and using the exchangeability of
individuals, it can be shown ([5]) that for any i≤ k ≤ N,
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p(N)i(N
i
) =

p(k)i(k
i
) E
(
e−(N−k)Ak |Zk = i

)
. (3.1.2)

The equation is explained as follows. On the left-hand side is the probability that a
specific group of size i (out ofN) get infected and no one else. On the right-hand side
this event is divided into two sub events.This is done by considering another group
of size k ≥ i, containing the earlier specified group of size i as a subset. The first
factor is then the probability that exactly the subgroup of size i get infected within
the bigger group of size k. The second factor, the expectation, is the probability that
all individuals outside the bigger subgroup avoid getting infected. The notation Ak

and Zk hence denote the total pressure and final size starting with k susceptibles.

We use the following steps to show Wald’s identity recalling that ψI(b) = E(ebI)
is the moment generating function of the infectious period (so ψI(−b) is the Laplace
transform)

(ψI(−θλ̄ ))k+1 = E
[
exp

(
−θλ̄

k

∑
i=0

Ii

)]

= E
[
exp

(
−θ

(
Ak+ λ̄

k

∑
i=Zk+1

Ii

))]

= E
[
e−θAk(ψI(−θλ̄ )k−Zk

]
.

The last identity follows since the k−Zk infectious periods IZk+1, . . . Ik, are mutu-
ally independent and also independent jointly of the total pressure Ak (which only
depends on the first Zk infectious periods and the contact processes of these individ-
uals). If we now divide both sides by (ψI(−θλ̄ ))k+1 we obtain Wald’s identity for
Zk and Ak:

E
(

e−θAk

(ψI(θλ̄ ))1+Zk

)
= 1, θ ≥ 0. (3.1.3)

If we apply Wald’s identity with θ = N− k and condition on the value of Zk we
get

k

∑
i=0

E
(
e−(N−k)Ak |Zk = i

)

(ψI(−(N− k)λ̄ ))i+1
p(k)i = 1. (3.1.4)

If we now use Equation (3.1.2) in the equation above we get

k

∑
i=0

(k
i
)
p(N)i(N

i
)
(ψI(−(N− k)λ̄ ))i+1

= 1.

Simplifying the equation, returning to λ = λ̄N and putting p(N)k on one side, we
obtain the recursive formula for the final size distribution p(N)k ,k = 0, . . . ,N.
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Theorem 3.1.2. The exact final size distribution is given by the recursive formula

p(N)k =

(
N
k

)
[ψI(−(N− k)λ/N)]k+1−

k−1

∑
i=0

(
N− i
k− i

)
[ψI(−(N− k)λ/N)]k−i p(N)i .

(3.1.5)

For example, solving Equation (3.1.5) for k = 0 (when the sum is vacuous) and
then for k = 1 gives, after some algebra,

p(N)0 = ψI (λ ) ,

p(N)1 = NψI

(
(N−1)λ

N

)

×
[(

ψI

(
(N−1)λ

N

))
−ψI (λ )

]
.

In order to compute p(N)k using (3.1.5) it is required to sequentially compute p(N)0

up to p(N)k−1. Further, the formula is not very enlightening and it may be numerically
very unstable when k (and hence N ≥ k) is large. For this reason we devote the major
part of these notes to approximations assuming N is large.

In Section 1.9 of Part II of this volume the exact results above are generalized to
a model allowing for heterogeneous spreading, meaning that the transmission rate
depends on the two individuals involved.

Exercise 3.1.3. Compute the final size distribution {p(N)k } numerically using some
suitable software for N = 10, 50 and 100, for λ = 2 and I ≡ 1 (the Reed–Frost
model) and I ∼ Γ (3,1/3) (having mean 1 and variance 1/3).

3.2 The Sellke Construction

We now present the Sellke construction (Sellke [36]), which is an ingenious way
to define the epidemic outbreak in continuous time using two sets of i.i.d. random
variables. This elegant construction is made use of in many new epidemic models,
as proven by having more than 50 citations in the past decade.

We number the individuals from 0 toN: 0 1 2 3 . . . N. Index 0 denotes the initially
infected individual, and the individuals numbered from 1 to N are all susceptible at
time 0.

Let

Q1,Q2, . . . ,QN be i.i.d. random variables, with the law Exp(1);
(L0, I0),(L1, I1), . . . ,(LN , IN) be i.i.d. random variables, with the law P(L,I).
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In the Markov model, Li and Ii are independent, hence P(L,I) = PL⊗PI ,2 where
PL is the law of the latency period and PI that of the infectious period. But this
need not be the case in more general non-Markov models.

Individual 0 has the latency period L0 and the infectious period I0. We denote below

L(t) the number of individuals in state E at time t;
I(t) the number of individuals in state I at time t.

Note that for each i, the two random variables Li and Ii could be dependent, which
typically is not the case in a Markov model.

We define the cumulative force of infection experienced by an individual, be-
tween times 0 and t as

ΛC(t) =
λ
N

∫ t

0
I(s)ds.

For i = 1, . . . ,N, individual i is infected at the time when ΛC(t) achieves the value
Qi (which might be considered as the “level of resistance to infection of individual
i”). The j-th infected susceptible has the latency period Lj and the infectious period
I j. The epidemic stops when there is no individual in either the latent or infectious
state, after which ΛC(t) does not grow any more, ΛC(t) = ΛC(∞). The individuals
such that Qi > ΛC(∞) escape infection.

We put the Qis in increasing order: Q(1) < Q(2) < · · · < Q(N). It is the order in
which individuals are infected in Sellke’s model. Note that Sellke’s model respects
the durations of latency and infection. In order to show that Sellke’s construction
gives a process which has the same law as the process from Definition 1.1.1, it
remains to verify that the rates at which infections happen are the correct ones.

In the initial model, we assume that each infectious meets other individuals at
rate c. Since each individual has the same probability of being the one who is met,
the probability that a given individual is that one is 1/N. Hence the rate at which a
given individual is met by a given infectious one is c/N. Each encounter between
a susceptible and an infectious individual achieves an infection with probability p.
Hence the rate at which a given individual is infected by a given infectious individual
is λ/N, where we have set λ = cp. The rate at which an infectious individual infects
susceptibles is then λS(t)/N. Finally the epidemic propagates at rate λS(t)I(t)/N.

Let us go back to Sellke’s construction. At time t, S(t) susceptibles have not yet
been infected. Each of those corresponds to a Qi >ΛC(t). At time t, the slope of the
curve which represents the function t 3→ ΛC(t) is λ I(t)/N. If Qi > ΛC(t) = x, then

P(Qi > x+ y|Qi > x) = e−y,

hence P(Qi > ΛC(t+ s)|Qi > ΛC(t)) = exp
(
−λ
N

∫ t+s

t
I(r)dr

)

= exp
(
−λ
N
I(t)s

)
,

2 This notation stands for the product of the two probability measures PL and PI . The fact that the
law of the pair is the product of the two marginals is equivalent to the fact that the two random
variables L and I are independent.
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if I is constant on the interval [t, t+s]. Consequently, conditionally uponQi >ΛC(t),

Qi−ΛC(t)∼ Exp
(

λ
N
I(t)
)
.

The same is true for all S(t) of those Qi which are > ΛC(t). The next individual
to get infected corresponds to the minimum of those Qi, hence the waiting time
after t for the next infection follows the law Exp

(
λ
N I(t)S(t)

)
, if no removal of an

infectious individual happens in the mean time, which would modify I(t).
Thus in Sellke’s construction, at time t the next infection comes at rate

λ
N
I(t)S(t),

as in the model described above.

3.3 LLN and CLT for the Final Size of the Epidemic

Define, for 0≤ w≤ N+1, with the notation [w] = integer part of w, and the conven-
tion that a sum over an empty index set is zero,

J (w) =
λ
N

[w]−1

∑
i=0

Ii.

Note that i = 0 is the index of the initially infected individual, Ii denotes here the
length of the infectious period of individual whose resistance level is Q(i) (who is
not that of the i-th individual of the original list, but of the individual having the i-th
smallest resistance).

J (w) is the infection pressure produced by the first [w] infected individuals
(including number 0). For any integer k, J is of course constant on the interval
[k,k+1). Define for v> 0 the number of individuals who do not resist to the infec-
tious pressure v:

q(v) =
N

∑
i=1

1{Qi≤v}.

The total number of infected individuals in the epidemic is

Z =min

{
k ≥ 0; Q(k+1) >

λ
N

k

∑
i=0

Ii

}
(3.3.1)

=min
{
k ≥ 0; Q(k+1) >J (k+1)

}

=min{w≥ 0; q(J (w+1)) = w} .

Suppose indeed that Z = i. Then according to (3.3.1),

J ( j)> Q( j), hence q(J ( j))≥ j, for all j ≤ i,
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andJ (i+1)< Q(i+1) hence q(J (i+1))< i+1.

In other words Z = i if and only if i is the smallest integer such that

q(J (i+1))< i+1, hence q(J (i+1)) = i.

3.3.1 Law of Large Numbers

Let us index J and q by N, the population size, so that they become JN and qN .
We now define

J N(w) =JN(Nw)

qN(v) =
qN(v)
N

.

It follows from the strong law of large numbers that as N → ∞,

J N(w)→ λE(I)w= R0w almost surely, and

qN(v)→ 1− e−v a.s.

Hence, with the notation f ◦g(u) := f (g(u)), as N → ∞,

qN ◦J N(w)→ 1− e−R0w

a.s., uniformly on [0,1] (the uniformity in w follows from the second Dini theorem,
as in the proof of Proposition 2.2.6). We have (replacing now Z by ZN)

ZN

N
=min

{w
N

≥ 0; qN(JN(w+1)) = w
}

=min
{
s≥ 0;

1
N
qN

(
JN

(
N
(
s+

1
N

)))
= s
}

=min
{
s≥ 0; qN

(
J N

(
s+

1
N

))
= s
}
.

Recall from (1.1.1) that R0 = λι , where ι = E(I). Note that when R0 > 1, the equa-
tion

z= 1− e−R0z (3.3.2)

(which is equation (2.1.2) from Section 2.1) has a unique solution z∗ ∈ (0,1)
(besides the zero solution). Indeed, f (z) = 1− e−R0z is concave, f (1) < 1, and
f ′(0) = R0.

For the proof of the next theorem, we follow an argument from Andersson and
Britton [2] (see also Ball and Clancy [6]).
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Theorem 3.3.1. If R0 ≤ 1, then ZN/N → 0 a.s., as N → ∞.
If R0 > 1, as N → ∞, ZN/N converges in law to the random variable ζ which is

such that P(ζ = 0) = z∞ = 1−P(ζ = z∗), where
z∞, the probability of a minor outbreak (i.e. that the epidemic does not get off), is

the solution in (0,1) of (3.3.3) below, and z∗ is the positive solution of (3.3.2).

Let us explain how one can characterize z∞. It follows from Theorem 1.2.5 that
the probability z∞ that the epidemic does not get off equals the probability that the
associated branching process goes extinct, which is the probability that the associ-
ated discrete time branching process (where we consider the infected by generation)
goes extinct. According to Proposition A.1.1 from Appendix A, the probability that
this happens is the solution in the interval (0,1) of the equation g(s) = s, where g
is the generating function of the random number ξ of individuals that one infected
infects. As explained in Section 1.2, the law of ξ is MixPoi(λ I), so if we denote by
ψI(µ) = E[exp(−µI)] the Laplace transform of I, which is well defined for µ > 0,
then g(s) = ψI(λ (1− s)). Hence z∞ is the unique solution in (0,1) of the equation

ψI(λ (1− s)) = s . (3.3.3)

Proof. If R0 ≤ 1, then from Corollary 1.2.6, ZN remains bounded, hence ZN/N→ 0.
If R0 > 1, then ZN remains bounded with probability z∞, which is the proba-

bility of extinction in the branching process which approximates the early stage of
the epidemic. We now need to see what happens on the complementary event. For
that sake, we first choose an arbitrary sequence of integers tN , which satisfies both
tN/N → 0 and tN/

√
N → ∞, as N → ∞. We note that on the event {ZN ≤ tN}, each

infective infects susceptibles at a rate which is bounded below by λN = λ N+1−tN
N .

Let Z(λN , I) denote the total progeny of a single ancestor in a branching process,
where each individual has children according to a rate λN Poisson process, during
his life whose length is I. It is plain that for ant t ∈ Z+, and N large enough such
that t ≤ tN ,

P(B(λ , I)≤ t)≤ P(ZN ≤ t)≤ P(ZN ≤ tN)≤ P(B(λN , I)< ∞).

Define as in the statement z∞ = P(B(λ , I) < ∞) the probability of extinction of
the branching process approximating the early stage of the epidemic, and zN,∞ =
P(B(λN , I)< ∞). It is not hard to show that zN,∞ → z∞ as N → ∞, as a consequence
of the fact that λN → λ (since tN/N → 0). Hence for any ε > 0, we can choose
t large enough such that P(B(λ , I) ≤ t) ≤ z∞ − ε , and N large enough such that
zN,∞ ≤ z∞ + ε . We have shown that

P(ZN ≤ tN)→ z∞, as N → ∞. (3.3.4)

This shows that a.s. on the event that the epidemic goes off, ZN tends to ∞ faster
than tN . We will next prove that

lim
c→∞

lim
N→∞

P
({

tN < ZN < Nz∗ − c
√
N
}⋃{

ZN > Nz∗+ c
√
N
})

= 0 . (3.3.5)

Recalling the last formula preceding the statement of the present theorem,
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{
ZN

N
∈
(
tN ,z∗ −

c√
N

)⋃(
z∗ − c√

N
,1
]}

⊂
{
∃s ∈

(
tN ,z∗ −

c√
N

)⋃(
z∗ − c√

N
,1
]
; qN

(
J N

(
s+

1
N

))
= s
}

⊂
{

sup
0≤s≤1

∣∣∣∣qN
(
J N

(
s+

1
N

))
−1+ e−R0s

∣∣∣∣>
φ(c)√
N

}
, (3.3.6)

where φ(c) → ∞, as c → ∞, for N large enough. We have exploited the facts that
tN/

√
N → ∞ as N → ∞, and f ′(0)> 1, f ′(z∗)< 1. However, we shall see in the next

subsection (see (3.3.7)) that
{√

N
(
qN

(
J N

(
s+

1
N

))
−1+ e−R0s

)
, s ∈ [0,1]

}

converges weakly, for the sup–norm topology, to a centred Gaussian process with
finite covariance, hence the limit as N → ∞ of the probability of the event (3.3.6)
tends to 0, as c→ ∞, which establishes (3.3.5). It is easily seen that the second part
of the Theorem follows from the combination of (3.3.4) and (3.3.5). '(

We see that z∗ is the size, measured as the proportion of the total population, of
a “significant” epidemic, if it takes off, which happens with probability 1− z∞.

We notice that z∗ depends on the particular model only through the quantity R0.
In particular it depends on the law of the infectious period I only through its mean.
In the case where both E and I are exponential random variables, we know from
Section 2.2 that the model has a law of large numbers limit, which is a system of
ODEs. The same value for z∗ has been deduced from an analysis of this deterministic
model in Section 2.1. The last theorem holds for a larger class of models.

3.3.2 Central Limit Theorem

From the classical CLT, as N → ∞,

AN(ω) :=
√
N(J N(w)−R0w) =

λ
√
w√

Nw

[Nw]

∑
i=0

[Ii−E(Ii)]+O(1/
√
N)

⇒ A(w),

where A(w)∼N (0, p2c2Var(I)w). One can in fact show that, as processes

{
√
N(J N(w)−R0w), 0≤ w≤ 1}⇒ {A(w), 0≤ w≤ 1}

for the topology of uniform convergence, where {A(w), 0 ≤ w ≤ 1} is a Brow-
nian motion (i.e. a centered Gaussian process with independent increments and
continuous trajectories) such that Var(A(w)) = r2R2

0w, where r2 = (EI)−2Var(I).
It is easy to show that for all k ≥ 1, all 0 < w1 < · · · < wk ≤ 1, if we define
AN(w) :=

√
N(J N(w)−R0w),
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(AN(w1), . . . ,AN(wk))⇒ (A(w1), . . . ,A(wk)).

This means the convergence of the finite dimensional distributions. Combining this
with the techniques exposed in Section A.5 of the Appendix yields the above func-
tional weak convergence.

Consider now qN . Again from the usual CLT,

BN(v) =
√
N(qN(v)− [1− e−v])

=
1√
N

N

∑
i=1

[
1{Qi≤v}− (1− e−v)

]

⇒ B(v),

where B(v)∼N (0,e−v(1−e−v)). We have again a functional convergence, accord-
ing to the Kolmogorov–Smirnov theorem, towards a time changed Brownian bridge.
In simpler words, {B(v), v ≥ 0} is a centred Gaussian process with continuous
trajectories whose covariance function is specified by the identity E[B(u)B(v)] =
e−u∨v− e−(u+v), where u∨ v := sup(u,v).

Let us now combine the two functional central limit theorems which we have just
derived. We have

√
N
(
qN(J N(w))−1+ e−R0w

)

=
√
N
(
qN(J N(w))−1+ exp(−J N(w))

)
+
√
N
(
e−R0w− e−J N(w))

)

∼ BN(J N(w))−R0e−R0wAN(w).

Consequently
√
N
(
qN(J N(w))−1+ e−R0w

)
B(R0w)−R0e−R0wA(w), (3.3.7)

which is the functional central limit theorem which was used in the proof of Theo-
rem 3.3.1.

Recall that the above Law of Large Numbers has been obtained by taking the
limit in the equation

qN
(
J N

(
z+N−1))= z.

Making use of the above two CLTs, we get

z= 1− e−J N(z+N−1) +N−1/2BN(J N(z+N−1))

= 1− exp
(
−R0(z+N−1)−N−1/2AN(z+N−1)

)

+N−1/2BN

(
R0(z+N−1)+N−1/2AN(z+N−1)

)
.

Let z= z∗+ zNN−1/2+◦(N−1/2), where z∗ satisfies e−R0z∗ = 1− z∗. We obtain
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z∗+ zNN−1/2+◦(N−1/2)

= 1− exp
(
−R0z∗ −R0zNN−1/2−AN(z∗)N−1/2+◦(N−1/2)

)

+N−1/2BN(R0z∗)+◦(N−1/2)

= 1− e−R0z∗ +N−1/2e−R0z∗ (R0zN +AN(z∗))+N−1/2BN(R0z∗)+◦(N−1/2).

We simplify this relation by making use of the equation which specifies z∗. Multi-
plying the remaining terms by N1/2, we deduce

[1− (1− z∗)R0]zN = BN(R0z∗)+(1− z∗)AN(z∗)+◦(1).

Hence zN ⇒ Ξ , where (note that e−R0z∗(1− e−R0z∗) = z∗(1− z∗))

Ξ ∼N

(
0,

z∗(1− z∗)
(1− (1− z∗)R0)2

(
1+ r2(1− z∗)R2

0
))

,

where we have exploited the independence of the two processes A(·) and B(·),
which follows from that of the two collections of random variables (Ii, i ≥ 0) and
(Qi, i≥ 1).

Finally we can conclude with the following theorem. We refer to Scalia-Tomba
[32] and [33] for a more complete justification.

Theorem 3.3.2. As N → ∞, conditionally upon the event that the epidemic takes off,
the law of N−1/2(ZN−Nz∗) converges towards the Gaussian distribution

N

(
0,

z∗(1− z∗)
(1− (1− z∗)R0)2

(
1+ r2(1− z∗)R2

0
))

.

Exercise 3.3.3. Compute numerically the limiting mean and standard deviation of
the final size ZN in case of a major outbreak and N = 1000, λ = 1.5 and ι = 1,
for the following two situations. The first scenario is when I ≡ 1 (fixed infectious
period), and the second when I ∼ Exp(1) (Markovian SIR).

3.4 The Duration of the Stochastic SEIR Epidemic

Recall that LN(t) and IN(t) denote the numbers of latent and infectious individuals
at time t respectively, and introduce ZN(t) = N−LN(t)− IN(t)−RN(t) to denote
the number of individuals who have been infected by time t (i.e. who are no longer
susceptible). We now study how long it takes for the epidemic to first grow big,
and then later to end, i.e. for the end of the epidemic we will study properties of
τN = inf{t;LN(t)+ IN(t) = 0} as N → ∞. It will only be a sketch since it is quite
technical to prove the results rigorously. For detailed results we refer to Barbour [7].
From an applied point of view, this question has clear practical relevance, since for
instance hospitals are on highest pressure when the epidemic peaks, and knowing
how long until the outbreak is over indicates how long preventive measures should
be enforced.
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If the epidemic does not take off we know from branching process theory that
the time to extinction is finite, so τN = Op(1) on this part of the sample space
(Op(1) denotes bounded in probability). We hence focus on the situation where the
epidemic takes off resulting in a major outbreak, hence implicitly assuming that
R0 > 1.

We divide the duration of the whole epidemic τN into three parts: the beginning,
the main part and the end of the epidemic. Pick ε > 0 small. Formally we define
these parts by defining two intermediate times (inspired by Sir Winston Churchill):
the end of the beginning τNBeg = inf{t ≤ τN ;ZN(t) ≥ εN}, and the beginning of the
end τNEnd = inf{t ≤ τN ;ZN(t)≥ (1−ε)z∗N}, where z∗ is the positive solution to the
final size equation from Section 2.1. Each of these times are equal to τN in the case
when the event never occurs.

With these definitions the beginning of the epidemic is the time interval [0,τNBeg),
the main part [τNBeg,τNEnd) and the end part [τNEnd ,τN ].

During the beginning we can sandwich the epidemic between two branching pro-
cesses. The upper bound is the branching process Z(t) described in Section 1.2.
Similarly, we can construct a lower bound using a very similar branching process
Z−(t), the only difference being that the birth rate is λ (1− ε) as opposed to λ for
the upper branching process. This is true because before τNBeg the rate of new in-
fections in the epidemic equals λ (1−ZN(t)/N) which lies between λ (1− ε) and
λ . Since Z−(t) ≤ ZN(t) ≤ Z(t) for t ≤ τNBeg it follows that τN+ ≤ τNBeg ≤ τN− , where
τN+ = inf{t;Z(t)≥ εN} and τN− = inf{t;Z−(t)≥ εN}.

From Section A.1.2 we know the rate at which a branching process grows. More
specifically, we know that when a branching process Z′(t) takes off, it grows ex-
ponentially: Z′(t)∼ er

′t , where r′ is the unique solution to 1=
∫ ∞
0 e−r′sλ (s)ds= 1,

where λ (s) is the average (expected) rate at which an individual gives birth at age
s (cf. Equation (1.2.1)). For our two branching processes Z(t) and Z−(t) we have
λ (s) = λP(L < s < L+ I) and λ−(s) = λ (1− ε)P(L < s < L+ I) respectively.
From this it follows that the exponential growth rates r and r− can be made ar-
bitrary close to each other by choosing ε small enough (r− = r(1+ o(ε))). The
particular form of r and r− depends on the distribution of L and I (see Exercise
3.4.2 below). Recall that τN+ = inf{t;Z(t)≥ εN}, so the fact that Z(t)∼ ert implies
that τN+ = log(εN)

r +Op(1). Similarly, τN− = log(εN)
r− +Op(1). As a consequence, the

two stopping times are arbitrary close to each other on the logarithmic scale. From
this we have τNBeg =

log(N)
r (1+o(ε))+Op(1).

We now turn to the duration of the main part of the epidemic: τNEnd − τNBeg which
is positive only if the epidemic takes off, which we hence condition upon. During
this part of the epidemic, the Markovian SEIR epidemic can be approximated by
the deterministic SEIR model. This means that for the Markovian SEIR model, the
duration of the main part of the epidemic τNEnd − τNBeg can be well approximated by
the corresponding duration of the deterministic system τDetEnd − τDetBeg . The determin-
istic system is started at τDetBeg = 0 with initial conditions (s(0),e(0), i(0),r(0)) =
(1− ε,aε,bε,(1− a− b)ε) for some positive numbers a and b with 0 < a+ b ≤ 1
(there is no closed form expression for how the infected individuals are divided
into exposed, infectives and recovereds). The system is then run until τDetEnd =
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inf{t;e(t)+ i(t)+ r(t) ≥ (1− ε)z}. We know that z(t) = e(t)+ i(t)+ r(t)→ z and
z(t) is monotonically increasing (since s(t) = 1− z(t) is decreasing). This implies
that τDetEnd − τDetBeg = τDetBeg is just a constant for any fixed positive ε . It will depend
slightly on a and b, but when ε is small the dependence is weak and there is a uni-
form bound. From this we conclude that the main part of the epidemic is bounded:

τNEnd − τNBeg = τDetBeg +op(ε) = Op(1).

If the latent and infectious periods are not exponentially distributed, then the
stochastic SEIR epidemic is not Markovian, and the deterministic approximating
system is a difference-delay-system which we will not study more closely. The qual-
itative properties of this system coincide with those of the Markovian SEIR system;
in particular, the duration of the main part is bounded in probability.

Just like the main part of the epidemic the duration of end of the epidemic,
τN − τNEnd is only positive if the epidemic takes off, which we hence condition
upon. At the beginning of the end part, the number of infected (either exposed,
infectious or recovered) equals ZN(τNEnd) = (1−ε)z∗N and SN(τNEnd) = (1− z∗)N+
εz∗N. Since ε is assumed to be small, infectious individuals give birth at rate
λ (1− z∗+ εz∗) ≈ (1− z∗) during the rest of the epidemic (we know the final frac-
tion infected converges to z∗ in probability). Further, at the start of the beginning the
fractions exposed and infectious will both close to that of the deterministic system
which are both small, having size cEε and cIε say (cf. Figure 2.1.1 where it is seen
that e(t) and i(t) are both small for large t). So, from the beginning of the end part,
the epidemic behaves like a branching process with childhood duration L, adult du-
ration I and birth rate λ (1− z∗) during the adult life stage, and this part is started
with cEεN children (exposed) and cIεN adults (infectious). The mean off-spring
distribution for this branching process equals λE(I)(1− z∗) = R0(1− z) where z∗
is the positive solution to 1− z = eR0z. It can be shown (cf. Exercise 3.4.1 below)
that R0(1− z∗)< 1 implying that the branching process is subcritical (otherwise the
epidemic would not be on decline).

The duration τN − τNEnd of the end part can hence be approximated by the time
until extinction of a subcritical branching process, starting with cEεN children
(exposed) and cIεN adults (infectious). This branching process will have negative
drift r∗ < 0 being the solution to the corresponding equation

∫ ∞
0 e−rsλ (s)ds = 1

where now λ (s) = λ (1− z∗)P(L< s< L+ I). So, E(t)+ I(t)∼ (E(0)+ I(0))er∗t =
(cE+cI)εNer

∗t . The time until this branching process goes extinct (i.e. E(t)+I(t)<
1) is hence of order − log((cE + cI)εN)/r∗ =− logN/r∗+Op(1).

To sum up, the duration of the epidemic τN = Op(1) if the epidemic does not
take off, whereas it has the following structure in case it does take off:

τN = τNBeg+
(
τNEnd − τNBeg

)
+
(
τN − τNEnd

)
=

logN
r

+Op(1)+
− logN

r∗
. (3.4.1)

Note that the last term is also positive since r∗ < 0.

Exercise 3.4.1. Show that R0(1− z∗)< 1 and compute it numerically for R0 = 1.5.
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Exercise 3.4.2. Consider the stochastic SEIR epidemic with infection rate λ = 1.5
per time unit. Compute the two leading terms of the duration of a major outbreak for
the following three cases: L≡ 0 and I ∼ Exp(1) (Markovian SIR), L≡ 0 and I ≡ 1
(continuous time Reed–Frost), and L∼ Exp(1) and I ∼ Exp(1) (Markovian SEIR).



Chapter 4
Open Markov Models

In this chapter, contrary to the situation considered in earlier chapters, we study
models where there is a constant supply of susceptibles (either by births, immigra-
tion or loss of immunity of the removed individuals) giving rise to endemic type
situations. We study how the random fluctuations in the model can drive the system
out of the basin of attraction of the stable endemic equilibrium of the deterministic
model, such that the disease goes extinct.

As we shall see in Section 4.1, in the case of a moderate population size, one
may expect that the Gaussian fluctuations described by the central limit theorem
are strong enough to stop the endemy in a SIR model with demography. For larger
population sizes, following Freidlin and Wentzell [13], we describe in Section 4.2
how long it will take for the random perturbations to stop the endemy. We apply this
approach successively to the SIRS, the SIS and the SIR model with demography.
In the case of the SIS model, we compute explicitly the constant which appears in
the Freidlin–Wentzell theory, see Proposition 4.2.29 below. This is unfortunately
the only case where we have such a simple and explicit formula in terms of the
coefficients of the model.

4.1 Open Populations: Time to Extinction and Critical
Population Size

Up until now we have (mainly) considered the stochastic SEIR epidemic model in a
fixed community of size N, where N has been assumed large (except in Section 3.1
when N was assumed small). This is of course an approximation of reality, but when
considering outbreaks of a few months (e.g. influenza outbreaks) it seems like a fair
approximation; recall that the time to extinction of our model was Op(logN). For
other diseases including childhood diseases, the disease is present in the community
constantly – such diseases are said to be endemic. When trying to understand the
behaviour of such diseases it is necessary to also allow people to die and new peo-
ple entering the population (by birth or immigration). In the current section we do
this and derive approximations for two important quantities: the time to extinction
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of the endemic disease TN
E , and the critical community size Nc. These two quanti-

ties have received much attention in the literature over the years. In particular, the
critical community size Nc and how it depends on properties of the disease and the
community have been studied both in the mathematical and applied communities
(e.g. Lindholm and Britton [23] and Keeling and Grenfell [18]).

Let us first describe the population model, which is the simplest model for a
population which fluctuates randomly in time with a mean size of N individuals,
and where individuals have life time distribution with mean 1/µ (cf. Example 2.2.2).
The population N(t) is defined to be a Markovian birth-death process with constant
birth rate µN and linear death rate, all individuals dying at rate µ . This process N(t)
will fluctuate around N, a parameter we denote by the mean population size. If N is
large, it is known that N(t) will be approximately normally distributed with mean N
and standard deviation proportional to

√
N, so for practical purposes we will later

approximate N(t) by N.

Exercise 4.1.1. Assuming that N(0) = N, write N(t) as the solution of an SDE
of the same form as the SDE appearing at the beginning of Section 2.2. Define
QN
t = N(t)/N and show that, as a consequence of Theorem 2.2.7, QN

t → 1 a.s., lo-
cally uniformly in t. Then deduce from Theorem 2.3.2 that

√
N(QN

t −1) converges
weakly, as N → ∞, towards an Ornstein–Uhlenbeck process of the form

Ut =
√
2µ
∫ t

0
e−µ(t−s)dBs,

where Bt is a standard Brownian motion. Prove that E(Ut) = 0 and Var(Ut)→ 1 as
t → ∞. Deduce that for large N and t, N(t) is approximately normally distributed
with mean N and standard deviation proportional to

√
N.

For this population model, we assume that the Markovian SIR epidemic spreads
(this can easily be extended to the Markovian SEIR model). By this we mean that
individuals who get infected immediately become infectious and remain so for an
Exp(γ) time, unless they happen to die before by chance. In the fixed population
size model, the contact rate was λ which implied that it was λ/N to each specific
individual. Now, in the open population model, we assume that the infection rate to
a specific individual is unchanged, λ/N. More appropriate would perhaps have been
to instead have λ/N(t) but since N(t)≈ N for all t we use the simpler choice λ/N.
So, new individuals enter the community at constant rate µN and all individuals
die, irrespective of being susceptible, infectious or recovered, at rate µ , susceptible
individuals get infected at rate λ IN(t)/N, and infectious individuals recover at rate
γ . The rate at which susceptibles get infected and infected recover hence equals
λ IN(t)SN(t)/N, and γIN(t) respectively.

If we study the limiting deterministic system for the fractions in each state we
get the following system of differential equations:
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s′(t) = µ−λ s(t)i(t)−µs(t),
i′(t) = λ s(t)i(t)− γi(t)−µi(t), (4.1.1)
r′(t) = γi(t)−µr(t),

which is identical to those of Example 2.2.11 with ρ = 0 and ν = +∞. From this
we can compute the endemic state where all derivatives are 0. First we note that
the basic reproduction number R0 (the expected number of infectious contact while
infectious and alive) and the expected relative time of a life an individual is infected,
ε , are given by

R0 =
λ

γ +µ
ε =

1/(γ +µ)
1/µ

=
µ

γ +µ
. (4.1.2)

The rate of recovery γ is much larger than the death rate µ (52 compared to 1/75 for
a one week infectious period and 75 year life length) so for all practical purposes
the two expressions can be approximated by R0 ≈ λ/γ and ε ≈ µ/γ .

If we solve the system of differential equations (4.1.1) by setting all derivatives
equal to 0, and replace µ , λ and γ by the dimensionless quantities R0 and ε (three
parameters can be replaced by two because the unit of time for the rates is arbitrary
and one rate can be set to unity), we obtain the endemic level which is given by

(ŝ, î, r̂) =
(

1
R0

, ε
(
1− 1

R0

)
, 1− 1

R0
− ε
(
1− 1

R0

))
(4.1.3)

Exercise 4.1.2. Show that this is the endemic level, i.e. that the solution solves
Equation (4.1.1) with all derivatives being 0.

This state is only meaningful if R0 > 1 (otherwise some fraction is negative), so
the endemic level only exists if R0 > 1. Another solution to the equation system is
of course the disease free equilibrium (s, i,r) = (1,0,0). It is well known that when
R0 > 1 (which we from now on assume), then the endemic state is globally stable
whereas the disease free state is locally unstable, meaning the system converges to
the endemic level irrespective of starting value as long as i(0)> 0.

Using the theory of Section 2.2 it can be shown that the current Markov model
(for an open population) converges to the above deterministic model as N → ∞,
if the starting point is such that the fraction initially infectious is strictly positive
(IN(0)/N → i(0)> 0).

This suggests that the stochastic model (for the fractions in different states) can
be approximated by the corresponding deterministic function

(SN(t)/N, IN(t)/N,RN(t)/N)≈ (s(t), i(t),r(t))

which solves Equation (4.1.1) and having the same initial condition as the stochastic
system. And, since we know that (s(t), i(t),r(t)) → (ŝ, î, r̂) as t → ∞ this suggests
that (SN(t)/N, IN(t)/N,RN(t)/N) ≈ (ŝ, î, r̂) when N and t are large. This is indeed
true in some sense, but it is only true depending on the relation between N and
t. For any finite N, the stochastic epidemic, which fluctuates randomly around the
endemic equilibrium, will eventually go extinct, meaning that for some random TN

Ext
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(the extinction time) it will happen that IN(TN
Ext) = 0. When this happens the rate of

new infections is 0 so the stochastic epidemic will remain disease free ever after (and
eventually all removed will have died so all individuals are susceptible. Using large
deviation theory (cf. Section 4.2 below) it can be shown that the time to extinction
grows exponentially with N, TN

Ext ≈ ecN for some c> 0 as N → ∞.
On the other hand, for any arbitrary but fixed time horizon [0, tmax] the stochastic

epidemic will converge to the deterministic process as N → ∞. It also follows from
Theorem 2.3.2 that the scaled process

√
N(SN(t)/N− s(t), IN(t)/N− i(t), RN(t)/N− r(t))

converges to an Ornstein–Uhlenbeck process (S̃(t), Ĩ(t), R̃(t)). This Ornstein–
Uhlenbeck process is a Gaussian process with stationary distribution being Nor-
mally distributed. In particular, the variance of Ĩ(t) in stationarity is well approxi-
mated by 1/R0−1/R2

0, see Nåsell [24].

Exercise 4.1.3. Show this as a consequence of Theorem 2.3.2, Lemma 2.3.7, and
Exercise 2.3.8

This suggests that IN(t) will be approximately Gaussian with mean Nî and stan-
dard deviation

√
N/R0 when N is large and t is moderately large (smaller than TN

Ext
but still large since we assume the Ornstein–Uhlenbeck is close to stationary).

From above we know that TN
Ext will grow exponentially with N as N → ∞. On

the other hand, if N is small or moderate, the disease will go extinct very quickly,
e.g. within a year. We now use the Gaussian approximation above to define a sort
of threshold, the critical population size Nc, between these two scenarios (quick
extinction and very long time before extinction). Of course, there is no unique exact
such value, so it will involve some arbitrary choice(s).

Above we noted that IN(t) was approximately Gaussian with mean Nî and stan-
dard deviation

√
N/R0. If we want to be above the critical population size, then

we want to avoid quick extinction for which it is necessary that this approximately
Gaussian process avoids extinction for a fairly long time. Extinction occurs when
IN(t) = 0, and if we want to avoid this we want the value 0 to be far enough away
from the mean, e.g. at least 3 standard deviations away. The choice 3 is of course
arbitrary but if we instead choose 2 the process will hit 0 fairly quickly with large
enough probability, and if we choose 4 it seems extremely unlikely that it will hit
extinction within e.g. a life time, so 3 seems like a reasonable compromise when it
is unlikely but not completely impossible. This choice then suggests that the thresh-
old is for the case Nî− 3

√
N/R0 = 0. This is equivalent to

√
N = 3/î

√
R0, i.e.

N = 9/î2R0. Inserting that î = ε(1− 1/R0) (remember that ε = µ/(γ + µ) is the
relative length of the infectious period compared to life-length), then we arrive at
our definition of the critical population size Nc:

Nc =
9

ε2(1− 1
R0
)2R0

. (4.1.4)

The conclusion is that, for a given infectious disease, i.e. given R0 and ε , the dis-
ease will die out quickly in a community of size N ; Nc whereas it will persist
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for a very long time if N < Nc, during which the disease is endemic. As an illus-
tration, consider measles prior to vaccination. If we assume that R0 ≈ 15 and the
infectious period is 1 week (1/52 years) and life duration 75 years, implying that
ε ≈ 1/75

1/(1/52)+1/75 ≈ 1/3750 we arrive at Nc ≈ 9(3750)2/15≈ 8 ·106. So, if the pop-
ulation is a couple of million (or less) the disease will go extinct quickly, whereas
the disease will become endemic (for a very long time) in a population being larger
than e.g. 20 million people. This confirms the empirical observation that measles
was continuously endemic in UK whereas it died out quickly in Iceland (and was
later reintroduced by infectious people visiting the country).

Exercise 4.1.4. Which parameter affectsNc the most? ComputeNc using the measles
example but making R0 50% bigger/smaller and the same for the duration of the in-
fectious period (assuming we live equally long).

Exercise 4.1.5. Suppose that a vaccine giving 100% life long immunity is avail-
able, and that a fraction v of all infants are continuously vaccinated. How does this
affect the critical community size, i.e. give an expression for Nc also containing
v. (Hint: Vaccinating people affects both the relevant population size Nv, the non-
vaccinated population, and the reproduction number Rv, but other than that nothing
has changed.)

4.2 Large Deviations and Extinction of an Endemic Disease

4.2.1 Introduction

In Section 2.2, we have proved that, under appropriate conditions, the solution of
the SDE

ZN
t = xN +

k

∑
j=1

h j

N
Pj

(
N
∫ t

0
β j(s,ZN

s )ds
)

(4.2.1)

converges a.s., locally uniformly in t, towards the unique solution of the ODE

dzt
dt

= b(t,zt), z0 = x, (4.2.2)

see Theorem 2.2.7, where b(t,x) = ∑k
j=1 h jβ j(t,x). Consequently the above SDE

(4.2.1) can be considered for large N as a small random perturbation of the ODE
(4.2.2). Small random perturbations of ODEs by Brownian motion have been stud-
ied by many authors, starting with Freidlin and Wentzell [13]. Our aim is to study
the above type of random perturbations of an ODE like (4.2.2). The starting point
is the estimation of a large deviation from the law of large numbers, which has
been studied for our type of Poisson driven SDEs by Shwartz and Weiss [34]. The
difficulty is the fact that some of the rates in the SDE (4.2.1) vanish when the so-
lution hits part of the boundary. This makes the estimate a bit delicate, since the
logarithms of the rates enter the rate function in our large deviations estimate. This
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situation has been addressed first by Shwartz and Weiss [35], but their assumptions
are not quite satisfied in our framework. Recently Kratz and Pardoux [21] and Par-
doux and Samegni-Kepgnou [26] have developed an approach to Large Deviations
which is well adapted to the epidemics models which are considered in these Notes.
In fact the main difficulty concerns the lower bound. In the following, we present a
new approach to the lower bound, based upon a quasi–continuity result, Proposition
4.2.4 below, which mimics a similar result for Brownian motion driven SDEs due to
Azencott [4]. The same approach, for other types of Poisson driven SDEs, will soon
appear in Kouegou-Kamen and Pardoux [19], [20].

The main application we have in mind is to estimate the time needed for the small
random perturbations to drive the system from a stable endemic equilibrium to the
disease free equilibrium (i.e. extinction). This applies to the classical SIS and SIRS
models, as well as to an SIR model with demography, as well as to models with
vaccination and to models with several levels of susceptibility, thus predicting the
time it will take for the random perturbation to end an endemic disease.

We rewrite our model as

ZN,xN
t = xN +

k

∑
j=1

h j

∫ t

0

∫ β j(s,Z
N,xN
s −)

0
QN

j (ds,du),

where
QN

j (ds,du) =
1
N
Qj(ds,Ndu),

and the Qj’s are i.i.d. Poisson random measures on [0,T ]×R+, with mean λ 2, the
2-dimensional Lebesgue measure.

(A.1) We shall assume in all of this section that the β j’s are locally Lipschitz with
respect to x, uniformly for t ∈ [0,T ].

4.2.2 The Rate Function

We want to establish a large deviations principle for trajectories in the space
D([0,T ];Rd) of Rd-valued right-continuous functions which have a left limit at any
time t ∈ (0,T ]. We shall also consider the setsC([0,T ];Rd) of continuous functions
from [0,T ] into Rd , and the subset of absolutely continuous functions, which we
will denote AC T,d . For any φ ∈AC T,d , let Ak(φ) denote the (possibly empty) set
of functions c ∈ L1(0,T ;Rk

+) such that c j(t) = 0 a.e. on the set {t, β j(φt) = 0} and

dφt
dt

=
k

∑
j=1

c j(t)h j, t a.e.

We define the rate function

IT (φ) :=

{
infc∈Ak(φ) IT (φ |c), if φ ∈AC T,A;
∞, otherwise,
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where as usual the infimum over an empty set is +∞, and

IT (φ |c) =
∫ T

0

k

∑
j=1

g(c j(t),β j(φt))dt

with g(ν ,ω) = ν log(ν/ω)−ν +ω . We assume in the definition of g(ν ,ω) that for
all ν > 0, log(ν/0) = ∞ and 0log(0/0) = 0log(0) = 0.

We consider IT as a functional defined on the space D([0,T ];Rd) equipped with
Skorokhod’s topology. We first give two other possible definitions of the functional
IT . Let ! : R3d 3→ R be defined as

!(x,y,θ) = 〈y,θ〉−
k

∑
j=1

β j(x)
(
e〈h j ,θ〉 −1

)
.

We define the map L : R2d 3→ (−∞,+∞] as

L(x,y) = sup
θ∈Rd

!(x,y,θ) .

We let
ÎT (φ) =

∫ T

0
L(φt , φ̇t)dt.

It is not hard to see that the following is an equivalent definition of ÎT (φ):

ÎT (φ) = sup
θ∈C1([0,T ];Rd)

∫ T

0
!(φt , φ̇t ,θt)dt .

We first establish

Proposition 4.2.1. For any φ ∈ D([0,T ] : Rd), IT (φ) = ÎT (φ).

Proof. We note that if y= ∑k
j=1 c jh j with some c ∈ Rk

+,

!(x,y,θ) =
k

∑
j=1

[
c j〈h j,θ〉−β j(x)

(
e〈h j ,θ〉 −1

)]
.

But for any 1≤ j ≤ k,

c j〈h j,θ〉−β j(x)
(
e〈h j ,θ〉 −1

)
≤ sup

r∈R
[c jr−β j(x)(er−1)]

= c j log
(

c j
β j(x)

)
− c j+β j(x)

= g(c j,β j(x)).

The inequality ÎT (φ)≤ IT (φ) for any φ ∈ D([0,T ];Rd) follows readily.
In order to prove the converse inequality, we fix x,y ∈ Rd such that L(x,y) <

∞ (otherwise there is nothing to prove). Let θn be a sequence in Rd such that
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L(x,y) = limn→∞ !(x,y,θn). It is clear that for any 1≤ j≤ k such that β j(x)> 0, the
sequence 〈θn,h j〉 is bounded from above. Hence we can and do assume that, after
the extraction of a subsequence, for any 1≤ j≤ k such that β j(x)> 0, the sequence
e〈θn,h j〉 → s j, for some s j ≥ 0. Consequently, as n→ ∞,

〈θn,y〉 → L(x,y)+
k

∑
j=1

β j(x)(s j−1) . (4.2.3)

Differentiating !(x,y,θn) with respect to its last variable, we get

∇θ !(x,y,θn) = y−
k

∑
j=1

β j(x)e〈h j ,θn〉h j

→ y−
k

∑
j=1

β j(x)s jh j,

as n→ ∞. But since θn is a maximizing sequence and the gradients converge, then
since L(x,y)< ∞, their limit must be zero. Consequently

y=
k

∑
j=1

β j(x)s jh j .

Hence, with c j = β j(x)s j, we have

〈θn,y〉=
k

∑
j=1

c j〈θn,h j〉

→
k

∑
j=1

c j log(s j),

with the convention that c j log(s j) = 0 if both c j = 0 and s j = 0. This, combined
with (4.2.3), yields that

L(x,y) =
k

∑
j=1

g(c j,β j(x))

which entails that ÎT (φ)≥ IT (φ). The proposition is established. '(

We have the

Proposition 4.2.2. For any T > 0, φ ∈D([0,T ];Rd), IT (φ)≥ 0, and IT (φ) = 0 iff φ
solves the ODE (4.2.2).

Proof. It suffices to show that L(x,y) ≥ L(x,∑ j β j(x)h j) = 0, with strict inequality
if y 1= ∑ j β j(x)h j. We first note that

L

(
x,∑

j
β j(x)h j

)
= sup

θ

{

∑
j

β j(x)(〈h j,θ〉− exp〈h j,θ〉+1)

}
= 0,
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since z−ez+1≤ 0, with equality at z= 0. Let now y be such that L(x,y) = 0. Then

〈y,θ〉−∑
j

β j(x)(exp〈h j,θ〉−1)≤ 0 for all θ ∈ Rd .

Choosing θ = εei (where ei is the i-th basis vector of Rd) yields

εyi ≤ ∑
j

β j(x)(exp(εhij)−1).

Dividing by ε , then letting ε → 0 yields yi ≤ ∑ j β j(x)hij, while the opposite inequal-
ity follows if we start with θ =−εei. The result follows. '(

In the next statement, we use the notion of a lower semi-continuous real-valued
function, which is defined in Definition A.7.1 below. In the proof we use the notion
of an equicontinuous collection of functions, which is defined in Definition A.7.2.

Theorem 4.2.3. φ → IT (φ) is lower semi-continuous on D([0,T ];Rd), and for any
R, K > 0, the set {φ ∈ D([0,T ];Rd), sup0≤t≤T |φt |≤ R, IT (φ)≤ K} is compact.

Proof. The lower semicontinuity property is an immediate consequence of the fact
that, from its second definition, ÎT is a supremum over continuous functions. To
finish the proof, it suffices from the Arzelà–Ascoli theorem (see e.g. Theorem 7.2
in Billingsley [8]) to show that the set of functions satisfying sup0≤t≤T |φt | ≤ R
and IT (φ) ≤ K is equicontinuous. It is clear that if h̄ = sup1≤ j≤k |h j| and β̄R =
sup1≤ j≤k sup0≤t≤T, |x|≤R β j(t,x),

L(x,y)≥ !

(
x,y,

y log(|y|)
h̄|y|

)

≥ |y| log(|y|)
h̄

− kβ̄R|y|.

Now let 0≤ s< t ≤ T , with t− s≤ δ .

|φt −φs|≤
∫ t

s
|φ̇r|dr

≤ δ−1/2
∫ t

s
1|φ̇r |≤δ−1/2dr+

∫ t

s
1|φ̇r |>δ−1/2

L(φr, φ̇r)
L(φr, φ̇r)/|φ̇r|

dr

≤ δ 1/2+
K

f (δ−1/2)
,

where f (a)= inf|x|≤R, |y|≥a
L(x,y)
|y| . The result follows from the fact that from the above

lower bound of L(x,y), f (a)→ ∞, as a→ ∞. '(
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4.2.3 The Lower Bound

Let η = (η1, . . . ,ηk) be a vector of locally finite measures on [0,T ]×R+. We shall
say that η ∈M k. To x ∈Rd and η ∈M k, we associate Φx

t (η), solution (if it exists)
of the ODE

Φx
t (η) = x+

k

∑
j=1

h j

∫ t

0

∫ β j(s,Φx
s−)

0
η j(ds,du).

If η j(ds,du) = f j(s,u)dsdu, 1 ≤ j ≤ k, the above ODE has at least one solution
(possibly up to an explosion time, as the solution of an ODE with continuous coef-
ficients). If moreover

sup
u≥0

f j(·,u) ∈ L1[0,T ], 1≤ j ≤ k,

then the above ODE has a unique solution (as the solution of an ODE with locally
Lipschitz coefficients).

Let φ ∈C([0,T ];Rd) be an absolutely continuous function. We define

Kφ := inf
c∈Ak(φ)

k

∑
j=1

∫ T

0

c j(t)
β j(t,φt)

dt. (4.2.4)

To a pair (φ ,c) with c ∈Ak(φ), we associate for 1 ≤ j ≤ k the measure η j(ds,du)
with the density

f j(s,u) =
c j(s)

β j(s,φs)
1[0,β j(s,φs)](u)+1(β j(s,φs),+∞)(u).

Then, with x= φ0, φt = Φx
t (η).

Moreover, given φ ∈C([0,T ];Rd) and L> 0, we consider the set

Aφ ,L = {(t,x), 0≤ t ≤ T, |x−φt |≤ L+1},

and define
β (φ ,L) = sup

1≤ j≤k
sup

(t,x)∈Aφ ,L

β j(t,x).

We can now prove the following.

Proposition 4.2.4. Let T > 0 be arbitrary. Given (φ ,η) as above, such that in par-
ticular Kφ < ∞, if xN = ZN

0 , for any R, L> 0, there exists a δ ,r> 0 (depending upon
Kφ ) and N0 such that whenever |x− xN |≤ r, N ≥ N0,

P
(
‖ZN −φ‖T > L, dT,β (Q

N ,η)≤ δ
)
≤ e−NR,

where

dT,β (ν ,η) =
k

∑
j=1

sup
0≤t≤T,0≤u≤β

|ν j([0, t]× [0,u])−η j([0, t]× [0,u])|,
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and β := β (φ ,L).

Proof. It is clear that

|ZN
t −φt |≤ |xN − x|+

k

∑
j=1

|h j|

∣∣∣∣∣

∫ t

0

∫ β j(s,ZNs−)

0
[QN

j (ds,du)−η j(ds,du)]

∣∣∣∣∣

+
k

∑
j=1

|h j|

∣∣∣∣∣

∫ t

0

∫ β j(s,ZNs−)∨β j(s,φs)

β j(s,ZNs−)∧β j(s,φs)
f j(s,u)∨1duds

∣∣∣∣∣

≤ r+
k

∑
j=1

|h j|

∣∣∣∣∣

∫ t

0

∫ β j(s,ZNs−)

0
[QN

j (ds,du)−η j(ds,du)]

∣∣∣∣∣

+
k

∑
j=1

|h j|C
∫ t

0

(
c j(s)

β j(s,φs)
∨1
)
|ZN

s −φs|ds,

where C is an upper bound of the Lipschitz constants of the β j’s in [0,T ]× [0,β ].
Subdividing [0,T ] into

[
T
ρ

]
+1 intervals of the form [(i−1)ρ, iρ ∧T ] and denoting

β i
j := sup

(i−1)ρ≤s≤iρ
β j(s,Z

N,xN
s− ) , β i

j := inf
(i−1)ρ≤s≤iρ

β j(s,Z
N,xN
s− ) ,

we define the random sets

Aρ,i
j := [(i−1)ρ, iρ]× [0 , β i

j], Bρ,i
j := [(i−1)ρ, iρ]× [β i

j , β i
j] .

For all i and j,

k

∑
j=1

|QN
j (A

ρ,i
j )−η j(A

ρ,i
j )|≤ 2dT,β̄ (Q

N ,η),
k

∑
j=1

|QN
j (B

ρ,i
j )−η j(B

ρ,i
j )|≤ 4dT,β̄ (Q

N ,η).

Consequently for all 0 ≤ t ≤ T , if h̄ := sup1≤ j≤k |h j|, then on the event
{dT,β (Q

N ,η)≤ δ},

k

∑
j=1

|h j|

∣∣∣∣∣

∫ t

0

∫ β j(s,ZN,s−)

0

[
QN

j (ds,du)−η j(ds,du)
]
∣∣∣∣∣

≤ h̄
k

∑
j=1





[
t
ρ

]
+1

∑
i=1

∣∣∣QN
j (A

ρ,i
j )−η j(A

ρ,i
j )
∣∣∣+

[
t
ρ

]
+1

∑
i=1

{
QN

j

(
Bρ,i
j

)
+η j

(
Bρ,i
j

)}



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≤ h̄
k

∑
j=1





[
t
ρ

]
+1

∑
i=1

∣∣∣QN
j (A

ρ ,i
j )−η j(A

ρ ,i
j )
∣∣∣+

[
t
ρ

]
+1

∑
i=1

∣∣∣QN
j

(
Bρ,i
j

)
−η j

(
Bρ,i
j

)∣∣∣

+2

[
t
ρ

]
+1

∑
i=1

η j

(
Bρ ,i
j

)




≤ 6
(
t
ρ
+1
)
h̄δ +2h̄

k

∑
j=1

[
t
ρ

]
+1

∑
i=1

η j

(
Bρ,i
j

)
.

It follows from the two above inequalities and Gronwall’s Lemma that

sup
0≤t≤T

|ZN
t −φt |≤

(
r+6

(
T
ρ
+1
)
h̄δ +2h̄

k

∑
j=1

[
t
ρ

]
+1

∑
i=1

η j

(
Bρ,i
j

))
exp
[
C(Kφ + kT )h̄

]
.

(4.2.5)
Since the

(
Bρ ,i
j

)

i
are disjoints we have for all j

[
T
ρ

]
+1

∑
i=1

η j(B
ρ,i
j ) = η j





[
T
ρ

]
+1
⋃

i=1
Bρ,i
j



≤

[
T
ρ

]
+1

∑
i=1

(β̄ i
j−β i

j)
∫ iρ

(i−1)ρ

c j(s)
β j(φs)

∨1 ds

≤ max
1≤i≤

[
T
ρ

]
+1

(
β i
j−β i

j

)∫ T

0

c j(s)
β j(φs)

∨1ds

≤ (Kφ +T ) max
1≤i≤

[
T
ρ

]
+1

(
β i
j−β i

j

)
.

We note that for every i, j

β i
j−β i

j ≤C
Xi
N

where Xi is a Poisson random variable of mean ρNβ̄ . For any a > 0, we have with
ā= a

k(Kφ+T ) , using Cramér’s Theorem A.3.1 for the fourth inequality,

P




k

∑
j=1

[
T
ρ

]
+1

∑
i=1

η j(B
ρ ,i
j )> a



≤ kmax
j

P





[
T
ρ

]
+1

∑
i=1

η j(B
ρ,i
j )>

a
k





≤ kP



 max
1≤i≤

[
T
ρ

]
+1

Xi
N

> ā




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≤ kP




⋃

1≤i≤
[
T
ρ

]
+1

{
Xi
N

> ā
}


 (4.2.6)

≤ k
(
T
ρ
+1
)
exp
(
−N

[
ā log

ā
ρβ̄

+ ā−ρβ̄
])

= exp
(
−N

[
ā log

ā
ρβ̄

+ ā− 1
N
log
(
k
[
T
ρ
+1
])

−ρβ̄
])

.

We choose ρ =
√

δ . Let δ0 be such that

6
(
T
√

δ0+δ0
)
h̄≤ L

3
exp
[
−C(Kφ + kT )h̄

]
, and

r =
L
3
exp
[
−C(Kφ + kT )h̄

]
,

a=
L
6h̄

exp
[
−C(Kφ + kT )h̄

]
,

so that from (4.2.5),





k

∑
j=1

[
T
ρ

]
+1

∑
i=1

η j(B
ρ,i
j )≤ a





⊂
{
‖ZN −φ‖T ≤ L

}
. (4.2.7)

R> 0 being arbitrary, we now choose

δ =min

{
δ0,
(
ā
β̄

)2
e−2R/ā,

ā
2β̄

}
, and

N0 =

⌈
2
ā
log
(
k
[
T
ρ
+1
])⌉

.

The result follows from those choices, (4.2.6) and (4.2.7). '(

Before we establish the lower bound, we need to formulate an assumption.

(A.2) We assume that for any φ ∈ C([0,T ];Rd) such that IT (φ) < ∞ and any
ε > 0, there exists a φ ε such that φ ε

0 = φ0, Kφε < ∞, ‖φ −φ ε‖T ≤ ε and IT (φ ε)≤
IT (φ)+ ε .

Exercise 4.2.5. Consider the SIRS model with fixed population size, and let A :=
{(x,y), 0≤ x,0≤ y,x+y≤ 1}. Show that if φ ∈C([0,T ];A) hits the boundary, then
for any ε > 0, one can find φ ε such that φ ε

0 = φ0, Kφε < ∞, ‖φ − φ ε‖ ≤ ε and
IT (φ ε) ≤ IT (φ)+ ε , where φ ε can either remain in the interior of A, or else can hit
the boundary.

We now have, with the notation IT,x(O) = infφ∈O,φ0=x IT (φ),
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Theorem 4.2.6. If the assumptions (A.1) and (A.2) are satisfied, then for any open
subset O⊂ D([0,T ];Rd), if xN → x as N → ∞,

liminf
N→∞

1
N
logP

(
ZN,xN ∈ O

)
≥−IT,x(O).

Proof. It clearly suffices to treat the case where IT,x(O) < ∞. Then for any ε > 0
there exists a φ ∈ O such that φ0 = x and

IT (φ)≤ IT,x(O)+
ε
4
.

It follows from assumption (A.2) that there exists a φ̂ ∈O such that φ̂0 = φ0, Kφ̂ <∞,
‖φ̂ −φ‖T ≤ ε and

IT (φ̂)≤ IT (φ)+
ε
4
.

Now there exists a c ∈Ak(φ) such that ∑k
j=1
∫ T
0

c j(t)
β j(t,φt )dt < ∞, and

IT (φ̂ |c)≤ IT (φ̂)+
ε
4
.

If ε has been chosen small enough, there exists an L > 0 be such that
{ψ; ‖ψ − φ̂‖T < L}⊂ O. From Proposition 4.2.4, if ηc denotes the vector of mea-
sures associated to c, |x− xN | is small enough and N large enough, for any R > 0,
there exists a δ > 0 such that with β̂ = β (φ̂ ,L),

P
(
ZN,xN ∈ O

)
≥ P

(
‖ZN,xN −φ‖T < L

)

≥ P
(
dT,β̂ (Q

N ,ηc)< δ
)

−P
(
‖ZN,xN −φ‖T > L,dT,β̂ (Q

N ,ηc)< δ
)

≥ P
(
dT,β̂ (Q

N ,ηc)< δ
)
− e−NR. (4.2.8)

Let us admit for a moment the next lemma.

Lemma 4.2.7. There exists a sequence of partitions {Ai
n, 1 ≤ i ≤ an} of [0,T ]×

[0, β̂ ] such that supi λ 2(Ai
n)→ 0 as n→ ∞, and a sequence δn ↓ 0 and n0 such that

for all n≥ n0,

k⋂

j=1

an⋂

i=1

{
QN

j (A
i
n) ∈ (ηc

j (A
i
n)−δn,ηc

j (A
i
n)+δn)

}
⊂ {dT,β̂ (Q

N ,ηc)< δ}.

As a consequence of this lemma, making use of Cramér’s Theorem A.3.1 for the
second inequality,
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liminf
N→∞

1
N
logP

(
dT,β̂ (Q

N ,ηc)< δ
)

≥
k

∑
j=1

an

∑
i=1

liminf
N→∞

1
N
logP

(
QN

j (A
i
n) ∈ (ηc

j (A
i
n)−δn,ηc

j (A
i
n)+δn)

)

≥−
k

∑
j=1

an

∑
i=1

(
ηc
j (A

i
n) log

ηc
j (A

i
n)

λ 2(Ai
n)

−ηc
j (A

i
n)+λ 2(Ai

n)

)

≥−
k

∑
j=1

∫ T

0

∫ β̄

0

[
f cj (s,u) log[ f

c
j (s,u)]− f cj (s,u)+1

]
dsdu− ε

4

=−
k

∑
j=1

∫ T

0

[
c j(s) log

c j(s)
β j(s,φs)

− c j(s)+β j(s,φs)
]
ds− ε

4

=−IT (φ̂ |c)−
ε
4

≥−IT,x(O)− ε,

where
f cj (s,u) =

c j(s)
β j(s,φs)

1[0,β j(s,φs)](u)+1(β j(s,φs),+∞)(u)

and the second inequality holds true for n chosen large enough as a function of ε .
We let ε → 0, and to combine the resulting inequality with (4.2.8), hence

−IT,x(O)≤ liminf
N→∞

1
N
log
(
P
(
ZN,xN ∈ O

)
+ e−NR)

≤
(
liminf
N→∞

1
N
logP

(
ZN,xN ∈ O

))
∨ (−R).

The result finally follows by letting R→ ∞. '(

We now need to pass to the

Proof of Lemma 4.2.7. For convenience, we replace the partition {Ai
n, 1 ≤ i ≤ an}

by a partition {Ai, j
n , 1 ≤ i, j ≤ n}, which we construct as follows. We first choose

0= β 0
n < β 1

n < · · ·< β n
n = β̂ such that

sup
1≤ j≤n

ηc([0,T ]× (β j−1
n ,β j

n ])≤
2
n

ηc([0,T ]× [0, β̂ ]).

We next choose a sequence 0 = t0n < t1n < · · · tnn = T such that, if Ai, j
n = (ti−1

n , tin]×
(β j−1

n ,β j
n ],

sup
1≤i≤n

ηc(Ai, j
n )≤ 2

n
ηc([0,T ]× (β j−1

n ,β j
n ])≤

4
n2

ηc([0,T ]× [0, β̂ ]) := C
n2

.
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For an arbitrary 0≤ t ≤ T and 0≤ α ≤ β̂ , we define the set

∂t,α = {t}× [0, β̂ ]∪ [0,T ]×{α},

which is the “boundary” of [0, t]× [0,α]. We note that |{i, j, Ai, j
n ∩∂t,α 1= /0}|≤ 2n.

We need to bound
∣∣∣QN([0, t]× [0,α])−ηc([0, t]× [0,α])

∣∣∣

≤ ∑
i, j, Ai, jn ⊂[0,t]×[0,α]

∣∣QN(Ai, j
n )−ηc(Ai, j

n )
∣∣+ ∑
i, j, Ai, jn ∩∂t,α 1= /0

(
QN(Ai, j

n )+ηc(Ai, j
n )
)

≤ n2δn+2n
(
2C
n2

+δn
)

≤ δ ,

for all n ≥ n0, provided we choose first n0 ≥ 8C
δ , and then a sequence δn such that

δn ≤ [2(n2+2n)]−1δ for each n≥ n0. '(

We now establish a slightly stronger result. Here and below we shall use the
following notation concerning the initial condition of ZN . We fix x ∈ Rd and start
ZN from the point ZN

0 = xN , where the i-th coordinate xiN of xN is given by xiN = [xiN]
N .

Here we assume that the process ZN lives in a closed subset A⊂ Rd . We shall need
the following

Definition 4.2.8. We shall say that the compact set of initial conditions K is
adapted to the open set of trajectories O⊂ D([0,T ];A) if

1. K ⊂ {φ0, φ ∈ O}.
2. For any ε > 0, the following holds. For any x ∈K , there exists a φ x ∈ O such

that φ x
0 = x, IT (φ x)≤ IT,x(O)+ ε and moreover supx∈K Kφ x < ∞.

It follows readily from the proof of Theorem 4.2.6 that the following reinforced
version holds.

Theorem 4.2.9. For any open subset O ⊂ D([0,T ];A) and any compact subset K
of initial conditions which is adapted to O,

liminf
N→∞

1
N
log inf

x∈K
P(ZN,xN ∈ O)≥− sup

x∈K
IT,x(O) .

4.2.4 The Upper Bound

In this subsection, we shall again use the notation xN for the vector whose i-
th coordinate is given by xiN = [xiN]

N . We want to prove that for any closed F ,
F ⊂ D([0,T ];Rd),

limsup
N→∞

logP(ZN,xN ∈ F)≤−IT,x(F). (4.2.9)
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Let us recall the concept of exponential tightness.

Definition 4.2.10. The sequence ZN is said to be exponentially tight if for any α > 0,
there exists a compact Kα such that

limsup
N

1
N
logP(ZN ∈ Kc

α)≤−α.

We have the following lemma.

Lemma 4.2.11. If (4.2.9) holds for any compact subset F =K ⊂⊂D([0,T ];A), and
ZN is exponentially tight, then (4.2.9) holds for any closed subset F ⊂ D([0,T ];A).

Proof. Let F be closed and α := IT,x(F). We assume w.l.o.g. that α > 0 (unless the
conclusion below would be obvious). Let Kα be the compact set associated to α by
Definition 4.2.10. It is clear that F ∩Kα is compact and IT,x(F ∩Kα) ≥ α . Hence
from our assumption

limsup
N→∞

1
N
logP(ZN ∈ F ∩Kα)≤−α.

Also from the choice of Kα ,

limsup
N→∞

1
N
logP(ZN ∈ Kc

α)≤−α.

But P(ZN ∈ F)≤ P(ZN ∈ F ∩Kα)+P(ZN ∈ Kc
α), hence

logP(ZN ∈ F)≤ log2+ sup(logP(ZN ∈ F ∩Kα), logP(ZN ∈ Kc
α)),

and we clearly deduce that

limsup
N→∞

1
N
logP(ZN ∈ F)≤−α,

as desired. '(

Let us first establish

Theorem 4.2.12. Let T > 0 and x ∈ Rd be fixed. Let xN → x as N → ∞. For any
compact set K ⊂ D([0,T ];Rd),

limsup
N→∞

1
N
logP

(
ZN,xN ∈ K

)
≤−IT,x(K) .

Proof. Recall the formula

IT (φ) = sup
θ∈C1([0,T ];Rd)

∫ T

0
!(φt , φ̇t ,θt)dt

= sup
θ∈C1([0,T ];Rd)

L (φ ,θ),
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where

L (φ ,θ) = 〈φT ,θT 〉−〈φ0,θ0〉−
∫ T

0
〈φt , θ̇t〉dt−

k

∑
j=1

∫ T

0
β j(φt)

[
e〈h j ,θt 〉 −1

]
dt .

For any θ ∈C1([0,T ];Rd), 0≤ s< t ≤ T , we define

MN,θ
s,t =〈ZN,xN

t ,θt〉−〈ZN,xN
s ,θs〉−

∫ t

s
〈ZN,xN

r , θ̇r〉dr−
k

∑
j=1

∫ t

s
〈h j,θr〉β j(r,ZN,xN

r )dr,

ΞN,θ
s,t = exp

(
NMN,θ

s,t −N
k

∑
j=1

∫ t

s
τ(〈h j,θr〉)β j(r,ZN,xN

r )dr

)
,

where τ(a) = ea − 1− a, are such that MN,θ
0,t and ΞN,θ

0,t are local martingales, the
second being also a supermartingale such that E[ΞN,θ

0,t ]≤ 1.

We assume that IT,x(K)> 0, since otherwise the result is trivial. We also assume
that IT,x(K)< ∞. The case IT,x(K) = ∞ can be treated in a way which is very similar
to what follows, and we will not repeat the argument. Since φ 3→ IT (φ) is lower
semicontinuous and Kx = {φ ∈ K, φ0 = x} is compact, there exists a φ̂ ∈ K such
that φ̂0 = x and IT (φ̂) = IT,x(K). Let now φ ∈ Kx be arbitrary. First assume that
IT (φ)< ∞. Then there exists a θφ ∈C1([0,T ];Rd) such that

IT (φ)≤L (φ ,θφ )+
ε
2
.

Since ψ 3→L (ψ,θφ ) is continuous on D([0,T ];Rd) equipped with the Skorokhod
topology, there exists a neighbourhood Vφ ,θφ (ε) of φ in D([0,T ];Rd) such that for
any ψ ∈ Vφ ,θφ (ε),

|L (φ ,θφ )−L (ψ,θφ )|≤
ε
2
.

Now

P
(
ZN,xN ∈ Vφ ,θφ (ε)

)
= E

(
1ZN,xN∈Vφ ,θφ (ε)

)

= e−NL (φ ,θφ )E
(
eNL (φ ,θφ )1ZN,xN∈Vφ ,θφ (ε)

)

≤ e−N[L (φ ,θφ )− ε
2 ]E
(
eNL (ZN,xN ,θφ )

)

≤ e−N[L (φ ,θφ )− ε
2 ]

≤ e−NIT (φ)+Nε , (4.2.10)

where the before last inequality follows the fact that NL (ZN,xN ,θφ ) = log(ΞN,θφ
T )

and E[ΞN,θφ
T ]≤ 1.

The second case is the one where IT (φ) =+∞. Then there existsM> IT,x(K)+1
and θφ ∈ C1([0,T ];Rd) such that L (φ ,θφ ) > M+ ε . From the same argument as
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above, we deduce that

P
(
ZN,xN ∈ Vφ ,θφ (ε)

)
≤ e−NM.

Let Kx = {φ ∈ K, φ0 = x}. Since Kx ⊂
⋃

φ∈K,φ0=xVφ ,θφ (ε) and Kx is compact,
there exists m = m(ε) ≥ 1 and φ1, . . . ,φm ∈ Kx where we assume that φ1 = φ̂ , such
that

Kx ⊂
m⋃

i=1
Vφi,θφi

(ε) .

Now there exists a finite set of functions {φm+1, . . . ,φm+n}⊂ K\Kx, such that

K ⊂
m+n⋃

i=1
Vφi,θφi

(ε) .

We choose ε small enough for i ≥ m+ 1 such that x 1∈ Vφ ,θφi
(ε). Then for N large

enough, P(ZN,xN ∈ Vφi,θφi
(ε)) = 0 if i≥ m+1. Hence

limsup
N→∞

1
N
logP(ZN,xN ∈ K)≤ limsup

N→∞

1
N
log

(
m+n

∑
i=1

P
(
ZN,xN ∈ Vφi,θφi

(ε)
))

≤ max
1≤i≤m

limsup
N→∞

1
N
logP

(
ZN,xN ∈ Vφi,θφi

(ε)
)

≤− inf
1≤i≤m

IT (φi)+ ε

≤−IT,x(K)+ ε,

where we have used (4.2.10) in the third inequality. It remains to let ε → 0. '(

It remains to establish exponential tightness. Now we need to impose a growth
condition on the β j’s. One natural assumption would be to assume that for some
C > 0, all 1 ≤ j ≤ m and x ∈ Rd , β j(t,x) ≤ C(1+ |x|). However, this condition is
not satisfied in most of our examples, because one of the β j’s is quadratic. We shall
instead formulate an assumption which is satisfied in our epidemic models. We shall
write 1 for the vector in Rd whose coordinates are all equal to 1, and we exploit the
fact that for those j’s such that β j is quadratic, 〈h j,1〉= 0.

(A.3) We assume that for all starting points xN ∈ Zd
+/N, ZN,xN takes its values in

Rd
+ a.s., and moreover that there exists aCβ > 0 such that for any 0≤ j ≤ k such

that 〈h j,1〉 1= 0, β j(t,x)≤Cβ (1+ |x|), 0≤ t ≤ T, x ∈ Rd .

We now prove

Proposition 4.2.13. Assume that Conditions (A.1) and (A.3) are satisfied. Let T > 0
and x ∈ Rd be given, as well as a sequence xN → x as N → ∞, such that for all
N ≥ 1, xN ∈ Zd

+/N. Then for all ξ > 0,
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lim
δ↓0

limsup
N→∞

1
N
logP

(
sup

0≤s,t≤T, |t−s|≤δ

∣∣∣ZN,xN
t −ZN,xN

s

∣∣∣> ξ

)
=−∞.

Proof. ξ > 0 and T > 0 will be fixed throughout this proof. Consider the stopping
time

σN,xN
R = inf{t ∈ [0,T ], |ZN,xN

t |> R}.

It is clear that

P
(

sup
|t−s|≤δ

∣∣∣ZN,xN
t −ZN,xN

s

∣∣∣> ξ

)
≤ P

(
sup

|t−s|≤δ

∣∣∣∣Z
N,xN
t∧σN,xN

R
−ZN,xN

s∧σN,xN
R

∣∣∣∣> ξ

)

+P
(

σN,xN
R < T

)
.

We first consider the first term of the above right-hand side. For that purpose, we
divide [0,T ] into subintervals of length δ , and let i(s) ≤ s < i(s) denote the points
of the grid nearest to s.

P
[

sup
|s−t|≤δ

∣∣∣∣Z
N,xN
t∧σN,xN

R
−ZN,xN

s∧σN,xN
R

∣∣∣∣> ξ

]

= P
[
∃0≤ s< t ≤ T, t− s≤ δ ,

∣∣∣∣Z
N,xN
t∧σN,xN

R
−ZN,xN

s∧σN,xN
R

∣∣∣∣> ξ
]

≤ P
[
∃0≤ s< t ≤ T,t− s≤ δ ,

∣∣∣∣Z
N,xN
t∧σN,xN

R
−ZN,xN

i(s)

∣∣∣∣+
∣∣∣∣Z

N,xN
i(s) −ZN,xN

s∧σN,xN
R

∣∣∣∣>ξ
]

≤ 2
(
T
δ
+1
)

sup
s∈[0,T ]

P
[

sup
t∈[s,s+2δ [

∣∣∣∣Z
N,xN
t∧σN,xN

R
−ZN,xN

s∧σN,xN
R

∣∣∣∣> ξ/2

]
.

Let {θi , 1≤ i≤ d} (resp. {θi , d+1≤ i≤ 2d}) denote the standard basis of Rd
+

(resp. of Rd
−). Thus for every λ > 0, assuming w.l.o.g. that |z| stands here for

sup1≤i≤d |zi|,

P
[

sup
t∈[s,s+2δ [

∣∣∣∣Z
N,xN
t∧σN,xN

R
−ZN,xN

s∧σN,xN
R

∣∣∣∣> ξ/2

]

≤
2d

∑
i=1

P
[

sup
t∈[s,s+2δ [

〈ZN,xN
t −ZN,xN

s ,λθi〉 > λξ/2

]

≤
2d

∑
i=1

P
[

sup
t∈[s,s+2δ [

MN,λθi
(s,t)∧σN,xN

R
+

k

∑
j=1

∫ t∧σN,xN
R

s∧σN,xN
R

〈h j,λθi〉β j
(
r,ZN,xN

r
)
dr > λξ/2

]

≤
2d

∑
i=1

P
[

sup
t∈[s,s+2δ [

exp

(
NMN,λθi

(s,t)∧σN,xN
R

+N
k

∑
j=1

∫ t∧σN,xN
R

s∧σN,xN
R

〈h j,λθi〉β j
(
r,ZN,xN

r
)
dr

)
>eNλξ/2

]
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≤
2d

∑
i=1

P
[

sup
t∈[s,s+2δ [

ΞN,λθi
(s,t)∧σN,xN

R
>exp

(
Nλξ/2−N

k

∑
i=1

(
e〈h j ,λθi〉 −1

)∫ t∧σN,xN
R

s∧σN,xN
R

β j(s,ZN,xN
r )dr

)]

≤
2d

∑
i=1

P
[

sup
t∈[s,s+2δ [

ΞN,λθi
(s,t)∧σN,xN

R
> exp

(
Nλξ/2−2δNkβ̄Reλ h̄

)]

≤ 2d exp
(
−Nλξ/2+2δNkβ̄Reλ h̄

)
,

where β̄R = sup1≤ j≤k sup0≤t≤T, |x|≤R β j(t,x). Optimizing over λ > 0 yields

limsup
N→∞

1
N
logP

[
sup

|s−t|≤δ

∣∣∣∣Z
N,xN
t∧σN,xN

R
−ZN,xN

s∧σN,xN
R

∣∣∣∣> ξ

]
≤− ξ

2h̄

(
log
(

ξ δ−1

4h̄kβ̄R

)
−1
)
.

Consequently for any fixed R> 0,

lim
δ→0

limsup
N→∞

1
N
logP

[
sup

|s−t|≤δ

∣∣∣∣Z
N,xN
t∧σN,xN

R
−ZN,xN

s∧σN,xN
R

∣∣∣∣> ξ

]
=−∞.

It remains to show that

lim
R→∞

limsup
N→∞

1
N
logP

(
σN,xN
R < T

)
=−∞ . (4.2.11)

Combing the fact that for all t ≤ T

sup
s≤t

|ZN,xN
s |≤ sup

s≤t
|〈ZN,xN

s ,1〉|

and that by Gronwall’s Lemma 2.2.9, with h̄ = sup1≤ j≤k |h j| and Cβ the constant
from assumption (A.3),

sup
s≤t

|〈ZN,xN
s ,1〉|≤

(
|〈x,1〉+ kh̄Ct+ sup

s≤t
|MN,1

s |
)
ekh̄Cβ t ,

we deduce that

sup
s≤t

|ZN,xN
s |≤

(
|〈x,1〉|+ kh̄Ct+ sup

s≤t
|MN,1

s |
)
ekh̄Cβ t . (4.2.12)

By Itô’s formula we have, with M N,1
t a local martingale, and defining AN

s := 1∨
(sup0≤r≤s |M

N,1
r |,

(
MN,1

t

)2N

=N ∑
j;〈h j ,1〉1=0

∫ t

0
β j
(
s,ZN,xN

s
)
[(

MN,1
s +

〈h j,1〉
N

)2N
−
(
MN,1

s−

)2N
−2N

(
MN,1

s
)2N−1〈h j,1〉

N

]
ds+M N,1

t

≤ NCβ ∑
j

N(2N−1)
N2 〈h j,1〉2

∫ t

0
(1+ |ZN,xN

s |)
(
|MN,1

s |+
〈h j,1〉
N

)2N−2
ds+M N,1

t
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≤ NCβCT

(
1+

h̄
N

)2N ∫ t

0

1+ |ZN,xN
s |

AN
s

(AN
s )

2N−1ds+M N,1
t

≤ NC′
T

∫ t

0
(AN

s )
2Nds+M N,1

t , (4.2.13)

where we have used (4.2.12) and the inequality a+ b ≤ a(1+ b) for a ≥ 1, b ≥ 0.
From Doob’s inequality,

E



 sup
s≤t∧σN,xN

R

(MN,1
s )2N



≤
(

2N
2N−1

)2N
E
[
(MN,1

t∧σN,xN
R

)2N
]
. (4.2.14)

Since M N,1
t∧σN,xN

R
is a martingale, we can take the expectation in the inequality

(4.2.13) at time t ∧σN,xN
R , and deduce from the resulting inequality, (4.2.14) and

supN≥1
( 2N
2N−1

)2N
< ∞

E



 sup
s≤t∧σN,xN

R

(MN,1
s )2N



≤ NC′′
T

∫ t

0
E
[(

AN
s∧σN,xN

R

)2N
]
ds.

Since for a≥ 0, (1∨a)2N ≤ 1+a2N , it follows that for all 0≤ t ≤ T ,

E
[(

AN
t∧σN,xN

R

)2N
]
≤ 1+NC′′

T

∫ t

0
E
[(

AN
s∧σN,xN

R

)2N
]
ds.

Hence it follows from Gronwall’s lemma that

E



 sup
t≤T∧σN,xN

R

(MN,1
t )2N



≤ exp(CTNT ) . (4.2.15)

For any 0< κ < R, denoting

C(R,κ) := (R−κ)e−kh̄CT T − |〈x,1〉|− kh̄CTT ,

we have

limsup
N→+∞

1
N
logP

[
σN,xN
R ≤ T

]
≤ limsup

N→+∞

1
N
logP



 sup
t≤T∧σN,xN

R

|ZN,x
t |> R−κ





≤ limsup
N→+∞

1
N
logP



 sup
t≤T∧σN,xN

R

|MN,1
t |>C(R,κ)





≤ limsup
N→+∞

1
N
logP



 sup
t≤T∧σN,xN

R

(MN,1
t )2N > [C(R,κ)]2N




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≤−2log [C(R,κ)]+ limsup
N→+∞

1
N
logE



 sup
t≤T∧σN,xN

R

(
MN,1

t

)2N




≤−2log [C(R,κ)]+CT,

where we have used (4.2.15) for the last inequality. We deduce (4.2.11) by letting R
tend to +∞. '(

We shall also need the following lemma, where we use the notation

w′
ZN (δ ) = inf

{ti}
max
1≤i≤n

wx([ti−1, ti)),

with wx([ti−1, ti)) = supti−1≤s<t<ti) |xt − xs| and the infimum is taken over all se-
quences 0= t0 < t1 < .. . < tn = T satisfying inf1≤i≤n(ti− ti−1)≥ δ .

Lemma 4.2.14. If Conditions (A.1) and (A.3) are satisfied, then for any N ≥ 1, ρ >
0,

lim
δ→0

P(w′
ZN (δ )> ρ) = 0.

Proof. Since the space D([0,T ];Rd) is separable and complete, the law of ZN on
this space is tight, see Theorem 1.3 in Billingsley [8], which implies the lemma,
from Theorem 13.2 of the same reference. '(

We can now deduce the following theorem from Proposition 4.2.13 and Lemma
4.2.14.

Theorem 4.2.15. If Conditions (A.1) and (A.3) is satisfied, then the sequence
{ZN,zN , N ≥ 1} is exponentially tight in D([0,T ];Rd).

Proof. Given R > 0 and a sequence {δ! > 0, ! ≥ 1} the following is a compact
subset of D([0,T ];Rd) (see Theorem 12.3 in Billingsley [8]):

KR,{δ!} = {x, ‖x‖T ≤ R}
⋂⋂

!≥1

{
x, w′

x(δ!)≤ !−1} .

For any α > 0, we need to find Rα and {δ α
! , !≥ 1} such that

limsup
N→∞

1
N
logP

(
{
‖ZN,zN‖T > Rα

}⋃⋃

!≥1

{
w′
ZN (δ

α
! )> !−1}

)
≤−α. (4.2.16)

It is not hard to find Rα such that P(‖ZN‖T > Rα) ≤ e−Nα , for all N ≥ 1. Since
w′
x(δ )≤ wx(2δ ), it follows from Proposition 4.2.13 that for each !≥ 1, there exists

a δ! > 0 such that

limsup
N→∞

1
N
logP

(
w′
ZN (δ!)> !−1)≤−(α + !).

Consequently, there exists an N! such that for N ≥ N!,
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P
(
w′
ZN (δ!)> !−1)≤ e−N(α+!).

Combining this with Lemma 4.2.14, we deduce that there exists 0 < δ α
! ≤ δ! such

that for all N ≥ 1,
P
(
w′
ZN (δ

α
! )> !−1)≤ e−N(α+!).

It follows that for all N ≥ 1,

P
({

‖ZN,zN‖T > Rα
}⋃⋃{

w′
ZN (δ

α
! )> !−1}

)
≤ e−Nα ∑

!≥0
e−N!

≤ (1− e−N)−1e−αN ,

from which (4.2.16) follows. '(

It is not hard to see that a combination of the exact same arguments as used in
the proofs of Theorem 4.2.12, Proposition 4.2.13 and Theorem 4.2.15 yields the
following result.

Theorem 4.2.16. Assume that assumptions (A.1) and (A.3) are satisfied. Then for
any closed subset F ⊂ D([0,T ];Rd) and any compactK ⊂ Rd, we have

limsup
N→∞

1
N
log sup

x∈K
P(ZN,xN ∈ F)≤− inf

x∈K
IT,x(F) .

4.2.5 Time of Extinction in the SIRS Model

We shall denote by TN
Ext the time of extinction of the disease, and we want to learn

what large deviations can tell us about it. In order to simplify the presentation, we
start with to the two most simple examples of the SIRS model and the SIS model.
These are models with fixed population size N. We treat the SIRS model in this
section, and the SIS model in the next one. In this section, we shall follow the
arguments from Kratz and Pardoux [21], which itself follows closely the arguments
in Dembo and Zeitouni [9].

The deterministic SIRS Model can be reduced to a 2-dimensional ODE for the
pair (s(t), i(t)) which reads

{
i′(t) = λ s(t)i(t)− γi(t),
s′(t) =−λ s(t)i(t)+ρ(1− s(t)− i(t)).

(4.2.17)

This process lives in the compact set A = ASIRS = {(x,y), 0 ≤ x,y, x+ y ≤ 1}. Pro-
vided again R0 =

λ
γ > 1, there is a unique stable endemic equilibrium (i∗,s∗) =(

ρ
λ

λ−γ
ρ+γ ,

γ
λ

)
∈ A, while the disease free equilibrium (1,0) is unstable. Here h1 =(

−1
1

)
, β1(x,y) = λxy, h2 =

(
0
−1

)
, β2(x,y) = γy, h3 =

(
1
0

)
, β3(x,y) =

ρ(1− x− y).
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The stochastic process (IN(t),SN(t))may hit {0}× [0,1], and then stays there for
ever (this is how the disease goes extinct). On the other hand, if it hits ∂A\{0}×
[0,1], the process comes back to Å. Similarly, starting form {0}× [0,1], the ODE
stays there for ever (and converges to (0,1)), while starting from ∂A\{0}× [0,1]),
it enters Å instantaneously. We thus define

TN
Ext = inf{t ≥ 0, IN(t) = 0}.

Unfortunately, the theory of Large Deviations will not give us directly results on
TN
Ext, but rather on

TN
δ = inf{t ≥ 0, IN(t)≤ δ}, for any δ > 0.

An ad hoc argument, which we shall present at the end, allows us to deduce the
desired result concerning TN

Ext. We are interested in the exit time from Aδ := {(x,y)∈
A, x≥ δ} through the boundary ∂Aδ := {(x,y) ∈ A, x= δ}.

We shall write DT,A := D([0,T ];A). In order to formulate our results, we shall
need the following notations (below z stands for (x,y))

V (z,z′,T ) = inf
φ∈DT,A,φ0=z,φT=z′

IT (φ)

V (z,z′) = inf
T>0

V (z,z′,T )

V δ = inf
z∈∂Aδ

V (z∗,z),

V = inf
z∈{0}×[0,1]

V (z∗,z).

We want to prove the

Theorem 4.2.17. Let TN,z
Ext denote the extinction time in the SIRS model starting from

zN = [zN]
N . Given η > 0, for all z ∈ A,

lim
N→∞

P
(
exp{N(V −η)}< TN,z

Ext < exp{N(V +η)}
)
= 1.

Moreover, for all η > 0, z ∈ A and N large enough,

exp{N(V −η)}≤ E(TN,z
Ext )≤ exp{N(V +η)}.

We shall first establish

Proposition 4.2.18. Given η > 0, for all z ∈ Åδ ,

lim
N→∞

P
(
exp{N(V δ −η)}< TN,z

δ < exp{N(V δ +η)}
)
= 1.

Moreover, for all η > 0, z ∈ Åδ and N large enough,

exp{N(V δ −η)}≤ E(TN,z
δ )≤ exp{N(V δ +η)}.
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Let us now formulate a set of assumptions which are satisfied in our case, under
which we will prove Proposition 4.2.18. For that sake, we shall rewrite the ODE
(4.2.17) as

dzt
dt

= b(zt), z0 = z. (4.2.18)

Assumption 4.2.19.

(E1) z∗ is the only stable equilibrium point of (4.2.18) in Aδ and the solution zxt
of (4.2.18) satisfies, for all z0 = z ∈ Aδ ,

zzt ∈ Åδ for all t > 0 and lim
t→∞

zzt = z∗.

(E2) V̄ < ∞.
(E3) For all ρ > 0 there exist constants T (ρ), ε(ρ)> 0 with T (ρ),ε(ρ) ↓ 0 as ρ ↓ 0

such that for all z ∈ ∂Aδ ∪{z∗} and all x,y ∈ B(z,ρ)∩A there exists

φ = φ(ρ,x,y) : [0,T (ρ)] 3→ A with φ0 = x,φT (ρ) = y and IT (ρ)(φ)< ε(ρ).

(E4) For all z ∈ ∂Aδ there exists an η0 > 0 such that for all η < η0 there exists a
z̃= z̃(η) ∈ A\Aδ with |z− z̃|> η .

Note that the conditions (E1) and (E4) would not be satisfied if we replace Aδ
by A.

The proof of Proposition 4.2.18 relies upon the following sequence of lemmas,
whose proofs will be given below, after the proof of the proposition.

Lemma 4.2.20. For any ε > 0, there exists a ρ0 > 0 such that for all ρ < ρ0,

sup
z∈∂Aδ∪{z∗}

sup
|z′−z|∨|z′′−z|≤ρ

inf
0≤T≤1

V (z′,z′′,T )< ε.

Lemma 4.2.21. For any η > 0, there exists a ρ0 > 0 such that for all ρ < ρ0, there
exists a T0 < ∞ such that

liminf
N→∞

1
N
log inf

|z−z∗|≤ρ
P(TN,z

δ ≤ T0)≥−(V̄ +η).

Let us define for some ρ > 0 small enough, Bρ := B(z∗,ρ) and

σN
ρ = inf{t ≥ 0, ZN

t ∈ Bρ ∪{z, z1 ≤ δ}}.

Lemma 4.2.22. If ρ > 0 is such that Bρ ⊂ Åδ , then

lim
t→∞

limsup
N→∞

1
N
log sup

x∈Aδ

P(σN,z
ρ > t) =−∞.
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Lemma 4.2.23. Let C be a closed subset of A\Åδ . Then

lim
ρ→0

limsup
N→∞

1
N
log sup

2ρ≤|z−z∗|≤3ρ
P(ZN,z

σN
ρ
∈C)≤− inf

z′∈C
V (z∗,z′).

Lemma 4.2.24. If ρ > 0 is such that Bρ ⊂ Åδ and z ∈ Åδ ,

lim
N→∞

P(ZN,z
σN

ρ
∈ Bρ) = 1.

Lemma 4.2.25. For all ρ,c> 0, there exists a constant T = T (c,ρ)< ∞ such that

limsup
N→∞

1
N
log sup

z∈Aδ

P( sup
0≤t≤T

|ZN,z
t − z|≥ ρ)≤−c.

We first give the

Proof of Proposition 4.2.18. STEP 1: UPPER BOUND OF TN
δ We choose η = ε/2,

and ρ , T0 as in Lemma 4.2.21. By Lemma 4.2.22, for any arbitrarily fixed a > 0,
there exists a T1 such that

limsup
N→∞

1
N
log sup

z∈Aδ

P(σN,z
ρ > T1)<−2a< 0.

Let T = T0+T1. There exists an N0 ≥ 1 such that for all N ≥ N0,

q := inf
z∈Aδ

P(TN,z
δ ≤ T )≥ inf

z∈Aδ
P(σN,z

ρ ≤ T1) inf
z∈Bρ

P(TN,z
δ ≤ T0)

≥ e−N(V̄δ+η), (4.2.19)

since the second factor is bounded from below by say e−N(V̄δ+η/2) from Lemma
4.2.21, and from the previous estimate, we deduce that for N large enough,

inf
z∈Aδ

P(σN,z
ρ ≤ T1) = 1− sup

z∈Aδ

P(σN,z
ρ > T1)

≥ 1− e−Na

≥ e−Nη/2 .

Next, by the strong Markov property,

P(TN,z
δ > (k+1)T ) = [1−P(TN,z

δ ≤ (k+1)T |TN,z
δ > kT )]P(TN,z

δ > kT )

≤ (1−q)P(TN,z
δ > kT ).

Iterating, we get
sup
z∈Aδ

P(TN,z
δ > kT )≤ (1−q)k.
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Therefore

sup
z∈Aδ

E(TN,z
δ )≤ T [1+

∞

∑
k=1

sup
z∈Aδ

P(TN,z
δ > kT )]≤ T

∞

∑
k=0

(1−q)k =
T
q
,

so from (4.2.19),

sup
x∈Aδ

E[TN,z
δ ]≤ TeN(V̄δ+η), (4.2.20)

and the upper bound for E[TN,z
δ ] follows. From Chebycheff,

P(TN,z
δ ≥ eN(V̄δ+ε))≤ e−N(V̄δ+ε)E[TN,z

δ ]≤ Te−Nε/2,

which tends to 0 as N → ∞, hence the upper bound for TN
δ .

STEP 2: LOWER BOUND OF TN
δ Let ρ > 0 be small enough such that B2ρ :=

B(z∗,2ρ) ⊂ Åδ . We define a sequence of stopping times as follows. θ0 = 0 and
for m≥ 0,

τm = inf{t ≥ θm, ZN
t ∈ Bρ ∪{z, z1 ≤ δ}},

θm+1 = inf{t > τm, ZN
t ∈ (B2ρ)

c},

with the convention that θm+1 = ∞ in case ZN
τm ∈ {z, z1 ≤ δ}.

In case V̄δ = 0, the lower bound is an easy consequence of Lemmas 4.2.24 and
4.2.25. So we assume from now on that V̄δ > 0 and fix ε > 0 arbitrarily small. Since
{z, z1 ≤ δ} is a closed set, from Lemma 4.2.23, for ρ > 0 small enough,

limsup
N→∞

1
N
log sup

2ρ≤|z−z∗|≤3ρ
P(ZN,z

σN
ρ
∈ {z, z1 ≤ δ})≤−V̄δ +

ε
3
.

Now with c = V̄δ , we let T0 = T (c,ρ) be as in Lemma 4.2.25. Then there exists an
N0 such that for N ≥ N0, and all m≥ 1,

sup
z∈Aδ

P(TN,z
δ = τm)≤ sup

2ρ≤|z−z∗|≤3ρ
P(ZN,z

σN
ρ
∈ {z, z1 ≤ δ})≤ e−N(V̄δ−ε/2),

while

sup
z∈Aδ

Pz(θm− τm−1 ≤ T0)≤ sup
z∈Aδ

P( sup
0≤t≤T0

|ZN,z
t − z|≥ ρ)≤ e−N(V̄δ−ε/2).

The event {TN
δ ≤ kT0} implies that either one of the first k+ 1 events {TN

δ = τm}
occurs, or else at least one of the first k excursions [τm,τm+1] away from Bρ is of
length at most T0. Consequently, from the two preceding estimates,

P(TN
δ ≤ kT0)≤

k

∑
m=0

P(TN
δ = τm)+P( min

1≤m≤k
(θm− τm−1)≤ T0)

≤ P(TN
δ = τ0)+2ke−N(V̄δ−ε/2).
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Choosing now k = [T−1
0 eN(V̄δ−ε)]+1 yields

P(TN
δ ≤ eN(V̄δ−ε))≤ P(ZN

σN
ρ
1∈ Bρ)+3T−1

0 e−Nε/2.

By Lemma 4.2.24, the right-hand side tends to 0 as N → ∞. We have completed
the proof of the first statement in Proposition 4.2.18. This result combined with
Chebycheff’s inequality and (4.2.20) yields the second result. '(

We now turn to the proofs of the lemmas.

Proof of Lemma 4.2.20. This lemma is a direct consequence of the assumption
(E3). '(

Proof of Lemma 4.2.21. We make use of Lemma 4.2.20 with ε = η/4 and choose
ρ < ρ0. Let z ∈ Bρ . There exists a continuous path ψz such that ψz

0 = z, ψz
tz = z∗

for some tz ≤ 1 and Itz(ψz)≤ η/4. From assumption (E2), there exists a continuous
path φ ∈C([0,T1];A) such that φ0 = z∗, φT1 = z′ ∈ ∂Aδ , and IT1(φ)≤ V̄+η/4. From
Lemma 4.2.20, there exists a continuous path ψ̃ such that ψ̃0 = z′ and ψ̃sz′ = z′′ ∈
A\Aδ , with sz′ ≤ 1, Isz′ (ψ̃) ≤ η/4 and d(z′′,Aδ ) = ∆ > 0, where ∆ < δ . Finally
let {ξt , 0 ≤ t ≤ 2− tz − sz′} be a solution of (4.2.18) starting from ξ0 = z′′. From
Proposition 4.2.2, I(ξ ) = 0. Concatenating the paths ψz, φ , ψ̃ and ξ , we obtain a
path φ z ∈C([0,T0];A) (with T0 = T1+2) starting from z, with IT0(φ z)≤ V̄ +3η/4.
Let now

Ψ =
⋃

z∈Bρ

{ψ ∈ D([0,T0];A), ‖ψ −φ z‖T0 < ∆/2}.

Ψ is an open subset of D([0,T0];A), such that Bρ is adapted to Ψ in the sense of
Definition 4.2.8. Hence we can make use of Theorem 4.2.9, hence

liminf
N→∞

1
N
log inf

z∈Bρ
P(ZN,z ∈Ψ)≥− sup

z∈Bρ
inf

φ∈Ψ ,φ0=z
IT0(φ)

≥− sup
z∈Bρ

IT0(φ
z)

>−(V̄ +η).

The results follows from this and {ZN ∈Ψ}⊂ {TN
δ ≤ T0}. '(

Proof of Lemma 4.2.22. Since σN,z
ρ = 0 if z ∈ Bρ , it suffices to restrict ourselves to

z ∈ Aδ\Bρ . For each t > 0, we define the closed set

Ψt := {φ ∈ D([0, t];A), φs ∈ Aδ\Bρ for all 0≤ s≤ t},

so that {σN,z
ρ > t}⊂ {ZN,z ∈Ψt}. Hence by Theorem 4.2.16,

limsup
N→∞

1
N
log sup

z∈Aδ \Bρ

P(σN,z
ρ > t)≤− inf

φ∈Ψt
It(φ).
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It then suffices to show that

inf
φ∈Ψt

It(φ)→ ∞ as t → ∞. (4.2.21)

Starting from any z ∈ Aδ\Bρ , the solution zzt of (4.2.18) hits B̊ρ/2 in finite time Tz
which is upper semicontinuous (recall Definition A.7.1) in z, so by compactness
T := supz∈Aδ \Bρ

Tz < ∞, and z· 1∈ΨT as soon as z· solves (4.2.18).
Now if (4.2.21) does not hold, there would exist M > 0 and for each n≥ 1 φn ∈

ΨnT such that InT (φn) ≤ M or all n ≥ 1. Now if φn,k(t) = φn(kT + t), 0 ≤ t ≤ T ,
0≤ k ≤ n−1, we have that

n min
0≤k≤n−1

IT (φn,k)≤
n−1

∑
k=0

IT (φn,k) = InT (φn)≤M.

Hence we would produce a sequence ψn ∈ ΨT such that IT (ψn) → 0 as n → ∞.
From Theorem 4.2.3, the sequence ψn belongs to a compact set, and IT is lower
semicontinuous (recall Definition A.7.1), so that along a subsequence, ψn → ψ∗,
where ψ∗ ∈ΨT and IT (ψ∗)≤ liminfn IT (ψn) = 0, and those two last statements are
contradictory from Proposition 4.2.2 and the fact that ΨT contains no solution of
(4.2.18). '(

Proof of Lemma 4.2.23. We need only consider the case infz∈CV (z∗,z) > 0, since
in the other case the result is trivial. So we can choose ε > 0 such that

V ε
C :=

(
inf
z∈C

V (z∗,z)− ε
)
∧ ε−1 > 0.

By Lemma 4.2.20, there exists a ρ0 > 0 such that for all 0< ρ < ρ0,

sup
z∈B3ρ\B2ρ

V (z∗,z)< ε,

hence

inf
z′∈B3ρ\B2ρ ,z∈C

V (z′,z)≥ inf
z∈C

V (z∗,z)− sup
z′∈B3ρ\B2ρ

V (z∗,z′)>V ε
C .

For T > 0, consider the closed set ΦT ⊂ D([0,T ];A) defined as

ΦT = {φ ∈ D([0,T ];A), φt ∈C for some 0≤ t ≤ T}.

For z′ ∈ B3ρ\B2ρ ,

P(ZN,z′

σN
ρ

∈C)≤ P(σN,z′
ρ > T )+P(ZN,z′ ∈ ΦT ). (4.2.22)

We next bound from above the two terms of the last right-hand side. Concerning the
second term,
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inf
φ∈ΦT ,φ0∈B3ρ\B2ρ

IT (φ)≥ inf
z′∈B3ρ\B2ρ ,z∈C

V (z′,z)≥V ε
C .

Hence from Theorem 4.2.16,

limsup
N→∞

1
N
log sup

z′∈B3ρ\B2ρ

P(ZN,z′ ∈ ΦT )≤−V ε
C .

For the first term, we deduce from Lemma 4.2.22 that for some T0 > 0, all T ≥ T0,

limsup
N→∞

1
N
log sup

z′∈B3ρ\B2ρ

P(σN,z′
ρ > T )<−V ε

C .

(4.2.22) together with the last two estimates produces an inequality which, after
letting ε → 0, yields the result. '(

Proof of Lemma 4.2.24. zzt denoting the solution of (4.2.18) starting from z∈ Åδ , let
Tρ = inf{t > 0, zzt ∈ Bρ/2}. From (E1) it follows that Tρ < ∞ and ∆ :=
inf0≤t≤Tρ d(z

z
t ,∂Aδ )> 0. Consequently

P
(
ZN,z

σN
ρ
1∈ Bρ

)
≤ P

(
sup

0≤t≤Tρ
|ZN,z

t − zzt |≥
∆ ∧ρ
2

)
,

which tends to 0 as N → ∞ from Theorem 2.2.7. Q.E.D. '(

Proof of Lemma 4.2.25. Let ρ,c> 0 be fixed. For T > 0, N ≥ 1 and z ∈ Aδ ,

P
(

sup
0≤t≤T

|ZN,z
t − z|≥ ρ

)
= P

(
sup

0≤t≤T

∣∣∣∣∣∑j
h jPj

(
N
∫ t

0
β j(Z,x

s )ds
)∣∣∣∣∣≥ ρ

)

≤ P
(

∑
j
Pj(Nβ̄T )≥ Nρ h̄−1

)

≤ kP(P(Nβ̄T )≥ Nρ h̄−1k−1).

Now from Cramér’s Theorem A.3.1

limsup
N→∞

1
N
log sup

z∈Aδ

P( sup
0≤t≤T

|ZN,z
t − z|≥ ρ)≤− ρ

h̄k
log
(

ρ
h̄kβ̄T

)
+

ρ
h̄k

− β̄T,

and the absolute value of the right-hand side can be made arbitrarily large by choos-
ing T arbitrarily small. '(

It remains finally to turn to the

Proof of Theorem 4.2.17. Since Vδ ↑V as δ ↓ 0, it is clear that the lower bounds for
TN
Ext and its expectation follow from Proposition 4.2.18. It remains to establish the
upper bound. Analyzing carefully the proof of the upper bound, we notice that the
key step, which relies upon Lemmas 4.2.21 and 4.2.22 whose proof do not extend to
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our new situation, is the derivation of the inequality (4.2.19). The upper bound both
for the time of exit and its expectation are a direct consequence of (4.2.19), without
any further reference to those assumptions which are not valid any more. We fix
η > 0. Let t > 0 be arbitrary. From Lemma 4.2.26 below, if ct := log

(
λ−γe(γ−λ )t

γ−γe(γ−λ )t

)
,

inf
z∈A\Aδ

P(TN,z
Ext ≤ t)≥ e−ANδBct ≥ e−N(δ+N−1

0 )ct , (4.2.23)

provided N ≥ N0. Choose N0 large enough and δ > 0 small enough such that (δ +
N−1
0 )ct ≤ η/2. From (4.2.19), there exists a Tδ > 0 such that, possibly increasing

N0 if necessary, if N ≥ N0,

inf
z∈Aδ

P(TN,z
δ ≤ Tδ )≥ e−N(V̄δ+η/2) ≥ e−N(V̄+η/2) . (4.2.24)

We deduce from (4.2.23), (4.2.24) and the strong Markov property that, with T =
Tδ + t,

inf
z∈A

P(TN,z
Ext ≤ T )≥ e−N(V̄+η) ,

which is the wished extension of (4.2.19). '(

Lemma 4.2.26. For any t > 0, if ct := log
(

λ−γe(γ−λ )t

γ−γe(γ−λ )t

)
,

inf
z∈A\Aδ

P(TN,z
Ext < t)≥ exp{−ANδBct} .

Proof. Since z ∈ A\Aδ implies that z1 ≤ δ , the first component of the process
NZN,x(t) is dominated by the process

ANδB+P1
(
Nλ

∫ t

0
ZN,z
1 (s)ds

)
−P1

(
Nγ
∫ t

0
ZN,z
1 (s)ds

)
,

which is a continuous time binary branching process with birth rate λ and death rate
γ . This process goes extinct before time t with probability

(
γ − γe(γ−λ )t

λ − γe(γ−λ )t

)ANδB

,

as can be seen by combining formula (1) from section III.4 of Athreya and Ney
[3] with the formula in section 5 for F(0, t) in the birth and death case. The result
follows readily. '(

We shall need below the following additional results.

Proposition 4.2.27. Under the assumptions of Proposition 4.2.18, if C ⊂ ∂Aδ is a
closed set such that VC := infz∈CV (z∗,z)> V̄δ , then for any z ∈ Åδ , all ε > 0 small
enough

lim
N→∞

P(d(ZN,zN
TN

δ
,C)≤ ε) = 0.
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Proof. Fix η < (VC − V̄δ )/3. From Lemma 4.2.23, for ε > O small enough, there
exists a ρ > 0 small enough and N0 large enough such that for all N ≥ N0,

sup
2ρ≤|z−z∗|≤3ρ

P(d(ZN,zN
σN

ρ
,C)≤ ε)≤ e−N(VC−η).

Let c = VC −η and T0 = T (c,ρ) given by Lemma 4.2.25. Then, increasing N0 if
necessary, we deduce from that Lemma that for any N ≥ N0, !≥ 1,

P(τ! ≤ !T0)≤ ! sup
z∈Aδ

P
(

sup
0≤t≤T0

|ZN,zN
t − z|≥ ρ

)
≤ !e−N(VC−η).

For all z ∈ Bρ , !≥ 1,

P(d(ZN,zN
TN

δ
,C)≤ ε)

≤ P(TN,z
δ > τ!)+

!

∑
m=1

P(TN,z
δ > τm−1)P(d(ZN,zN

τm ,C)≤ ε|TN,z
δ > τm−1)

≤ P(TN,z
δ > !T0)+P(τ! ≤ !T0)

+
!

∑
m=1

P(TN,z
δ > τm−1)E[P(d(Z

N,ZNθm
σN

ρ
,C)≤ ε|TN,z

δ > τm−1]

≤ P(TN,z
δ > !T0)+P(τ! ≤ !T0)+ ! sup

2ρ≤|z−z∗|≤3ρ
P(d(ZN,zN

σN
ρ

,C)≤ ε)

≤ P(TN,z
δ > !T0)+2!e−N(VC−η).

Increasing further N0 if necessary, we have that (4.2.20) holds for some T > 0 and
all N ≥ N0. We choose !=

[
eN(V̄δ+2η)

]
, hence from our choice of η ,

limsup
N→∞

sup
z∈Bρ

P(d(ZN,zN
TN

δ
,C)≤ ε)≤ limsup

N→∞

(
T
!T0

eN(V̄δ+η) +2!e−N(VC−η)

)
= 0.

It remains to combine Lemma 4.2.24 and the inequality

P(d(ZN,zN
TN

δ
,C)≤ ε)≤ P(ZN,zN

σN
ρ

1∈ Bρ)+ sup
y∈Bρ

P(d(ZN,yN
TN

δ
,C)≤ ε).

'(

The proof of the next important result is a bit lengthy, and we refer to Pardoux
and Samegni-Kepgnou [27] for it.

Corollary 4.2.28. If C ⊂ {z, z1 = 0} is such that VC := infz∈CV (z∗,z)> V̄ , then for
any z ∈ Å,

lim
N→∞

P(ZN,zN
TN
Ext

∈C) = 0.
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4.2.6 Time of Extinction in the SIS Model

While the above results are rather precise, it is frustrating that it does not seem
possible to express the important constant V explicitly in terms of the few constants
of the model. One can only do a numerical evaluation of V . We now simplify the
problem, and consider the SIS model, where when an infectious individual cures,
he immediately becomes susceptible again: there is no immunity. The advantage of
this simplified model is that it can be written in dimension one and, as we shall see
now, we can deduce from the Pontryagin maximum principle, see Section A.6 in the
Appendix, a very simple explicit formula for V .

The deterministic SIS model can be reduced to the following one-dimensional
equation for the proportion of infected individuals

ẋt = λxt(1− xt)− γxt .

Here the process lives in the interval ASIS = [0,1]. Provided R0 =
λ
γ > 1, there is

a unique stable endemic equilibrium x∗ = 1− γ
λ ∈ (0,1), while the disease free

equilibrium x0 = 0 is unstable. Here h1 = 1, β1(x) = λx(1−x), h2 =−1, β2(x) = γx.
We assume that λ > γ , i.e. R0 > 1. As the reader can easily verify, Theorem

4.2.17 applies to this situation, and now V is the minimal value of the following
control problem. With the notations of Section A.6 below, we are in the situation
d = 1, k= 2, β1(x) = λx(1−x), β2(x) = γx, B=

(
1 −1

)
. The identity (A.6.1) reads

here
λxt(1− xt)(1− ept )+ γxt(1− e−pt ) = 0.

Hence either pt = 0, or else pt = log γ
λ (1−xt )

. It is easy to convince oneself that
pt = 0 does not produce a control which does the wished job. Hence pt = log γ

λ (1−xt )
,

û1(t) = ept β1(xt) = γxt , û2(t) = e−pt β2(xt) = λxt(1− xt). The optimal trajectory
reads

ẋt = γxt −λxt(1− xt). (4.2.25)

From the right-hand side of the identity (A.6.2),

V =
∫ T̂

0
[γxt −λxt(1− xt)] log

γ
λ (1− xt)

dt

=
∫ T̂

0
log

γ
λ (1− xt)

ẋtdt

=
∫ λ−γ

λ

0
log

γ
λ (1− x)

dx

= log
λ
γ
−1+

γ
λ
.
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Finally

Proposition 4.2.29. We have the identities

V = logR0−1+R−1
0 , eNV = RN

0 e
−N(R0−1)/R0 .

Combining this result with Theorem 4.2.17 adapted to the SIS model yields the
following.

Corollary 4.2.30. Suppose that R0 > 1 and define

TN,z
Ext = inf{t > 0, ZN,z

t = 0}.

Then for any 0< z≤ 1, and c> 1,

lim
N→∞

P
(
(R0/c)N e−N(R0−1)/R0 < TN,z

Ext < (cR0)
N e−N(R0−1)/R0

)
= 1,

and (R0/c)N e−N(R0−1)/R0 ≤ E(TN,z
Ext )≤ (cR0)

N e−N(R0−1)/R0

for N large enough.

Remark 4.2.31. In fact, the pair (û1(t), û2(t)) is not an optimal control for the above
control problem. Such an optimal control does not exist! The optimal trajectory,
which is the original ODE time reversed, would take an infinite time to leave x∗, and
an infinite time to reach 0. However, our (û1(t), û2(t)) is the limit of a minimizing
sequence obtained by choosing a suboptimal control to drive the system from x∗ to
x∗ − δ , then the optimal control to drive the system from x∗ − δ to δ , and finally
a suboptimal control to drive the system from δ to 0. log λ

γ − 1+ γ
λ is indeed the

minimal cost. Note that T̂ =+∞.

4.2.7 Time of Extinction in the SIR Model with Demography

We now turn to the SIR model with demography, which is the model which has
been formally presented in Example 2.2.2, but where we let ν = +∞ (we suppress
the stage E between S and I), and γ = 0 (there is no loss of immunity). The limiting
ODE reads

ẋt = λxtyt − γxt −µxt ,
ẏt =−λxtyt +µ−µyt .

We assume that λ > γ + µ , in which case there is a unique stable endemic equi-
librium, namely z∗ = (x∗,y∗) = ( µ

γ+µ − µ
λ ,

γ+µ
λ ). The extinction in such a model

has been studied using the Central Limit Theorem for moderate population size in
Section 4.1. We now finally apply Large Deviations to this model. In this model,
ZN
t = (INt ,SNt ) lives in all of R2

+. We note that in the proof of Proposition 4.2.18, the
compactness of the set of possible values for ZN

t has played a crucial role, especially
in the proof of Lemma 4.2.22. However, if we define for each R> 0
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TN,R
Ext = TN

Ext∧σN
R ,

where σR
N = inf{t > 0, INt + SNt ≥ R}, it is clear that we have reduced our situation

to a bounded state space, and the exact same proofs leading to Proposition 4.2.18
and Theorem 4.2.17, which easily adapted to this new situation. Moreover, we have
the

Lemma 4.2.32. As R→ ∞, VR := infz=x+y≥RV (z∗,z)→ ∞.

Proof. We use the Pontryagin maximum principle and refer to the notations in

Section A.6. Here d = 2 and k = 5, B =

(
1 −1 −1 0 0
−1 0 0 1 −1

)
, β1(x,y) = λxy,

β2(x,y) = γx, β3(x,y) = µx, β4(x,y) = µ , β5(x,y) = µy. The forward-backward
ODE system reads

ẋt = λxtytept−qt − (γ +µ)xte−pt , x0 =
µ

γ +µ
− µ

λ

ẏt =−λxtytept−qt +µeqt −µyte−qt , y0 =
γ +µ

λ
ṗt = λyt + γ +µ−λyyept−qt − γe−pt −µe−pt ,

q̇t = λxt +µ− xtept−qt −µe−qt , pT̂ = qT̂ .

Condition (A.6.1) at time T̂ together with the condition pT̂ = qT̂ allows us to con-
clude that

pT̂ = qT̂ = log
(
R+

γ
µ
x
)
.

It is clear that ṗT̂ > q̇T̂ . In fact it is not hard to show that, as long as pt ≥ 0, pt < qt .
However, ṗt ≤ λyt+γ +µ ≤ λR+γ +µ . Let a= 1

2
logR

λR+γ+µ . For any T̂ −a≤ t ≤ T̂ ,
pt ≥ log(R+ γ

µ xT̂ )−
1
2 logR ≥ 1

2 logR > 0. Next we notice that ẋt + ẏt ≤ µeqt . As
long as T̂ − a ≤ t ≤ T̂ , we both have that pt ≤ qt and qt ≥ 0, hence q̇t ≥ 0, and
0 < qt ≤ qT̂ = log

(
R+ γ

µ xT̂
)
. Consequently ẋt + ẏt ≤ µ

(
R+ γ

µ xT̂
)
≤ (γ + µ)R.

Finally, for T̂ −a≤ t ≤ T̂ , xt + yt ≥ R− (γ+µ)R logR
2(λR+γ+µ) ≥

1
2R, for R large enough.

We can now lowed boundVR. We use the expression on the left of (A.6.2) for the
instantaneous cost. We have

VR =
∫ T̂

0

[
λxtyt(1− ept−qt +(pt −qt)ept−qt )+(µ+ γ)xt(1− e−pt − pte−pt )

+µ(1− eqt +qteqt )+µyt(1− e−qt −qte−qt )
]
dt

≥
∫ T̂

T̂−a
µ(xt + yt) inf{1− e−pt − pte−pt ,1− e−qt −qte−qt}dt

≥ µ
8

R logR
λR+µ+ γ

→+∞,

as R→ ∞. '(
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It follows from Corollary 4.2.28 that as soon as VR > V̂ , the probability that ZN

exits the truncated domain through the “extinction boundary” {z1 = 0} goes to 1 as
N → ∞. Also, for fixed N, P(TN

Ext < σN
R )→ 1, as R→ ∞.

Theorem 4.2.33. Let TN,z
Ext denote the extinction time in the N–SIR model with de-

mography starting from zN = [zN]
N . Given η > 0, for all z ∈ R2

+ with z1 > 0,

lim
N→∞

P
(
exp{N(V −η)}< TN,z

Ext < exp{N(V +η)}
)
= 1.

Moreover, for all η > 0, z ∈ R2
+ with z1 > 0 and N large enough,

exp{N(V −η)}≤ E(TN,z
Ext )≤ exp{N(V +η)}.



Appendix

This Appendix presents several mathematical notions, mostly from the theory of
stochastic processes, as well as a couple of notions related to continuity of real-
valued functions, which are used in the previous chapters. Most proofs are given.
Otherwise we refer to existing monographs.

A.1 Branching Processes

We present the basic facts about branching processes, which are useful in these
Notes. We give most of the proofs. Those which are missing can be found in classical
monographs on branching processes, see e.g. Athreya and Ney [3] or Jagers [16],
unless we give a precise reference in the text.

A.1.1 Discrete Time Branching Processes

Consider an ancestor (at generation 0) who has ξ0 children, such that

P(ξ0 = k) = qk, k ≥ 0 and ∑
k≥0

qk = 1.

Define m= E[ξ0] = ∑k≥1 k qk and g(s) = E
[
sξ0
]
.

Each child of the ancestor belongs to generation 1. The i-th of those children has
himself ξ1,i children, where the random variables {ξk,i, k ≥ 0, i ≥ 1} are i.i.d., all
having the same law as ξ0. If we define Xn as the number of individuals in generation
n, we have

Xn+1 =
Xn

∑
i=1

ξn,i.

We have g(0) = q0, g(1) = 1, g′(1) = m, g′(s)> 0, g′′(s)> 0, for all 0≤ s≤ 1 (we
assume that q0 > 0 and q0+q1 < 1). Let us compute the generating function of Xn:

97
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gn(s) = E[sXn ].

gn(s) = E
[
s∑

Xn−1
i=1 ξn−1,i

]

= E
[
E
[
s∑

Xn−1
i=1 ξn−1,i

∣∣∣Xn−1

]]

= E
[
g(s)Xn−1

]

= gn−1 ◦g(s).

If we iterate this argument, we obtain

gn(s) = g◦ · · ·◦g(s),

and also

P(Xn = 0) = g◦n(0)

= g
[
g◦(n−1)(0)

]
.

Hence if zn = P(Xn = 0), zn = g(zn−1), and z1 = q0. We have zn ↑ z∞, where z∞ =

!!f(s)%%%%%%%%%%%%%%%%

%

%

%1%%%%%%%%%%%%%! !

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%0%%%%%%%%%%%%%%%%%%%%%%%%%q%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1%%%%%%%%%%%%%%%%%%%%%%%s%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!!f(s)%%%%%%%%%%%%%%%%

%

1%

%%%%%%%%%%%%%%! !

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%0%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1%%%%%%%%%%%%%%%%%%%%%%%%%s%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Fig. A.1.1 Graphs of g in case m > 1 (left) and in case m ≤ 1 (right). The successive heights of
the dashed line are the successive values of P(Xn = 0).

P(Xn = 0 from some n). The proof of the following Proposition is essentially clear
from Figure A.1.1.
Proposition A.1.1. If m≤ 1, then P(Xn = 0)→ 1 as n→ ∞, and z∞ = 1.

If m > 1, P(Xn = 0)→ z∞ = q as n→ ∞, where q is the smallest solution of the
equation z= g(z).

Note that on the event ∪∞
n=0{Xn = 0}, which has probability one in the first

case, the population goes extinct after a finite number of generations, and the to-
tal progeny is finite.

In the second case, with probability 1− z∞, the branching process does not go
extinct.
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Let us show thatWn = m−n Xn is a martingale.

E(Wn+1|Xn) = m−nE
(
m−1

Xn

∑
1

ξn,i|Xn

)

= m−nXn
=Wn.

One can show thatWn →W a.s. as n→ ∞, and moreover, provided ∑ j≥1 q j j log j <
∞,

E[W ] = 1, and P(W > 0) = P({the branching process does not go extinct}).

In the case ∑ j≥1 q j j log j = ∞, then P(W = 0) = 1.

A.1.2 Continuous Time Branching Processes

We shall consider only binary continuous time branching processes, i.e. where at
most one child is born at a given time. This process starts with a single ancestor
born at time t = 0. This ancestor is characterized by a pair (L0,{N0(t), t ≥ 0}),
where L0 is the life length of the ancestor, and N0(t) is the number of children of
the ancestor born on the time interval [0, t]. We assume that N0(∞) = N0(L0), that is
the ancestor does not give birth to offspring after his death. We now assume that the
individuals are numbered in the order of their birth. To the individual i is attached
a pair (Li,{Ni(t)}), such that the sequence of pairs {(Li,{Ni(t)})}i≥0 is i.i.d. If the
individual i is born at time Bi, the offspring of individual i are born at the jump times
of the process {Ni(t−Bi), Bi ≤ t ≤ Bi+Li}. Note that since Bi depends only upon
the pairs {(Lj,{Nj(t)})}0≤ j<i, Bi and (Li,{Ni(t)}) are independent.

Let Xt denote the number of individuals in the population alive at time t. This
process is Markovian if and only if the law of the pair (Li,Ni(t)) is such that Li and
{Ni(t), t ≥ 0} are independent, Li is an exponential random variable with parameter
d, and Ni(t) is a rate b Poisson process. We first assume that we are in this situation.
We shall denote by Xk

t the number of descendants at time t of k ancestors at time 0.
The branching property implies that {Xk

t , t ≥ 0} is the sum of k independent copies
of {Xt , t ≥ 0}. We have the following result.

Proposition A.1.2. The generating function of the process X is given by

E
(
sX

k
t
)
= ψt(s)k, s ∈ [0,1], k ≥ 1,

where
∂ψt(s)

∂ t
= Φ(ψt(s)), ψ0(s) = s,

and the function Φ is defined by
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Φ(s) = d(1− s)+b(s2− s)
= (b+d)(h(s)− s), s ∈ [0,1],

where h is the generating function of the probability measure d
b+d δ0+ b

d+bδ2.

Proof. The process Xt is a continuous time Z+-valued jump Markov process. De-
note by Q its infinitesimal generator. The non-zero elements of the n-th row of Q
are given by

Qn,m =






nd, if m= n−1,
−n(b+d), if m= n;
nb, if m= n+1.

Define f : N → [0,1] by f (k) = sk, s ∈ [0,1]. Then ψt(s) = Pt f (1) := E[ f (X1
t )]

(we use the unusual notation X1 = X to stress the fact that the process starts from
X0 = 1). It follows from the backward Kolmogorov equation for the process X (see
e.g. Theorem 3.2, Chapter 7 in Pardoux [25]) that

dPt f (1)
dt

= (QPt f )(1)

∂ψt(s)
∂ t

= Q1,0+Q1,1ψt(s)+Q1,2ψt(s)2

= d− (b+d)ψt(s)+bψt(s)2

= Φ(ψt(s)).

'(

Corollary A.1.3. We have

E[Xk
t ] = kert , where r = b−d.

Proof. Differentiating with respect to s the above equation for ψt(s) yields

∂
∂ t

(
∂
∂ s

ψt(s)
)
= Φ ′(ψt(s))

∂
∂ s

ψt(s)

= (b+d)(h′(s)−1)
∂
∂ s

ψt(s).

The last equation at s= 1 yields

d
dt
E[Xt ] = rE[Xt ],

where Xt = X1
t . The result follows for k = 1, and then the general case, since the

mean number of offspring of k ancestors equals k times the mean number of off-
spring of one ancestor. '(

The quantity r is often referred to as the Malthusian parameter. It is the mean
number of births minus the mean number of death per unit time. Another important
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quantity is the mean number of offspring of each individual, which is equal to m=
b/d. The process Xk

t is said to be subcritical if m< 1, i.e. r< 0. In that case Xk
t → 0

in L1(Ω), and it is easy to show that Xk
t = 0 for t large enough. This last conclusion

holds in the critical case (m = 1, i.e. r = 0) as well. In those two cases, the total
progeny is finite a.s. We now study the large time behaviour of Xk

t in the supercritical
case. In the next proposition, we again write Xt for X1

t .

Proposition A.1.4. If m> 1, or equivalently r > 0, there exists a non-negative ran-
dom variable W such that Xt ∼Wert almost surely, as t → ∞. Moreover {W = 0}=
{∃t > 0 such that Xt = 0} and

P(W = 0) = P({∃t > 0 such that Xt = 0}) = d
b
.

Proof. The first part of the result follows readily from the fact that e−rtXt is a posi-
tive martingale, which converges a.s. to a limitW as t → ∞. Moreover it is not hard
to show that supt>0E[e−2rt(Xt)2] < ∞, hence the convergence holds in L1(Ω), so
E[W ] = 1. Now clearly {∃t > 0 s.t. Xt = 0} ⊂ {W = 0}. If we start with k ances-
tors, the limitingW is clearly the sum of k i.i.d. copies ofW when starting with one
ancestor, and Pk(W = 0) = (P1(W = 0))k. It is now easy to deduce that

P1(W = 0|Xt) = P1(W = 0))Xt .

Taking the expectation in this identity and writing q = P1(W = 0), we obtain q =
E[qXt ]. Differentiating that identity at t = 0 and taking advantage of Proposition
A.1.2, we deduce that q solves bq2− (b+d)q+d = 0. Moreover since E(W ) = 1,
q< 1, hence q= d/b. Finally P(Xt = 0) = ψt(0) is the solution of the ODE ẋ(t) =
bx(t)2− (b+ d)x(t)+ d, x(0) = 0. It is clear that as t → ∞, ψt(0) increases to the
smallest solution of the equation bs2− (b+d)s+d = 0, again d/b. '(

We now consider non-Markovian continuous time binary branching processes.
The non-Markovian continuous time branching processes which we have described
at the beginning of this section are called Crump–Mode–Jagers processes. Now the
law of the pairs (Li,{Ni(t)}) can be quite general. For the application to epidemics
models, we can consider the case where Li and {Ni(t)} are independent, Ni being a
Poisson process, but the law of Li is no longer exponential. We denote again by m=
E[N0(L0)] the mean number of offspring of each individual. Of course, the process is
subcritical, critical, or supercritical according as m< 1, m= 1 or m> 1. We denote
again by Xt the number of individuals alive at time t. We define F(t) = E[N(t)]
and G(t) = P(L ≤ t). We assume that F is non-lattice, and F(0+) < 1. Doney [10]
showed the following two results.

Proposition A.1.5. If 1< m< ∞, then there exists a unique r > 0 such that
∫ ∞

0
e−rtF(dt) = 1

and E[Xt ]∼ aert , where
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0< a=
∫ ∞
0 (1−G(t))e−rtdt
∫ ∞
0 te−rtF(dt)

< ∞.

Again r is called the Malthusian parameter. In the next statement, we use the
notation

Y =
∫ ∞

0
e−rtN(dt).

It is clear that
E[Y ] =

∫ ∞

0
e−rtF(dt) = 1.

Theorem A.1.6. Suppose that 1< m< ∞. Then, as t → ∞

Xt
E[Xt ]

→W in law.

W is not identically 0 if and only if E[Y log(Y )] < ∞, in which case E[W ] = 1 and
P(W = 0) = P({∃t > 0 s.t. Xt = 0}). Moreover, the law of W has an atom at 0 and
is absolutely continuous on (0,∞).

A.2 The Poisson Process and Poisson Point Process

The Poisson process is central in this whole volume. Let λ > 0 be given. A rate λ
Poisson (counting) process is defined as

Pt = sup{k ≥ 1, Tk ≤ t},

where 0= T0 < T1 < T2 < · · ·< Tk < · · ·< ∞, the random variables {Tk−Tk−1, k≥
1} being independent and identically distributed, each following the law Exp(λ ).
We have

Proposition A.2.1. For all n ≥ 1, 0 < t1 < t2 < · · · < tn, the random variables
Pt1 ,Pt2 − Pt1 , . . . ,Ptn − Ptn−1 are independent, and for all 1 ≤ k ≤ n, Ptk − Ptk−1 ∼
Poi[λ (tk− tk−1)].

Proof. Let us first prove that for all t,s> 0,

P(Pt+s−Pt = 0|Pt = k,T1,T2, . . . ,Tk) = exp(−λ s).

Indeed

P(Pt+s−Pt = 0|Pt = k,T1,T2, . . . ,Tk)
= P(Tk+1 > t+ s|Pt = k,Tk)
= P(Tk+1−Tk > t+ s−Tk|Tk+1−Tk > t−Tk > 0)
= P(Tk+1−Tk > s)
= exp(−λ s).
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Let now n ≥ 1. For 1 ≤ i ≤ n, we define Xn,i = 1{Pt+is/n−Pt+(i−1)s/n≥1}, and finally
Sn = Xn,1+Xn,2+ · · ·+Xn,n. It follows from the first part of the proof that condition-
ally upon σ{Pr, 0 ≤ r ≤ t}, the random variables Xn,1,Xn,2, . . . ,Xn,n are i.i.d., each
Bernoulli with parameter 1− e−λ s/n. Then conditionally upon σ{Pr, 0 ≤ r ≤ t},
Sn is binomial with parameters (n,1− e−λ s/n). But Sn → Pt+s −Pt a.s. as n → ∞,
while its conditional law given σ{Pr, 0 ≤ r ≤ t} converges towards the Poisson
distribution with parameter λ s, according to the following lemma. The proposition
follows. '(

We have used the following well-known result. Recall the notation Bin(n, p) for
the binomial law with parameters n and p, where n≥ 1 and 0< p< 1.

Lemma A.2.2. For all n≥ 1, let Un be a Bin(n, pn) random variable. If npn → λ as
n→ ∞, with λ > 0, then Un converges in law towards Poi(λ ).

A Poisson process will be called standard if its rate is 1. If P is a standard Poisson
process, then {P(λ t), t ≥ 0} is a rate λ Poisson process.

We will also use the following

Exercise A.2.3. Let {Pt , t ≥ 0} be a rate λ Poisson process, and {Tk, k ≥ 1} the
random points of this Poisson process, i.e. for all t > 0, Pt = sup{k ≥ 1, Tk ≤ t}.
Let 0 < p < 1. Suppose that each Tk is selected with probability p, not selected
with probability 1− p, independently from the others. Let P′

t denote the number of
selected points on the interval [0, t]. Then {P′

t , t ≥ 0} is a rate λ p Poisson process.

A rate λ Poisson process (λ > 0) is a counting process {Rt , t ≥ 0} such that
Rt −λ t is a martingale. Let {P(t), t ≥ 0} be a standard Poisson process (i.e. with
rate 1). Then P(λ t)−λ t is martingale, and it is not hard to show that {P(λ t), t ≥ 0}
is a rate λ Poisson process. Let now {λ (t), t ≥ 0} be a measurable and locally
integrable R+-valued function. Then the process {Rt := P

(∫ t
0 λ (s)ds

)
, t ≥ 0} is

called a rate λ (t) Poisson process. Clearly Rt −
∫ t
0 λ (s)ds is a martingale.

We now want to consider the case where λ is random. For that purpose, it is
convenient to give an alternative definition of the above process Rt .

Consider a standard Poisson random measure Q on R+
2 , which is defined as fol-

lows. M is the counting process associated to a random cloud of points in R2
+. One

way to construct that cloud of points is as follows. We can consider R2
+ = ∪∞

i=1Ai,
where the Ai’s are disjoint squares with Lebesgue measure 1. Let Ki, i ≥ 1 be i.i.d.
mean one Poisson random variables. Let {Xi

j, j ≥ 1, i≥ 1} be independent random
points of R2

+, which are such that for any i≥ 1, the Xi
j’s are uniformly distributed in

Ai. Then

Q(dx) =
∞

∑
i=1

Ki

∑
j=1

δXi
j
(dx).

λ (t) denoting a positive-valued measurable function, the above {Rt , t ≥ 0} has the
same law as

Rt =
∫ t

0

∫ λ (s)

0
Q(ds,du).

Now let {λ (t), t ≥ 0} be an R+-valued stochastic process, which is assumed to
be predictable, in the following sense. Let for t ≥ 0,
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Ft = σ{Q(A), A Borel subset of [0, t]×R+},

and consider the σ -algebra of subset of [0,∞)×Ω generated by the subsets of the
form 1(s,t]1F , where 0≤ s< t and F ∈Fs, which is called the predictable σ -algebra.
Note that if Xt is Ft -progressively measurable and left-continuous, then it is pre-
dictable. If Xt is progressively measurable and right-continuous, then Xt− is pre-
dictable.

We assume moreover that E
∫ t
0 λ (s)ds< ∞ for all t > 0. We now define the pro-

cess Rt as above:

Rt =
∫ t

0

∫ λ (s)

0
Q(ds,du).

We have (see the next subsection for the definition of a martingale)

Lemma A.2.4. Rt −
∫ t
0 λ (s)ds is a martingale.

Proof. For any δ > 0, let

Rδ
t =

∫ t

0

∫ λ (s−δ )

0
Q(ds,du),

where λ (s) = 0 for s< 0. It is not hard to show that Rδ
t −

∫ t
0 λ (s−δ )ds is a martin-

gale which converges in L1(Ω) to Rt −
∫ t
0 λ (s)ds. Indeed, it suffices to show that if

0< s< t with t− s≤ δ , the restriction of the random measureM to (s, t]× (0,+∞)
is independent of {λ (r−δ ), s< r ≤ t}, which isFs measurable hence

EFs(Rδ
t −Rδ

s ) = EFs

∫ t

s
λ (r−δ )dr.

The result follows. '(

The process Rt is sometimes called “a doubly stochastic Poisson process” or a
Cox process. Of course the increments of Rt are not Poisson distributed. If we let
σ(t) = inf{r > 0,

∫ r
0 λ (s)ds > t}, we have that P(t) := Rσ(t) is a standard Poisson

process, and it is clear that Rt = P
(∫ t

0 λ (s)ds
)
.

In particular, the process which counts the new infections, which appears in Sec-
tion 2.2, takes the form

P
(

λ
N

∫ t

0
I(r)S(r)dr

)
=
∫ t

0

∫ ∞

0
1u≤ λ

N I(r−)S(r−)
Q(ds,du).

If we let Q(ds,du) = Q(ds,du)−ds×du and M(t) := P(t)− t, it is clear that, as a
consequence of the above Lemma, we have

Corollary A.2.5. Define M(·) by

M
(

λ
N

∫ t

0
I(r)S(r)dr

)
=
∫ t

0

∫ ∞

0
1u≤ λ

N I(r−)S(r−)
Q(ds,du)

=
∫ t

0

∫ ∞

0
1u≤ λ

N I(r−)S(r−)
Q(ds,du)− λ

N

∫ t

0
I(r)S(r)dr.
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Then M(t) is a martingale (see Definition A.4.7 below).

Note that
∫ t
0 I(r−)S(r−)dr =

∫ t
0 I(r)S(r)dr since the two integrands coincide dr

a.e. since they differ on each interval [0, t] at most at finitely many points. We use
the second formulation, since it is simpler.

A.3 Cramér’s Theorem for Poisson Random Variables

In order to explain what Large Deviations is about, let us first establish Cramér’s
Theorem, in the particular case of Poisson random variables. Let X1,X2, . . . ,Xn, . . .
be mutually independent Poi(µ) random variables. The Law of Large Numbers tells
us that

1
N

N

∑
i=1

Xi → µ a.s. as N → ∞.

Let us first define, for X ∼ Poi(µ) the logarithm of its Laplace transform

Λ(λ ) = logE[exp(λX)] = µ(eλ −1),

and the Fenchel–Legendre transform of the latter

Λ ∗(x) = sup
λ∈R

{λx−Λ(λ )}= x log
(
x
µ

)
− x+µ.

Note that the minimum of Λ ∗ is achieved at x= µ , and Λ ∗ is zero at that point.
Let νN denote the law of the random variable 1

N ∑N
i=1Xi. We can now state

Cramér’s theorem.

Theorem A.3.1. Let F ⊂ R be a closed set.

For any N ≥ 1, νN(F)≤ exp
(
−N inf

x∈F
Λ ∗(x)

)
.

Hence limsup
N→∞

1
N
logνN(F)≤− inf

x∈F
Λ ∗(x).

Let G⊂ R be an open set.

For any N ≥ 1, νN(G)≥ exp
(
−N inf

x∈G
Λ ∗(x)

)
.

Hence liminf
N→∞

1
N
logνN(G)≥− inf

x∈G
Λ ∗(x).

Proof. FIRST STEP. PROOF OF THE UPPER BOUND Let X1,X2, . . . ,Xn, . . . be mutu-
ally independent Poi(µ) random variables. For σ > µ , we want to estimate

P
(

1
N

N

∑
i=1

Xi ≥ σ

)
,
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which is the probability of a Large Deviation from the LLN, since we know that for
large N, 1

N ∑N
i=1Xi C µ .

For any λ > 0, using Chebycheff’s inequality,

P
(

1
N

N

∑
i=1

Xi ≥ σ

)
= P

(
exp

{
λ

(
N

∑
i=1

Xi−Nσ

)}
≥ 1

)

≤ Eexp

{
λ

(
N

∑
i=1

Xi−Nσ

)}

= exp [−N(λσ −Λ(λ )] .

The best possible upper bound is then (since with σ > µ , Λ ∗(σ) is obtained by
taking the supremum over λ > 0)

P
(

1
N

N

∑
i=1

Xi ≥ σ

)
≤ e−NΛ∗(σ)

= exp
[
−N

(
σ log

(
σ
µ

)
−σ +µ

)]
.

Similarly, if σ < µ , for any λ < 0,

P
(

1
N

N

∑
i=1

Xi ≤ σ

)
≤ Eexp

{
λ

(
N

∑
i=1

Xi−Nσ

)}

= exp [−N(λσ −Λ(λ )] .

Since with σ < µ , Λ ∗(σ) is obtained by taking the supremum over λ < 0, the above
computation leads again to

P
(

1
N

N

∑
i=1

Xi ≤ σ

)
≤ exp

[
−N

(
σ log

(
σ
µ

)
−σ +µ

)]
.

It is not hard to see that the upper bound follows from the two above estimates.

SECOND STEP. PROOF OF THE LOWER BOUND For any δ > 0,

νN((−δ ,δ ))≥ νN({0}) = e−Nµ , hence
1
N
logνN((−δ ,δ ))≥−µ =−Λ ∗(0).

Since transforming X into Y = X − x results in Λ and Λ ∗ being transformed into
ΛY (λ ) = Λ(λ )−λx and Λ ∗

Y (·) = Λ ∗(·+ x), the above yields that for all x> 0,

1
N
logνN((x−δ ,x+δ ))≥−Λ ∗(x).

The lower bound follows readily. '(
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A.4 Martingales

A.4.1 Martingales in Discrete Time

(Ω ,F ,P) being our standing probability space, let be given an increasing sequence
{Fn, n≥ 0} of sub-σ -algebras ofF .

Definition A.4.1. A sequence {Xn, n≥ 0} of random variables is called a martingale
if

1. For all n≥ 0, Xn isFn-measurable and integrable,
2. For all n≥ 0, E(Xn+1|Fn) = Xn a. s.

A sub-martingale is a sequence which satisfies the first condition and
E(Xn+1|Fn)≥ Xn. A super-martingale is a sequence which satisfies the first condi-
tion and E(Xn+1|Fn)≤ Xn.

It follows readily from Jensen’s inequality for conditional expectations the

Proposition A.4.2. If {Xn, n≥ 0} is a martingale, and ϕ :R→R is a convex func-
tion such that ϕ(Xn) is integrable for all n ≥ 0, then {ϕ(Xn), n ≥ 0} is a sub-
martingale.

We shall need the notion of stopping time

Definition A.4.3. A stopping time τ is an Z+ ∪ {+∞}-valued random variable
which satisfies {τ = n} ∈Fn, for all n≥ 0.

We also let

Fτ = {B ∈F , B∩{τ = n} ∈Fn, ∀n ∈ Z+}.

We have Doob’s optional sampling theorem:

Theorem A.4.4. If {Xn, n≥ 0} is a martingale (resp. a sub-martingale), and τ1, τ2
two stopping times s.t. τ1 ≤ τ2 ≤ N a.s., then Xτi is Fτi measurable and integrable,
i= 1,2, and moreover

E(Xτ2 |Fτ1) = Xτ1
(resp. E(Xτ2 |Fτ1)≥ Xτ1).

Proof. For all A ∈B, n≥ 0,

{Xτi ∈ A}∩{τi = n}= {Xn ∈ A}∩{τi = n} ∈Fn,

and moreover

|Xτi |≤
N

∑
k=1

|Xk|,

which establishes the first part of the statement.
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Let A ∈Fτ1 . Then

A∩{τ1 < k ≤ τ2}= A∩{τ1 ≤ k−1}∩{τ2 ≤ k−1}c ∈Fk−1.

Indeed, we have

A∩{τ1 ≤ k−1}= ∪k−1
j=1A∩{τ1 = j} ∈Fk−1, and {τ2 ≤ k−1}c ∈Fk−1.

Let ∆k = Xk−Xk−1. We have, with A ∈Fτ1 ,

∫

A
(Xτ2 −Xτ1)dP=

∫

A

n

∑
k=1

1{τ1<k≤τ2}∆kdP

=
n

∑
k=1

∫

A∩{τ1<k≤τ2}
∆kdP

= 0

or else ≥ 0, depending upon whether {Xn, n ≥ 0} is a martingale or a sub-
martingale. '(

We have a first Doob’s inequality

Proposition A.4.5. If X1, . . . ,Xn is a sub-martingale, then for all α > 0,

P
(
max
1≤i≤n

Xi ≥ α
)
≤ 1

α
E(X+

n ).

Proof.Define the stopping time τ = inf{0≤ k≤ n, Xk ≥α} and letMk =max1≤i≤k Xi.
We have

{Mn ≥ α}∩{τ ≤ k}= {Mk ≥ α} ∈Fk.

Hence {Mn ≥ α} ∈Fτ . From the optional sampling Theorem,

αP(Mn ≥ α)≤
∫

{Mn≥α}
XτdP

≤
∫

{Mn≥α}
XndP

≤
∫

{Mn≥α}
X+
n dP

≤ E(X+
n ). '(

We have finally a second Doob’s inequality

Proposition A.4.6. If M1, . . . ,Mn is a martingale, then

E
[

sup
0≤k≤n

|Mk|2
]
≤ 4E

[
|Mn|2

]
.

Proof. Let Xk = |Mk|. From Proposition A.4.2, X1, . . . ,Xn is a sub-martingale. It fol-
lows from the proof of Proposition A.4.5 that, with the notation X∗

k = sup0≤k≤n Xk,
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P(X∗
n > λ )≤ 1

λ
E
(
Xn1X∗

n>λ
)
.

Consequently
∫ ∞

0
λP(X∗

n > λ )dλ ≤
∫ ∞

0
E
(
Xn1X∗

n>λ
)
dλ

E
(∫ X∗

n

0
λdλ

)
≤ E

(
Xn
∫ X∗

n

0
dλ
)

1
2
E
[
|X∗

n |2
]
≤ E(XnX∗

n )

≤
√
E(|Xn|2)

√
E(|X∗

n |2),

from which the result follows. '(

A.4.2 Martingales in Continuous Time

We are now given an increasing collection {Ft , t ≥ 0} of sub-σ -algebras in contin-
uous time.

Definition A.4.7. A process {Xt , t ≥ 0} is called a martingale if

1. for all t ≥ 0, Xt isFt -measurable and integrable;
2. for all 0≤ s< t, E(Xt |Fs) = Xs a. s.

A sub-martingale is a process which satisfies the first condition and E(Xt |Fs) ≥ Xs.
A super-martingale is a process which satisfies the first condition and E(Xt |Fs) ≤
Xs.

Suppose {Mt , t ≥ 0} is a right-continuous martingale. For any n ≥ 1, 0 = t0 <
t1 < · · · < tn, (Mt0 ,Mt1 , . . . ,Mtn) is a discrete time martingale, to which Proposition
A.4.6 applies. Since

sup
0≤s≤t

|Ms|= sup
Partitions of [0,t]

sup
1≤k≤n

|Mtk |,

Proposition A.4.6 implies readily

Proposition A.4.8. If {Mt , t ≥ 0} is a right-continuous martingale,

E
[
sup
0≤s≤t

|Ms|2
]
≤ 4E

[
|Mt |2

]
.

We now establish a particular (essentially obvious) instance of Itô’s formula. Re-
call that an R-valued function of t has locally bounded variations if and only if it is
the difference of an increasing and a decreasing function. This class of functions ex-
cludes all non-zero continuous martingales, e.g. Brownian motion. But all processes
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considered in these Notes, except for the limit in the functional central limit theo-
rem, are locally of bounded variations. Given such a locally bounded variation right-
continuous 1-dimensional process Xt , we define the bracket [X ,X ]t = ∑0≤s≤t |∆Xs|2,
where ∆Xs = Xs−Xs− is the jump of X at time s. It follows from the fact that X has
bounded variation on any compact interval that the set {s ≥ 0, ∆Xs 1= 0} is at most
countable, hence the above sum makes sense. If X and Y are two processes of the
above type, then

[X ,Y ]t = ∑
0≤s≤t

∆Xs∆Ys =
1
2
([X+Y,X+Y ]t − [X ,X ]t − [Y,Y ]t) .

Now we have what we call Itô’s formula. If Xt and Yt are right-continuous and have
left limits at any t, have bounded variations on any compact interval, then for any
t > 0,

XtYt = X0Y0+
∫ t

0
Xs−dYs+

∫ t

0
Ys−dXs+[X ,Y ]t . (A.4.1)

In case all jumps of X and Y are isolated, which is the only situation treated in
these Notes, the result follows clearly by analyzing the evolution of both sides of
the identity between the jumps, and at the jump times. The result in the more general
situation is easily deduced by approximation.

If Mt is a right-continuous R-valued martingale with locally bounded variation,
we define as above its quadratic variation as

[M,M]t = ∑
0≤s≤t

|∆Ms|2,

and 〈M,M〉t as the unique increasing predictable process such that [M,M]t −
〈M,M〉t is a martingale. Note that both M2

t − [M,M]t and M2
t −〈M,M〉t are mar-

tingales. Consequently, we have in particular

Proposition A.4.9. Let Mt be a square–integrable right-continuous R-valued mar-
tingale with finite variation such that M0 = 0. Then for all t > 0,

E
(
M2

t
)
= E

(

∑
0≤s≤t

|∆Ms|2
)
.

A.5 Tightness and Weak Convergence in Path Space

In these Notes we consider continuous time processes with values in Rd . Most of
our processes are discontinuous. Their trajectories belong to the set D([0,+∞);Rd)
of functions which are right continuous and have left limits at any point t ∈ [0,+∞).
It is not very convenient to use the topology of locally uniform convergence on this
set, since we would like for instance the two Heaviside type functions 1[1,+∞)(t) and
1[1+ε,+∞)(t) to be close for ε small. The Skorokhod topology essentially says that
two functions are close if after a time change which is close to the identity, they are
(at least locally) close in the supremum topology. The only weak convergence (i.e.
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convergence in law) results we consider in these Notes are convergence results to-
wards a continuous process. In this case, convergence in the sense of the Skorokhod
topology is equivalent to locally uniform convergence.

Note also that weak convergence of a sequence of processes Xn towards X is
equivalent to the two following facts:

1. The sequence {Xn}n≥1 is tight, as a sequence of random elements of
D([0,+∞);Rd) equipped with the Skorokhod topology.

2. For any k ≥ 1, 0≤ t1 < t2 < · · ·< tk, (Xn
t1 , . . . ,X

n
tk)⇒ (Xt1 , . . . ,Xtk), in the sense

of weak convergence in Rd×k.

If only 2 is satisfied, then one has convergence in the sense of finite-dimensional
distributions.

What do we mean by tightness? A sequence {Xn}n≥1 of random variables with
values in a topological space S is said to be tight if for any ε > 0, there exists a
compact set K ⊂ S such that P(Xn ∈ K)≥ 1− ε for all n≥ 1.

Consider the product XnYn, where Xn and Yn are real-valued. If one of the two se-
quences is tight and the other tends to 0 in probability, then XnYn → 0 in probability.
This easy result is used in the proof of Theorem 2.3.2.

In the proof of Lemma 2.3.4, we use the following argument: a sequence of
continuous time martingalesMn

t satisfyingMn
0 = 0 is tight as soon as the associated

sequence of predictable increasing processes 〈Mn,Mn〉t is C–tight, in the sense that
both it is tight, and any weak limit of a converging sub–sequence is continuous, see
e.g. Theorem VI.4.13 in Jacod and Shiryaev [15]. In the situation of Lemma 2.3.4,
〈Mn,Mn〉t = t which isC–tight, since it does not depend upon n and is continuous.

A.6 Pontryagin’s Maximum Principle

In this section, we present the Pontryagin maximum principle in optimal control,
which is useful in order to compute or give some estimates for the exponent in the
asymptotic evaluation of the time to extinction derived from large deviation theory.
We refer the reader for a more general presentation, proofs and references to Trélat
[37] and Pontryagin et al. [31].

The quantity of interest, denoted by V in Section 4.2.5 and the following pages,
is the value function of an optimal control problem which is of the following type.
x ∈C([0,∞);Rd) solves the controlled ODE

ẋt = But , x0 = x∗,

where B is a d× k matrix, and u ∈ L1([0,∞);Rk
+) is to be chosen together with the

final time T such as to minimize a cost functional

C(u) =
k

∑
j=1

∫ T

0
g(u j(t),β j(xt))dt,
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while the following constraint must be satisfied: xT ∈M1, where M1 is some affine
subspace of Rd . The function g is the one which appears in Section 4.2.2, namely
g(a,b) = a log(a/b)− a+ b, while the β j’s are some mappings from Rd into R+,
which, like the matrix B, depend upon the particular model we consider. Note that
in our case all entries of B are either 1, 0, or −1.

We associate to this optimal control problem a Hamiltonian which takes the form

H(x, p,u) = 〈p,Bu〉−
k

∑
j=1

g(u j,β j(x)),

where p ∈C([0,T ];Rd) is the adjoint state. The next statement constitutes Pontrya-
gin maximum principle, applied to our particular situation.

Theorem A.6.1. If (û, T̂ ) is an optimal pair, then there exists an adjoint state, such
that the following is satisfied

ẋt = Bût , x0 = x∗, xT̂ ∈M1,

ṗt =
k

∑
j=1

[
∇β j(xt)− û j(t)

∇β j(xt)
β j(xt)

]
, pT̂ ⊥M1,

H(xt , pt , ût) = max
v∈Rk

+

H(xt , pt ,v) = 0, 0≤ t ≤ T̂ .

Of course, the first equation could be of the more general form ẋ = f (x,u). The
general form of the adjoint equation reads ṗ = −∇xH. The Hamiltonian is zero at
time T̂ since the final time is not fixed and there is no final cost. The Hamiltonian is
constant along the optimal trajectory because none of the coefficients depends upon
t.

Since u → (B∗p) ju− g(u,β j(x)) is concave, the maximum is the zero of its
derivative if it is non-negative. Hence

û j = e(B
∗p) jβ j(x),

and the two above equations can be written as

ẋt =
k

∑
j=1

e(B
∗pt ) jβ j(xt)h j, ṗt =

k

∑
j=1

(1− e(B
∗pt ) j)∇β j(xt),

and the Hamiltonian along the optimal trajectory reads

H(xt , pt , ût) =
k

∑
j=1

β j(xt)(e(B
∗pt ) j −1) = 0. (A.6.1)

Finally the instantaneous cost takes the form
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k

∑
j=1

(
1−e(B

∗pt ) j+(B∗pt) je(B
∗pt ) j

)
β j(xt) =

k

∑
j=1

(B∗pt) je(B
∗pt ) jβ j(xt), (A.6.2)

where this identity follows from (A.6.1).

A.7 Semi- and Equicontinuity

Let X be a metric space, equipped with a distance d, and f be a mapping from X
into R∪{−∞,∞}.

Definition A.7.1. f is said to be lower (resp. upper) semi-continuous if for any x0 ∈
X ,

liminf
x→x0

f (x)≥ f (x0) (resp. limsup
x→x0

f (x)≤ f (x0)).

Clearly f is continuous if and only if it is both lower and upper semi-continuous.

A lower (resp. upper) semi-continuous (−∞,∞]-valued (resp. [−∞,∞)-valued)
function achieves its minimum (resp. maximum) on a compact subset ofX .

The pointwise supremum (resp. infimum) of a collection of continuous functions
is lower (resp. upper) semi-continuous.

Let now { fi, i ∈ I} be a collection of elements of C(X ) (i.e. of continuous
functions fromX into R), where I is an arbitrary index set.

Definition A.7.2. The collection { fn, n≥ 1} is said to be equicontinuous if for any
x0 ∈ X , supi∈I | fi(x)− fi(x0)| → 0, as x → x0. The same collection is said to be
uniformly equicontinuous if supi∈I supd(x,y)≤δ | fi(x)− fi(y)|→ 0, as δ → 0.

Note that when X is compact, equicontinuity and uniform equicontinuity are
equivalent.

A.8 Solutions to Selected Exercises

Solution to Exercise 1.1.2. R0 = λE(I) = λ/γ = 1.8. The escape probability
from a given under infected individual equals E(e−λ I/N) = γ/(γ + λ/N), since
ψI(−λ/N) = γ/(γ + λ/N) when I ∼ Exp(γ). For λ = 1.8, γ = 1, N = 100 we
get 0.9823.
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Solution to Exercise 1.1.3. For the Reed–Frost epidemic we hence have the same
R0 = λE(I) = 1.8. As for the escape probability we get

P(avoid infection from an infective) = e−λι/N = 0.9822.

The escape probabilities are not identical, but very similar for the two models.

Solution to Exercise 1.2.1. If I ≡ 1, then X ∼ Poi(R0). If I ∼ Exp(1/ι), then X ∼
MixPoi(λ I). So

P(X = k) =
∫ ∞

0
P(X = k|I = s)e−s/ι/ιds= (R0/(R0+1))k(1/(R0+1)),

so X ∼ Geo(p= 1/(R0+1)).

Solution to Exercise 1.2.8. The probability of a minor outbreak corresponds to the
probability of extinction in the approximating branching process. This probability
q was derived in Section A.1 by conditioning on the number k infected in the first
generation, the offspring distribution: if k get infected these all start new indepen-
dent branching processes so the probability that all go extinct equals qk. The general
equation is hence

q=
∞

∑
k=0

qkP(X = k).

The offspring distribution X depends on the infectious period distribution I. Given
that I = s, X has a Poisson distribution with mean λ s, so X ∼MixPoi(λ I). In situa-
tion 2 (cont-time R-F) I ≡ 1 so X ∼ Poi(λ = 1.5). This gives the following equation

q=
∞

∑
k=0

qk
λ ke−λ

k!
= ...= e−R0(1−q) = e−1.5(1−q).

If this equation is solved numerically it gives the result that q= 1−0.583= 0.417.
So for the Reed–Frost case the probability of a major outbreak, equals 0.583.

As for the Markovian SIR, where I ∼ Exp(1) we get

P(X = k) =
∫ ∞

0
P(X = k|I = s) fI(s)ds

=
∫ ∞

0

(λ s)ke−λ s

k!
e−sds= · · ·= 1

1+λ

(
λ

1+λ

)k

i.e. the geometric distribution, which should not come as a surprise (each time, the
event is either infection or recovery, and the latter has probability 1/(λ + 1)). We
then get

q=
∞

∑
k=0

qkP(X = k) = qk
(

λ
λ +1

)k 1
λ +1

=
1

1+(1−q)λ
.
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As a consequence, the probability of a minor outbreak for the Markovian SIR hence
equals q = 1/λ = 1/R0 = 1/1.5 = 0.67. The probability of a major outbreak is
hence only 0.33. The randomness of the infectious period hence reduces the risk for
a major outbreak. It can actually be proven that having a constant infectious period
maximizes the outbreak probability among all distributions of the infectious period.

Solution to Exercise 1.2.9. The exponential growth rate (or decay rate if R < 1)
r is the solution to Equation (1.2.1), where h(s) is the average rate of infectious
contacts s units after infection: h(s) = λP(L ≤ s ≤ L+ I). For the Markovian SIR
(for which L≡ 0 and I ∼ Exp(γ = 1/ι)) we hence have h(s) = λe−s/ι = 1.5e−s, and
the solution equals r= λ −1/ι For R0 = 1.5 and γ = ι = 1 this gives the exponential
growth rate r = 0.5.

For the continuous time Reed–Frost model we have h(s) = λ1(s<ι). The equa-
tion then becomes

∫ ι
0 e

−rsλds = λ
r (1− e−rι) = 1. The equation is hence r/λ =

1− e−(r/λ )R0 . When R0 = 1.5 we numerically get r/λ = 0.583, so r = 0.874 for
the continuous time Reed–Frost model. This epidemic hence grows quicker than
the Markovian SIR epidemic with the same parameters. The main reason for this
is that even if the two infectious periods have equal mean ι = 1, the average time
of the infectious contacts are not the same. For the Reed–Frost the mean time to a
randomly selected infectious contact (the mean of the generation time distribution)
is of course 0.5 (the generation time distribution is uniform on [0, 1], whereas for
the Markovian SIR it equals 1 (the generation time distribution is Exp(1)).

For the third case, with exponentially distributed latency and infectious periods,
we have h(s) = P(L < s < L+ I) = λν

γ−ν (e−νs− e−γs). Solving
∫ ∞
0 e−rsh(s)ds = 1

gives the solution

r =

√

ν(λ − γ)+
(

γ +ν
2

)2
− γ +ν

2
≈ 0.2247.

Of course, adding a latency period before the infectious period will reduce the
growth rate r of the epidemic.

Solution to Exercise 1.4.2. vc = 1−1/R0 = 0.5. When v= 0.33, zv solves the equa-
tion 1−zv = e−(1−v)R0zv , and the numerical solution equals zv = 0.4544. The over-all
fraction infected is hence (1− v)zv = 0.3029. As for the probability of a major out-
break we have that for the Markovian SIR P(major outbreak) = 1− 1/Rv = 0.25,
since Rv = (1− v)R0 = 0.67 ·2= 1.33.

Solution to Exercise 1.4.3. The new rate at which an infectious individual makes
infectious contacts when v = 33% are vaccinated is λ ′ = λ pv+ λ (1− v) where
p = 0.2 (this is true irrespective of whether the infector was vaccinated or not).
Since the average infectious period equals E(I) = 1 we have Rv = λ ′E(I) = 1.467
(instead of R0 = 2 when no one is vaccinated).
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Solution to Exercise 2.1.2. R0 = 1.5: 0.583, R0 = 3: 0.940, R0 = 15: 1.000 (of
course not exactly, but to this precision).

Solution to Exercise 3.1.1.

p(3)3 = p3+
(
3
2

)
p2(1− p)∗ (1− (1− p)2)

+

(
3
1

)
p(1− p)2 ∗ p2+

(
3
1

)
p(1− p)2 ∗

(
2
1

)
p(1− p)∗ p.

Solution to Exercise 3.3.3 The limiting mean equalsNzwhere z solves 1−z= e−R0z

so with R0 = λι = 1.5 we get z= 0.583 and the limiting mean equals 583 for both
scenarios. The limiting variance of ZN equals N z(1−z)(1+r2(1−z)R20)

(1−(1−z)R0)2
, where r is the

coefficient of variation of the infectious period. For the Reed–Frost case with non-
random infectious period we have r = 0 implying that the limiting variance equals
1737, so the standard deviation equals 41.7, so one can expect that the final size will
be somewhere in the interval 583±80 with about 95% probability. The Markovian
SIR has exponential infectious period which has r = 1 giving a variance of 3367
and standard deviation 58.0. So, the fact that the infectious period is exponential as
compared to fixed makes the standard deviation of the final size increase by close to
50%.

Solution to Exercise 3.4.1. The numerical values are: the final size equals z= 0.583
and R0(1− z) = 0.626< 1.

Solution to Exercise 3.4.2. Computing the two leading terms is equivalent to com-
puting r and r∗. For the Markovian SIR we have r = 0.5 and r∗ = −0.3742, for
the continuous time Reed–Frost we get r = 0.8742 and r∗ = −0.8741, and for the
Markovian SEIR we have r = 0.2247 and r∗ =−0.2089.

Solution to Exercise 4.1.3. Denoting byU(t) the vector of the Gaussian fluctuations

around
(
s(t)
i(t)

)
, deduce from Theorem 2.3.2 that this vector solves the linear SDE

U(t) =
∫ t

0
A(r)U(r)dr+

∫ t

0
C(r)dBr,

where B(t) is a standard five-dimensional Brownian motion and

A(t) = µ
(
−1− R0

ε i(t) −R0
ε s(t)

R0
ε i(t) ε−1(R0s(t)−1)

)
,

C(t) = µ




√µ −

√
µR0

ε s(t)i(t) −
√

µs(t) 0

0
√

µR0
ε s(t)i(t) 0 −

√
µ
ε i(t)



 .
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Show that, as t → ∞,

A(t)→ µ
(

−R0 −1/ε
R0−1 0

)
, C(t)C∗(t)→ µ

R0

(
2R0 −(R0−1)

−(R0−1) 2(R0−1)

)
.

Show that the eigenvalues of A = limt→∞A(t) are complex, as soon as ε < 4/R0,
and that the real parts of those eigenvalues are negative. Conclude from a combina-
tion of Exercise 2.3.8 and Lemma 2.3.7 that the covariance matrix of the stationary
distribution ofU(t) reads

( 1
R0

+ 1
εR20

− 1
R0

− 1
R0

1
R0

− 1
R20

+ ε

)
.

Conclude by taking into account that we expect to have ε << R−1
0 .

Solution to Exercise 4.1.4. The relative length of the infectious period ε affects
the critical community size Nc much more than R0 does, since it is squared in the
approximation of Nc. As an illustration, if the infectious period is doubled (with
half infectivity per unit of time thus keeping R0 fixed) Nc will decrease by a factor
4, whereas if the basic reproduction number is doubled (keeping everything else
fixed) only decreases Nc by a factor close to 2.

Solution to Exercise 4.1.5. There are two effects of this vaccination strategy. The
first is that vaccinated individuals can be ignored, so the relevant population (of
unvaccinated people) is now N(unvacc) = N(1− v). Secondly, since infected individ-
uals have contact with both types of individuals, the rate of having contact with the
population of interest is reduced to λ (1− v) implying that the reproduction number
is changed to Rv = R0(1− v). The critical population size of unvaccinated people
N(unvacc)
c is then simply obtained in the same way, but for these new parameters, so

N(unvacc)
c =

9
ε2(1− 1

Rv )
2Rv

=
9

ε2(1− 1
(1−v)R0

)2(1− v)R0
.

However, a more interesting quantity is the critical community size counting all
individuals, hence also vaccinated. Since N = N(unvacc)(/1−v), the critical commu-
nity size for a population in which a fraction v of the new-born are continuously
being vaccinated is given by

N(v)
c =

9
(1− v)2ε2(1− 1

(1−v)R0
)2R0

.

By numerical studies it is easily shown that the critical community size grows very
big with v, also agreeing with empirical evidence since e.g. measles is no longer en-
demic in England (or anywhere else in the world having high vaccination coverage).
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Introduction

Introducing further structure to the population model underlying an epidemic model
is an important step towards having models which better capture real-world obser-
vations and data. Whilst the homogenously mixing assumption in force in Part I of
this volume facilitates good qualitative predictions of many real-world infectious
diseases, there are clearly many applied situations where it will not be applicable.
There are several possible mechanisms through which such additional structure can
be incorporated into our models. We might classify individuals as being one of a
few different types (capturing for example some age structure of the population),
and allow the distribution of infectious periods to depend on the type of the individ-
ual concerned and infection rates to depend on the types of the individuals involved.
This leads to multitype analogues of the models, methods and results in Part I. One
might want to introduce some sort of network structure to the model to capture pop-
ulation inhomogeneities that manifest in social networks, as in Part III. We consider
structured populations, which include some notion of a ‘local’ contact. This local
structure may try to capture (a simplification of) spatial structure, like animals in
adjacent pens on a farm, or some less explicitly spatial element such as households
or workplaces/schools in a human population.

In this part we work towards developing and analysing a general SIR epidemic
model with two levels of mixing, called local and global, where global means in
accordance with homogeneous mixing and local is quite flexible but permits the
capturing of the aforementioned behaviour where individuals have more frequent
contact with a specific (usually small) subset of the population.

In Chapter 1 we present results about epidemics in homogenously mixing popu-
lations which we shall use in the sequel. Then in Chapter 2 we study the households
model, a prototypical (and historically important) example of the two level structure
that we seek to describe. In Chapter 3 we present the major contribution to this Part,
the development and analysis of the general two-level mixing model and application
to several examples.
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Chapter 1
Single Population Epidemics

In order to determine asymptotic properties of the final outcome of a stochastic SIR
epidemic in a structured population, such as one partitioned into households, as the
population size N → ∞, exact results concerning the final outcome of a stochastic
SIR epidemic in a homogeneously mixing population are required. These results
are concerned with the distribution of the total size (number of initial susceptibles
ultimately infected) and severity (sum of the infectious periods of all infected indi-
viduals) of an epidemic. In the literature, the severity of an epidemic is sometimes
called the area under the trajectory of infectives. In this chapter, we give a self-
contained derivation of these properties for the standard SIR epidemic model (see
Section 1.1), which is a special case of the stochastic SEIR model described in de-
scribed in Section 1.1 of Part I, obtained when the latent periods are all zero.

The main result (Theorem 1.7.2 in Section 1.7) is an expression for the joint
generating function Laplace transform of (S,TA), where S is the number of suscep-
tibles remaining at the end of the epidemic and TA is the severity of the epidemic.
Corresponding results for S and TA separately were first obtained by Ball [6], using
a Wald’s identity; see Section 3.1 of Part I. The joint generating function Laplace
transform of (S,TA) was first derived in Picard and Lefèvre [57], using martingales
and optional stopping. These authors introduced a more general class of epidemics,
namely collective Reed–Frostmodels (see Section 1.7) and exploited a non-standard
family of polynomials, first introduced by Gontcharoff [35], to derive their results in
this setting in an elegant and systematic fashion. In Ball [7], the author showed that
the factorial moments of S are intimately related to the concept of a susceptibility
set (see Section 1.5) and used that connection to give a simple, probabilistically illu-
minating proof of the joint generating function Laplace transform of (S,TA), and of
its extension to include other final state random variables, for collective Reed–Frost
epidemics. (Final state random variables, defined in Ball and O’Neill [18], are sums
over all infected individuals of random quantities associated with an individual.)

The presentation here is based on that in Ball [7] but restricted to the standard
SIR epidemic model. The rest of the chapter is structured as follows. The standard
SIR epidemic is described in Section 1.1 and its random graph representation is
given in Section 1.2. The arguments make considerable use of symmetric sampling
schemes andGontcharoff polynomials, which are introduced in Sections 1.3 and 1.4,
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respectively, together with some of their properties which are required in the sequel.
Susceptibility sets are introduced in Section 1.5 and used in Section 1.6 to derive the
probability generating-function of S. The joint generating function Laplace trans-
form of (S,TA) is derived in Section 1.7. When analysing the final outcome of the
households model, we need to extend these results to a model in which suscepti-
bles can also be infected externally; this is done in Section 1.8. All the results can
be extended to multitype SIR epidemics in which the population is partitioned into
groups that are homogeneous but different from each other (see Picard and Lefèvre
[57] and Ball [7]) but we do not consider that extension in detail here. A result
concerning the mean final size of a multitype SIR epidemic model, required for the
analysis of vaccination schemes in the households model in Section 2.4, is given in
Section 1.9.

1.1 Standard SIR Epidemic Model

In this section we introduce the standard SIR epidemic model, see Andersson and
Britton [4, Chapter 2], for the spread of an SIR epidemic in a closed, homoge-
neously mixing population. (As noted above, the standard SIR epidemic model is a
special case of the stochastic SEIR model described in Section 1.1 of Part I.) Sup-
pose that initially there are n susceptibles and a infectives. The infectious periods
of different infectives are i.i.d. (independent and identically distributed) according
to a non-negative random variable I, having an arbitrary but specified distribution.
An infective recovers at the end of its infectious period, after which it is immune
to further infection. During its infectious period, an infective contacts any given in-
dividual in the population at the points of a homogeneous Poisson process having
rate λ (see Appendix A.2 of Part I). If a contacted individual is susceptible then it
becomes infected and is immediately able to infect other individuals. Thus there is
no exposed (or latent) period. If a contacted individual is infective or recovered then
nothing happens. All infectious periods and Poisson processes governing contacts
are mutually independent. The epidemic ceases when there is no infective present
in the population. We denote this model by En,a(λ , I).

1.2 Random Graph Representation of Epidemic

We now describe a random directed graph representation of the epidemic En,a(λ , I).
Label the n susceptibles 1,2, . . . ,n and the a initial infectives −(a − 1),
−(a − 2), . . . ,0. Let I−(a−1), I−(a−2), . . . , In be i.i.d. copies of I. For
i = −(a−1),−(a−2), . . . ,0, the infectious period of the initial infective i is given
by Ii. For i= 1,2, . . . ,n, if individual i is infected in the epidemic then its infectious
period is given by Ii. Consider two distinct individuals, i and j say. Suppose that i
is infective and j is susceptible. Ignoring for the moment the fact that i has a finite
infectious period, letWi j be the time elapsing after i’s infection before i first makes
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contact with j. Such contacts occur at the points of a Poisson process having rate λ ,
soWi j ∼ Exp(λ ), where Exp(λ ) denotes an exponential random variable with rate
λ (and mean λ−1). Further, when the infectious period of i is taken into account, i
contacts j if and only ifWi j ≤ Ii.

Let V = {−(a−1),−(a−2), . . . ,n} denote the set of all individuals in the pop-
ulation. Let I−(a−1), I−(a−2), . . . , In and Wi j (i, j ∈ V, i 1= j) be independent random
variables, distributed as above. Let GE be the directed random graph with vertex set
V in which for any (i, j) ∈ V 2, with i 1= j, there is a directed edge from i to j if
and only ifWi j ≤ Ii, i.e. if and only if i tries to infect j if i becomes infected. (The
infection fails if j is not susceptible.) For i, j ∈V , write i! j if and only if there is
a chain of directed edges in GE from i to j, with the convention that i! i.

Let I inf
0 = {−(a−1),−(a−2), . . . ,0} and S sus

0 = {1,2, . . . ,n} denote the sets
of vertices in V corresponding respectively to initial infectives and initial suscepti-
bles in En,a(λ , I). (The superscripts inf and sus are not really necessary; we use them
to help distinguish between I and S .) Note that for j ∈S sus

0 , the initial suscepti-
ble j is infected by the epidemic if and only if there exists a chain of directed arcs
from a member of I inf

0 to j, so the set of initial susceptibles who are infected by
the epidemic is given by { j ∈S sus

0 : i! j for some i ∈I inf
0 }. The total size of the

epidemic, i.e. the number of initial susceptibles that are infected by the epidemic is
given by |{ j ∈S sus

0 : i! j for some i ∈I inf
0 }|, where for a set, A say, |A| denotes

the number of elements it contains, i.e. its cardinality.

Remark 1.2.1 (Real time epidemic). The graph GE is sufficient to determine which
susceptibles are infected by the epidemic but it does not contain the temporal de-
velopment of the epidemic. The latter can be recovered by weighting each directed
edge i → j in GE by Wi j. (Note that if Wi j > Ii then the directed edge i → j is not
present in GE .) Suppose that the epidemic starts with the initial infectives all becom-
ing infected at time t = 0. For any chain of directed edges in GE , let the weight of that
chain be given by the sum of the weights of its directed edges. Then, for j ∈S sus

0 ,
if j is infected by the epidemic, its time of infection is given by the minimum of the
weights of all chains from any individual in I inf

0 to j.

Remark 1.2.2 (SEIR model). Suppose that an exposed period is incorporated into
the model. More specifically, suppose that after infection an infected individual has
an exposed period with length distributed according to a random variable L, having
an arbitrary but specified distribution. Let L−(a−1),L−(a−2), . . . ,Ln be i.i.d. copies of
L that are also independent of I−(a−1), I−(a−2), . . . , In and Wi j (i, j ∈ V, i 1= j). For
i = −(a− 1),−(a− 2), . . . ,n, if individual i is infected then its exposed period is
given by Li. The model then becomes the stochastic SEIR model studied in Section
1.1 of Part I. Note that the presence/absence of directed edges in GE is independent
of L−(a−1),L−(a−2), . . . ,Ln, so the distribution of the final outcome of the epidemic
is invariant to the distribution of L and is the same as that of the corresponding SIR
epidemic En,a(λ , I). If desired, the temporal development of the SEIR epidemic can
be obtained by weighting each directed edge i→ j in GE by Li+Wi j.
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Remark 1.2.3 (Constant infectious period). Note that if the infectious period is con-
stant, say P(I = µI) = 1 for some µI ∈ (0,∞) (see the Reed–Frost model discussed
in Section 1.1.2 of Part I), then the directed edges in GE are present indepen-
dently with probability p = 1− e−λµI . Further, in constructing the final outcome
{ j ∈ S sus

0 : i! j for some i ∈ I inf
0 } of the epidemic, for any i 1= j use is made

of at most one of the pair of possible edges i → j and j → i. (For example, if i
infects j then whether or not j tries to infect i is immaterial as i has already been
infected.) It follows that if I is constant then the directed graph can be replaced by
an undirected graph, in which for any pair of vertices (i, j) an edge between them is
present with probability p, independently for different pairs, i.e. by the Erdös–Rényi
random graph ER(N, p) on N = n+a vertices (see Definition 1.2.2 in Part III).

1.3 Symmetric Sampling Procedures

This short section contains a summary of results concerning symmetric sampling
procedures which are required in the sequel, together with proofs. It is based on
Section 1 of Martin-Löf [49].

Consider a fixed finite population N of size N. For definiteness, let N =
{1,2, . . . ,N}. Let X be a random subset of N . We allow the possibility that X is
the empty set /0. In an epidemic setting,N could be the set of susceptible individu-
als at the start of an epidemic and X the subset consisting of those individuals that
are still susceptible at the end of the epidemic.

For A⊆N , let pA = P(X = A) and rA = P(X ⊇ A). For i ∈N , let

χi = 1{i∈X} =

{
1 if i ∈ X ,
0 if i /∈ X .

Note that
X ⊇ A ⇐⇒ i ∈ X for all i ∈ A,

so

rA = E
[

∏
i∈A

χi

]
(A⊆N ).

Similarly, for A⊆N ,

pA = E
[

∏
i∈A

χi ∏
j∈Ac

(1−χ j)

]

= E
[

∏
i∈A

χi ∑
C⊆Ac

∏
j∈C

(−χ j)

]
(1.3.1)

= ∑
A⊆B⊆N

(−1)|B|−|A|rB. (1.3.2)
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A symmetric sampling procedure is one in which, for all A ⊆ N , pA depends
only on the size |A|= a of A. Thus,

pA =
pa(N
a
) ,

where pa = P(|X | = a). It follows that rA also depends only on a, so we can write
rA = ra and, using (1.3.2),

pa =
(
N
a

) N

∑
b=a

(−1)b−a
(
N−a
N−b

)
rb (a= 0,1, . . . ,N). (1.3.3)

The following lemma gives a very simple expression for the factorial moments
of the number of objects sampled in a symmetric sampling procedure. For s,k ∈Z+,
let s[k] = s(s− 1) . . .(s− k+ 1) denote a falling factorial, with the convention that
s[0] = 1.

Lemma 1.3.1. For a symmetric sampling procedure,

E
[
|X |[k]

]
= N[k]rk (k = 0,1, . . .).

Proof. For k = 0,1, . . . ,

E
[
|X |[k]

]
=

N

∑
a=k

a[k]pa

=
N

∑
a=k

a[k]

(
N
a

) N

∑
b=a

(−1)b−a
(
N−a
N−b

)
rb (using (1.3.3))

=
N

∑
b=k

N[b]rb
(b− k)!

b

∑
a=k

(−1)b−a
(
b− k
a− k

)

=
N

∑
b=k

N[b]rb
(b− k)!

b−k

∑
i=0

(−1)b−k−i
(
b− k
i

)

=
N

∑
b=k

N[b]rb
(b− k)!

δbk

= N[k]rk,

as required. (In the above δbk = 1 if b= k and 0 if b 1= k). '(

We now introduce some more notation. Let φI(θ) = E[exp(−θ I)] (θ ≥ 0) be
the Laplace transform of I, so φI(−θ) is the moment-generating function of I. For
k = 0,1, . . . , let qk = φI(kλ ). Thus q0 = 1 and, for k = 1,2, . . . , qk is the probability
that a given infective fails to contact anyone in a given set of k susceptibles during
its infectious period.
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Exercise 1.3.2. In the standard SIR epidemic model En,a(λ , I), let S1 be the number
of susceptibles that escape direct infection from the a initial infectives. Thus in terms
of the random graph GE ,

S1 = |S sus
1 |, whereS sus

1 =S sus
0 \{i ∈S sus

0 : j→ i for at least one j ∈I inf
0 }.

Let Pn,a(k) = P(S1 = k) (k = 0,1, . . .n).

(a) Show that
n

∑
i=k

i[k]Pn,a(k) = n[k]qak (k = 0,1, . . . ,n); (1.3.4)

see the equation after (2.6) in Picard and Lefèvre [57].

The triangular system of linear equations (1.3.4) determine Pn,a(k) (k = 0,1, . . .n)
in reverse order.
(b) Show that

Pn,a(k) =
(
n
k

) n

∑
i=k

(−1)i−k
(
n− k
i− k

)
qak (k = 0,1, . . . ,n). (1.3.5)

1.4 Gontcharoff Polynomials

This section contains some results on Gontcharoff polynomials (Gontcharoff [35])
required in the sequel, together with proofs. It is based on Section 2 of Lefèvre and
Picard [46].

Definition 1.4.1. Given a sequenceU = u0,u1, . . . of real numbers, the Gontcharoff
polynomials attached toU , viz. G0(x |U),G1(x |U), . . . , are defined recursively by

k

∑
i=0

uk−i
i

(k− i)!
Gi(x |U) =

xk

k!
(k = 0,1, . . .). (1.4.1)

Remark 1.4.2. Note that G0(x |U)≡ 1 and Gk(x |U) is a polynomial of degree k in
x.

Property 1.4.3. For i, j = 0,1, . . . ,

G( j)
i (u j |U) = δi j, (1.4.2)

where G( j)
i (x |U) denotes the jth derivative of Gi(x |U). Moreover, this property

characterises the family of polynomials.

Proof. We prove (1.4.2) by induction on i. First note that (1.4.2) holds when i= 0.
Suppose that (1.4.2) holds for i = 0,1, . . . ,k− 1. Clearly G( j)

k (x |U) ≡ 0 for j > k
and, differentiating (1.4.1) k times, G(k)

k (x | U) ≡ 1. Also, for j = 0,1, . . . ,k− 1,
differentiating (1.4.1) j times gives
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G( j)
k (u j |U) =

uk− j
j

(k− j)!
−

k−1

∑
i= j

uk−i
i

(k− i)!
G( j)
i (u j |U)

=
uk− j
j

(k− j)!
−

k−1

∑
i= j

uk−i
i

(k− i)!
δi j (inductive hypothesis)

= 0,

and (1.4.2) holds for i= k. Thus the first part follows by induction.
To prove the second part, let Ri(x) be any polynomial of degree i in x. Then we

may write

Ri(x) =
i

∑
l=0

alGl(x |U), (1.4.3)

so, using (1.4.2),

R( j)
i (u j) =

i

∑
l=0

alδl j = a j ( j = 0,1, . . .). (1.4.4)

Thus, if Ri(x) satisfies (1.4.2), then a j = δi j ( j ∈ Z+), so Ri(x) = Gi(x | U), as
required. '(

Property 1.4.4. For i = 0,1, . . . , any polynomial Ri(x) of degree i in x admits an
Abel expansion

Ri(x) =
i

∑
l=0

R(l)
i (ul)Gl(x |U) (1.4.5)

with respect to the family G0(x |U),G1(x |U), . . . .

Proof. This follows immediately from (1.4.3) and (1.4.4). '(

Property 1.4.5. For 0≤ j ≤ i,

G( j)
i (x |U) = Gi− j(x | E jU),

where E jU is the sequence u j,u j+1, . . . .

Proof. For 0≤ j≤ i,G( j)
i (x |U) is a polynomial of degree i− j, so letting Ri− j(x) =

G( j)
i (x |U) and using (1.4.5) withU replaced by E jU yields

G( j)
i (x |U) =

i− j

∑
l=0

G( j+l)
i (u j+l |U)Gl(x | E jU)

=
i− j

∑
l=0

δi, j+lGl(x | E jU) (using (1.4.2))

= Gi− j(x | E jU).

'(
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Property 1.4.6. For a,b ∈ R,

Gi(ax+b | aU+b) = aiGi(x |U) (i= 0,1, . . .),

where aU+b denotes the sequence au0+b,au1+b, . . . .

Proof. Note that Gi(ax+ b | aU + b) is a polynomial of degree i in x, so letting
Ri(x) = Gi(ax+b | aU+b) and using (1.4.5) gives

Gi(ax+b | aU+b) =
i

∑
l=0

alG(l)
i (aul +b | aU+b)Gl(x |U)

=
i

∑
l=0

alδilGl(x |U) (using (1.4.2))

= aigi(x |U).

'(

1.5 Susceptibility Sets

In this section we introduce the concept of a susceptibility set, which will prove
useful in determining properties of the final outcome of the epidemic En,a(λ , I), and
derive the probability distribution of the size of a susceptibility set, which admits a
simple expression in terms of Gontcharoff polynomials.

Recall from Section 1.2 the random directed graph GE , defined on the vertex set
V . For A⊆V , the susceptibility setSA of A is defined by

SA = { j ∈V \A : j! i for some i ∈ A}, (1.5.1)

with the convention thatS /0 = /0. Note that A⊆SA.

Remark 1.5.1. Recall that I inf
0 and S sus

0 denote respectively the sets of initial in-
fectives and susceptibles. If A⊆S sus

0 , so A consists entirely of initial susceptibles,
then all members of A avoid infection if and only if SA ∩I inf

0 = /0, hence the ter-
minology.

Before proceeding, we need some more notation. Let SA = |SA| denote the size
of SA. Note that, for A ⊆ V , the distribution of SA depends on A only through its
size |A|. Suppose that |V |= N and |A|= j, where 0≤ j ≤ N, and write P jN(SA = l)
for the probability that SA is of size l (l = j, j+ 1, . . . ,N). Recall from page 129
that qk = φI(kλ ) (k = 0,1, . . .).

Lemma 1.5.2. For N = 0,1, . . . and j = 0,1, . . . ,N,

P jN(SA = l) = (N− j)[l− j]Gl− j(1 | E jU)qN−l
l (l = j, j+1, . . . ,N), (1.5.2)

where the sequence U is given by uk = qk (k = 0,1, . . .).
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Proof. Fix 0 ≤ j ≤ N. For this proof only, give the elements of V the labels
1,2, . . . ,N. Let 0 denote the empty set and, for i = 1,2, . . . ,N, let i denote the set
{1,2, . . . , i}. Without loss of generality, take A = j. For l = j, j+1, . . . ,N, by sym-
metry, SA \A is equally likely to be any of the

(N− j
l− j
)
subsets of V \A having size

l− j so, in an obvious notation,

P jN(SA = l) =
(
N− j
l− j

)
P jN(SA = l) (l = j, j+1, . . . ,N). (1.5.3)

For l = j, j+ 1, . . . ,N, the susceptibility set SA can be constructed by first con-
structing the susceptibility set of A among l, to yieldSA,l say, and then constructing
the susceptibility set of SA,l among V . (For A ⊆ B ⊆ V , the susceptibility set of
A among B is given by (1.5.1) with V replaced by B.) In particular, SA = l if and
only if SA,l = l and none of the N− l individuals in N \ l contact any member of
l. The probability of the latter event is qN−l

l , since each of the N− l individuals in
N\ lmust not make contact with a set of l individuals and individuals make contacts
independently. Moreover, the latter event is independent of the eventSA,l = l, again
because individuals make contacts independently. Thus,

P jN(SA = l) = P jl(SA = l)qN−l
l (l = j, j+1, . . . ,N), (1.5.4)

whence, using (1.5.3) and noting that P jl(SA = l) = P jl(SA = l),

P jN(SA = l) =
(
N− j
l− j

)
P jl(SA = l)qN−l

l (l = j, j+1, . . . ,N). (1.5.5)

Now ∑N
l= j PjN(SA = l) = 1 so, using (1.5.5),

N

∑
l= j

(
N− j
l− j

)
P jl(SA = l)qN−l

l = 1,

whence, letting i= l− j,

N− j

∑
i=0

qN− j−i
i+ j

(N− j− i)!
P j, j+i(SA = j+ i)

i!
=

1
(N− j)!

(N = j, j+1, . . .).

Thus, by Definition 1.4.1,

P j, j+i(SA = j+ i) = i!Gi(1 | E jU) ( j, i= 0,1, . . .)

and the lemma follows using (1.5.5). '(

Remark 1.5.3. If I is constant, so the directed edges in GE are present independently,
then if j = a and N = n+a, the distribution of SA−a is the same as that of the total
size of En,a(λ , I), i.e. the number of susceptibles ultimately infected in the epidemic.
If I is not constant, then a similar argument to the proof of Lemma 1.5.2 but for the
total size of the epidemic En,a(λ , I) breaks down at (1.5.4) because the event that
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an epidemic, E ′ say, among a sub-population of susceptibles fully infects that sub
population is not independent of the infectious periods of infectives in E ′.

1.6 Total Size

Consider the epidemic En,a(λ , I) and let S be the number of susceptibles that remain
uninfected at the end of the epidemic.

Lemma 1.6.1. For j = 0,1, . . . ,

E[S[ j]] =
n

∑
i=0

n[i]qn+a−i
i G( j)

i (1 |U), (1.6.1)

where U is given by uk = qk (k = 0,1, . . .).

Proof. Fix j ∈ {1,2, . . . ,n} and let A be any fixed set of j initial susceptibles. The
set of initial susceptibles that remain uninfected at the end of the epidemic is a
symmetric sampling procedure onS sus

0 = {1,2, . . . ,n} so, by Lemma 1.3.1,

E[S[ j]] = n[ j]P(A avoids infection), (1.6.2)

where {A avoids infection} is the event that all members of A avoid infection by the
epidemic. To calculate the probability P(A avoids infection), we condition on the
size SA of the susceptibility set SA of A among the initial susceptibles S sus

0 . Note
that A avoids infection if and only if all a initial infectives fail to contact anyone in
SA (see Remark 1.5.1). Thus, for i= j, j+1, . . . ,n,

P(A avoids infection|SA = i) = qai .

Hence, using (1.6.2),

E[S[ j]] = n[ j]
n

∑
i= j

P j,n(|SA|= i)qai

= n[ j]
n

∑
i= j

(n− j)[i− j]Gi− j(1 | E jU)qn−i+a
i , (1.6.3)

using Lemma 1.5.2 with N = n. Now n[ j](n− j)[i− j] = n[i] and, by Property 1.4.5 on
page 131, Gi− j(1 | E jU) = G( j)

i (1 |U), so (1.6.3) yields

E[S[ j]] =
n

∑
i= j

n[i]G
( j)
i (1 |U)qn+a−i

i

=
n

∑
i=0

n[i]G
( j)
i (1 |U)qn+a−i

i ,
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since G( j)
i (1 | U) = 0 for j > i as Gi(x | U) is a polynomial of degree i in x.

Thus (1.6.1) holds for j = 1,2, . . . ,n.
Recall that u0 = 1. Thus, using Property 1.4.3 on page 130 and n[0] = 1, both

sides of (1.6.1) are 1 when j = 0. Finally, both sides of (1.6.1) are clearly 0 when
j > n. '(

Let fn,a(x) = E[xS] (x ∈ R) denote the probability-generating function of S.

Theorem 1.6.2. For n,a= 0,1, . . . ,

fn,a(x) =
n

∑
i=0

n[i]qn+a−i
i Gi(x |U) (x ∈ R), (1.6.4)

where U is given by uk = qk (k = 0,1, . . .).

Proof. Note that f ( j)n,a (1) = E[S[ j]] ( j = 0,1, . . .) and fn,a(x) is a polynomial of de-
gree n in x. Thus the Taylor expansion of fn,a(x) about x= 1 is exact, so

fn,a(x) =
∞

∑
j=0

(x−1) j

j!
f ( j)n,a (x)

=
∞

∑
j=0

(x−1) j

j!
E[S[ j]]

=
∞

∑
j=0

(x−1) j

j!

n

∑
i=0

n[i]qn+a−i
i G( j)

i (1 |U) (using Lemma 1.6.1)

=
n

∑
i=0

n[i]qn+a−i
i

∞

∑
j=0

(x−1) j

j!
G( j)
i (1 |U)

=
n

∑
i=0

n[i]qn+a−i
i Gi(x |U).

'(

Let Z = n− S be the total size of the epidemic En,a(λ , I), i.e. the number of
initial susceptibles that are infected by the epidemic, and let µn,a =E[Z]. Now µn,a =
n− f (1)n,a (1), so the following corollary follows immediately by differentiating (1.6.4)
and using Property 1.4.5 on page 131.

Corollary 1.6.3. For n,a= 0,1, . . . ,

µn,a = n−
n

∑
i=1

n[i]qn+a−i
i Gi−1(1 |U ′),

where U ′ is given by u′k = qk+1 (k = 0,1, . . .).
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1.7 Total Size and Severity

The severity TA of the epidemic En,a(λ , I) is the sum of the infectious periods of all
individuals infected in it, including the initial infectives. We need some properties of
the joint distribution of (S,TA) when analysing the households model in Section 2.2
below.

Let
φn,a(x,θ) = E

[
xS exp(−θTA)

]
(x ∈ R,θ ≥ 0)

be the joint generating function Laplace transform of (S,TA). We derive φn,a(x,θ) by
first proving a relationship between φn,a(x,θ) and the probability-generating func-
tion of S for an epidemic with modified parameters (see Lemma 1.7.1 below). Some
more notation is required.

Recall that qk = φI(kλ ) is the probability that a given infective fails to infect any-
one in a given set of k susceptibles. Let I denote the infectious period of this infective
and Ak denote the event that it fails to contact anyone in the set of k susceptibles.
Let

qk(θ) = E
[
e−θ I1Ak

]
(k = 1,2, . . . ;θ ≥ 0)

and q0(θ) = φI(θ). Now, given I, the infective infects susceptibles independently,
each with probability 1− e−λ I , so

qk(θ) = E
[
e−θ IP(Ak|I)

]

= E
[
e−θ Ie−kλ I

]

= φI(θ +λk).

Note that the probability-generating function fn,a(x), and hence the distribution
of the total size T , depends on λ and the distribution of I only through the es-
cape probabilities q0,q1, . . . ,qn. It is possible to define a more general SIR epidemic
model, the collective Reed–Frost epidemic (Lefèvre and Picard [46]), via such es-
cape probabilities. In this model infectives behave independently and the set of peo-
ple contacted by a given infective is a symmetric sampling procedure on the individ-
uals in the population, defined through the escape probabilities q0,q1, . . . . The model
is equivalent to the generalized Reed–Frost model defined in Martin-Löf [49]. The
collective Reed–Frost model is more general than the standard SIR epidemic model
as the qks need not take the form qk = φI(kλ ) (k = 0,1, . . .) but note that some
conditions need to be imposed on the qks so that, for each n, q0,q1, . . . ,qn corre-
sponds to a symmetric sampling procedure; specifically, for each n, the pa obtained
by setting N = n and rb = qb (b= 0,1, . . . ,N) in (1.3.3) must satisfy pa ∈ [0,1]. See
Lefèvre and Picard [47] for further discussion.

Note also that all of the above proofs extend immediately to the more general col-
lective Reed–Frost epidemic. Let Q denote the sequence q0,q1, . . . . We now write
the probability-generating function fn,a(x) as fn,a(x;Q) to show explicitly its de-
pendence on Q. The following lemma provides a simple way of deriving the joint
generating function Laplace transform φn,a(x,θ) of (S,TA).
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Lemma 1.7.1. For n,a= 0,1, . . . ,

φn,a(x,θ) = (q0(θ))n+a fn,a(x/q0(θ)); Q̃(θ)) (θ ∈ R+),

where Q̃(θ) is given by q̃k(θ) = qk(θ)/q0(θ) (k = 0,1, . . .).

Proof. The result is seen easily if a= 0, so suppose a> 0 and consider the epidemic
En,a(λ , I). Fix on an initial infective, i∗ say, and let I denote its infectious period. In
view of the random graph GE defined in 1.2, we can construct a realisation of the
final outcome of En,a(λ , I) by first considering the set of susceptibles contacted by
i∗, suppose there are Z0 such susceptibles, and then considering the epidemic among
the remaining n−Z0 susceptibles with a−1+Z0 initial infectives. Thus,

φn,a(x,θ) =
n

∑
k=0

E[e−θ I1{Z0=k}]φn−k,a+k−1(x,θ). (1.7.1)

Let

p(n)k (θ) =
E[e−θ I1{Z0=k}]

q0(θ)
(k = 0,1, . . . ,n).

Note that p(n)k (k = 0,1, . . . ,n) is the probability mass function of the number of
objects that are not sampled in the symmetric sampling scheme induced by q̃k(θ)
(k = 0,1, . . . ,n). Let

ψn,a(x,θ) = φn,a(x,θ)/(q0(θ))n+a (n,a= 0,1, . . .). (1.7.2)

If n = 0 then S = 0 and TA is the sum of a i.i.d. copies of I, so φ0,a(x,θ) =
φI(θ)a, whence ψ0,a(x,θ) = 1. If a = 0 then S = n and TA = 0, so φn,0(x,θ) = xn,
whence ψn,0(x,θ) =

(
x

q0(θ)

)n
. Thus, using (1.7.1), ψn,a(x,θ) (n,a = 0,1, . . . ) are

determined by

ψn,a(x,θ) =
n

∑
k=0

p(n)k (θ)ψn−k,a+k−1(x,θ) (n= 0,1, . . . ;a= 1,2, . . .),(1.7.3)

ψ0,a(x,θ) = 1 (a= 0,1, . . .), (1.7.4)

ψn,0(x,θ) =
(

x
q0(θ)

)n

(n= 0,1, . . .). (1.7.5)

Conditioning on Z0 as above shows that fn,a(x) = fn,a(x; Q̃(0) (n,a = 0,1, . . .)
are determined by

fn,a(x) =
n

∑
k=0

p(n)k (0) fn−k,a+k−1(x) (n= 0,1, . . . ;a= 1,2, . . .), (1.7.6)

f0,a(x) = 1 (a= 0,1, . . .), (1.7.7)
fn,0(x) = xn (n= 0,1, . . .). (1.7.8)

The solutions of (1.7.3)–(1.7.5) and (1.7.6)–(1.7.8) are unique, so
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ψ0,a(x,θ) = fn,a(x/q0(θ); Q̃(θ)),

and the lemma follows using (1.7.2). '(

Theorem 1.7.2. For n,m= a,1, . . . ,

φn,a(x,θ) =
n

∑
i=0

n[i](qi(θ))n+a−iGi(x |U(θ)) (x ∈ R, θ ∈ R+),

where U(θ) is given by uk(θ) = qk(θ) (k = 0,1, . . .).

Proof. By Lemma 1.7.1 and Theorem 1.6.2,

φn,a(x,θ) = (q0(θ))n+a
n

∑
i=0

n[i]

(
qi(θ)
q0(θ)

)n+a−i

Gi

(
x

q0(θ)

∣∣∣∣
1

q0(θ)
U(θ)

)

and the result follows since

Gi

(
x

q0(θ)

∣∣∣∣
1

q0(θ)
U(θ)

)
=

1
(q0(θ))i

Gi(x |U(θ))

by Property 1.4.6 on page 132. '(

1.8 Epidemics with Outside Infection

When we study the final outcome of a major outbreak for the households model in
Section 2.3 below we need the following extension of the standard SIR epidemic
En,a(λ , I), which was introduced by Addy et al. [1] and we denote by Ẽn,a(λ , I,π).
The definition of Ẽn,a(λ , I,π) is the same as En,a(λ , I) except susceptibles can also
be infected externally, i.e. from outside of the population. Specifically, each suscep-
tible avoids external infection during the course of the epidemic independently with
probability π . Let S̃ and T̃A denote respectively the number of initial susceptibles that
ultimately remain uninfected and the severity of Ẽn,a(λ , I,π). (As in Section 1.7, the
severity T̃A includes the infectious period of any initial infective.) Let

φ̃n,a(x,θ) = E
[
xS̃ exp(−θ T̃A)

]
(x ∈ R,θ ≥ 0)

be the joint generating function Laplace transform of (S̃, T̃A).

Theorem 1.8.1. For n,a= 0,1, . . . ,

φ̃n,a(x,θ) =
n

∑
i=0

n[i](qi(θ))n+a−iπ iGi(x |U(θ)) (x ∈ R, θ ∈ R+), (1.8.1)

where U(θ) is given by uk(θ) = qk(θ) (k = 0,1, . . .).

Proof. The final outcome (S̃, T̃A) of Ẽn,a(λ , I,π) can be constructed by first decid-
ing which of the n initial susceptibles are infected externally, suppose there are Y
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of them, and then considering the final outcome of a standard SIR epidemic with
initially a+Y infectives and n−Y susceptibles. Hence, (S̃, T̃A) has the same dis-
tribution as (S,TA) for the epidemic En−Y,a+Y (λ , I), where Y ∼ Bin(n,1− π). (A
formal proof can be obtained by considering the random directed graph GE associ-
ated with En,a(λ , I).) Thus,

φ̃n,a(x,θ) =
n

∑
k=0

(
n
k

)
(1−π)kπn−kφn−k,a+k(x,θ)

=
n

∑
k=0

(
n
k

)
(1−π)kπn−k

n−k

∑
i=0

(n− k)[i]qi(θ)n+a−iGi(x |U(θ)),

by Theorem 1.7.2. Now
(n
k
)
(n−k)[i] = n[i]

(n−i
k
)
, so changing the order of summation

in the above equation yields

φ̃n,a(x,θ) =
n

∑
i=0

n[i]qi(θ)n+a−iπ iGi(x |U(θ))
n−i

∑
k=0

(
n− i
k

)
(1−π)kπn−i−k.

The theorem follows since ∑n−i
k=0
(n−i

k
)
(1−π)kπn−i−k = 1. '(

For computational purposes, it is usually simpler to use the expression for
φ̃n,a(x,θ) given by (1.8.1) in Theorem 1.8.1, rather than the other expressions in
the proof of the theorem. Often, it is the moments of (S̃, T̃A) of that are of interest.
For example, in the households model, the mean of Z̃ = n− S̃ (i.e. the total size of
Ẽn,a(λ , I,π)) is required to determine the fraction of the population that are infected
by a major outbreak (see Section 2.3 below) and the second moments of (Z̃, T̃A) are
required for an associated central limit theorem (cf. Section 3.4.2 below). These can
be obtained by suitable differentiation of (1.8.1), as we now describe for the mean
µ̃n,a = E[Z̃]. Differentiating (1.8.1) partially with respect to x, setting (x,θ) = (1,0)
and using Property 1.4.5 on page 131 yields immediately the following corollary.

Corollary 1.8.2. For n,a= 0,1, . . . ,

µ̃n,a = n−
n

∑
i=1

n[i]qn+a−i
i π iGi−1(1 |U ′),

where U ′ is given by u′k = qk+1 (k = 0,1, . . .).

For n = 0,1, . . . and i = 0,1, . . . ,n, let P̃(n)
i = P(Z̃ = i). The following corollary

gives a triangular system of linear equations for P̃(n)
i (i = 0,1, . . . ,n), first given in

Addy et al. [1]. These equations provide a simple way of computing the total size
distribution of Ẽn,a(λ , I,π), though numerical instability problems can occur even
for moderately sized n.

Corollary 1.8.3. For n= 0,1, . . . ,

k

∑
i=0

(
n− i
k− i

)
P̃(n)
i /

(
qa+i
n−kπ

n−k
)
=

(
n
k

)
(k = 0,1, . . . ,n). (1.8.2)
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Proof. Fix l ∈ {0,1, . . . ,n}. LetU be given by uk = qk (k= 0,1, . . .). Differentiating
both sides of (1.8.1) partially l times with respect to x, setting θ = 0 and noting that
U(0) =U and G(l)

i (x |U) = 0 for i< l, gives

E
[
S̃[l]xS̃−l

]
=

n

∑
i=l

n[i]qn+a−i
i π iG(l)

i (x |U). (1.8.3)

Setting x= ql in (1.8.3) and using Property 1.4.3 on page 130 yields

E
[
S̃[l]qS̃−l

l

]
= n[l]qn+a−l

l π l . (1.8.4)

Note, for j = 0,1, . . . ,n, that S̃= j if and only if Z̃ = n− j. Thus, (1.8.4) implies

n

∑
j=l

P̃(n)
n− j j[l]q

j
l = n[l]π lqn+a

l . (1.8.5)

Substituting i= n− j in (1.8.5) and dividing both sides by l!qn+a
l π l gives

n−l

∑
i=0

P̃(n)
i

(
n− i
l

)
/
(
qa+i
l π l

)
=

(
n
l

)

and (1.8.2) follows on setting k = n− l. '(

Remark 1.8.4 (Computing mean and distribution of total size). Setting π = 1 in
Corollary 1.8.2 yields an expression for the mean total size of the standard SIR
epidemic En,a(λ , I) (cf. Lemma 1.6.1). Setting π = 1 in Corollary 1.8.3 yields a
triangular system of linear equations that determines the total size distribution of
En,a(λ , I) (see, for example, Ball [6, equation (2.5)]). As indicated above, this sys-
tem can be numerically unstable for even moderately sized n. See House et al. [41]
for further discussion and also for alternative methods of computing the total size
distribution.

1.9 Mean Final Size of a Multitype Epidemic

In this appendix we describe the multitype SIR model and the result about its mean
final size that is necessary for the calculation of µnv (and thus Rv) with any vaccine
action model other than all-or-nothing. The result follows from Theorem 3.5 of Ball
[6] or Corollary 4.4 of Picard and Lefèvre [57] (who do not and do, respectively,
frame their results in terms of multivariate Gontcharoff polynomials that we use
here). The model and result are a natural extension of the model in Section 1.1
and Corollary 1.6.3 in Section 1.6. Further explanation of and references relating to
multitype SIR epidemics can be found in Andersson and Britton [4, Chapter 6].

We shall need the following notation, which although a little cumbersome at
first sight allows Proposition 1.9.1 to be written in essentially the same form as
its single-type version Corollary 1.6.3. The symbols Z+ and R+ denote the non-
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negative integers and reals, respectively. For vectors x = (x1,x2, . . . ,xm) and y =
(y1,y2, . . . ,ym) in Rm, we define xy = ∏m

i=1 xiyi and xy = ∏m
i=1 x

yi
i . We write x ≤ y

if xi ≤ yi (i = 1,2, . . . ,m) and x < y if, in addition, xi < yi for at least one i. For
n,k ∈ Z+, the falling factorial n!/(n− k)! is denoted by n[k]. For n,k ∈ Zm

+, we
define n[k] = ∏m

i=1 ni[ki]. For i, j ∈ Zm
+, we write ∑j

k=i for ∑ j1
k1=i1 ∑ j2

k2=i2
. . .∑ jm

km=im .
We take 0 and 1 to be vectors with all entries 0 and 1 respectively.

Consider a single-household SIR epidemic model with m types of individuals,
labelled 1,2, . . . ,m. Suppose that, for i = 1,2, . . . ,m, there are initially ai infectives
and ni susceptibles of type i, and let a = (a1,a2, . . . ,am) and n = (n1,n2, . . . ,nm).
For i = 1,2, . . . ,m, the infectious periods of type-i infectives are each distributed
according to a random variable I(i) with Laplace transform φ (i)

I (θ) = E[e−θ I(i) ].
For i, j = 1,2, . . . ,m, the individual-to-individual infection rate from a given type-i
infective to a given type- j susceptible is λi j. As in Section 1.1, such infections are
governed by Poisson processes, and all Poisson processes and infectious periods are
mutually independent.

Writing Zi for the number of type-i individuals that are recovered at the end of the
epidemic, our aim is to calculate µµµn,a(Λ), the vector with components µn,a,i(Λ) =
E[Zi]. Our expression for µµµn,a(Λ) is given in terms of multivariate Gontcharoff
polynomials, first studied by Lefèvre and Picard [46], which we now define. LetU=
(uj ∈ Rm : j ∈ Zm

+) be a collection of real numbers. The Gontcharoff polynomials
associated with U, denoted (Gk(x |U), k ∈ Zm

+,x ∈Rm), are defined recursively by

k

∑
j=0

k[j]u
k−j
j Gj(x | U) = xk (k≥ 0). (1.9.1)

Note that G0(x | U) ≡ 1 and that Gk(x | U) is a polynomial of degree k1,k2, . . . ,km
in the variables x1,x2, . . . ,xm, respectively, depending only on (uj : j< k).

Proposition 1.9.1. For n,a≥ 0,

µµµn,a = n−
n

∑
i=1

n[i]qn+a−i
i Gi−a(1 | U′),

where U′ is given by u′k = qk+a (k ≥ 0), with the i-th component of the vector
qj = (φ (i)

I (∑m
k=1 λik jk), i= 1,2, . . . ,m) being the probability that a type-i individual

fails to contact a given set of j= ( j1, j2, . . . , jm) individuals of the various types (cf.
the notation for the single-type case in Section 1.5).

As noted above, this result in terms of Gontcharoff polynomials is due to Lefèvre
and Picard [46]. A proof using multitype analogues of the methods of the rest of this
chapter may be obtained from Ball [7]: the proposition above follows from the first
display in the proof of Theorem 4.1 of that paper in precisely the same way as
Corollary 1.6.3 follows from Lemma 1.6.1 in Section 1.6.



Chapter 2
The Households Model

In this chapter we give a short and informal introduction to the households model, a
key example (both historically and in applications) of the kind of two-level mixing
models that are the focus of this Part. It is based mainly on Ball et al. [14] and Ball
and Lyne [13]. Early work on epidemic models incorporating household-like struc-
ture includes Bartoszyński [23] and Becker and Deitz [25], but Ball et al. [14] gives
the first treatment of the households model as discussed in this chapter. We first
motivate and define the model in Section 2.1. In Section 2.2 we look at the early
stages of an epidemic, deriving a threshold parameter which determines whether a
major outbreak affecting a non-negligible proportion of the population is possible
when there are few initial cases and a method of calculating the probability of such
a major outbreak. Then in Section 2.3 we consider the final outcome of a major out-
break, focusing mainly on the expected proportion of the population infected. Lastly
we consider the impact of vaccination on the epidemic, including consideration of
the question of which individuals to target with a limited quantity of vaccine in order
to ‘control’ the epidemic as effectively as possible.

2.1 Introduction and Definition

A natural first step in the direction of including more realistic structure in the pop-
ulation model of homogeneous mixing is to allow for households: mutually exclu-
sive and collectively exhaustive (and usually relatively small) groups of individuals
who interact more frequently with other individuals in the same group than they
do with other members of the population. This applies to human populations, but
similar groupings are also natural in other situations, for example cages/sheds in
poultry farms or pens/fields on sheep/cattle farms. Additionally, there are outbreak
control measures associated with households and similar structures (such as schools
and workplaces) and epidemic data are often collected at the household level (or at
least with some information about household structure). As we shall see, households
models are also reasonably mathematically tractable and so can be quite readily in-
terpreted and understood.
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We define the stochastic SIR households model (or just ‘the households model’
for brevity) as follows. The closed, finite population is partitioned into m house-
holds, of which mn are of size n, for n = 1,2, . . . ,nmax. We therefore have m =
∑nmax
n=1 mn and there are a total of N = ∑nmax

n=1 nmn individuals in the population. We
write αn =mn/m for the proportion of households that are of size n and α̃n = nmn/N
(= nαn/µH , where µH = ∑nmax

i=1 iαi is the mean household size) for the proportion
of individuals that belong to a household of size n. Our results are valid asymp-
totically as the number of households, m, (and the population size N too) tends
to infinity. Note that the quantities above should in principle be indexed by m,
e.g. m(m)

n , α(m)
n , etc.; we avoid this wherever possible, but if necessary use su-

perscript ‘(m)’ in this way for clarity. (Since our results relate to the asymptotic
m → ∞ framework this does not often arise; we think of these quantities as being
equal to their asymptotic values for all m.) We assume for simplicity of exposi-
tion in this less formal chapter that the household size is bounded, i.e. nmax < ∞;
however essentially all the results we state in this chapter carry over to the case
of unbounded household sizes so long as the asymptotic mean household size
µH = limm→∞ µ(m)

H = limm→∞ ∑∞
n=1 nm

(m)
n /N(m) is finite.

The epidemic begins with some individuals becoming infective at time t = 0,
with the rest of the population assumed to be susceptible. The infectious periods of
infective individuals are each distributed according to a random variable I with an
arbitrary but specified distribution. During its infectious period, an infective individ-
ual makes local or within-household contacts with each susceptible in its household
at the points of Poisson processes of rate λL and it also makes global contacts with
each individual in the population at the points of Poisson processes of rate λG/N.
A susceptible that is contacted immediately becomes infective; contacts have no ef-
fect on non-susceptible individuals. An infective becomes recovered at the end of
its infectious period. All Poisson processes and infectious periods are assumed mu-
tually independent. The epidemic ceases when there is no infection remaining in the
population.

Note that the above assumptions about global contact are equivalent to an infec-
tive making global contacts at rate λG, with the individual contacted by each such
contact being chosen independently and uniformly from the population. These as-
sumptions also imply that global contacts may be with an individual in the same
household as the infector, or may even be ‘self-contacts’ where the contact is with
the same individual as made the contact. However both of these happen with prob-
ability tending to 0 in our asymptotic setting.

Our model assumes that there is no latent period where an individual has been
infected but is not yet infectious, i.e. a susceptible becomes infective as soon as it
is contacted. However, our focus will be on the final outcome of the epidemic, so
including a latent period in the model has no effect on our results (cf. Remark 1.2.2
on page 127). In fact the final outcome properties of closed SIR epidemic models
of this kind are invariant to very general assumptions about a latent period. Many of
the results we present depend on the number of initial infectives only very weakly:
so long as there are few such initial infectives then their number and position in
the population relative to each other affects the chance of a large outbreak but not
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whether such an outbreak is possible nor the final outcome in the event that a large
outbreak does occur.

The focus of our analysis is the final outcome of the epidemic: which individuals
become infected during the course of the epidemic and are therefore in the recovered
state when it ceases. The main quantity of interest is the final size, the number (or
proportion) of initially susceptible individuals that are ultimately recovered. We also
examine questions about the final outcome associated with the household structure.
For example, if we expect half the population to become infected then is it likely to
be that every household has roughly half of its residents infected, or might half of
the households be completely infected and the other half unaffected?

Since the model and results in this chapter fit into the more general framework
of Chapter 3 (though there we assume that all households are of the same size to
simplify the exposition), in this chapter we provide only enough details and heuristic
justifications to illustrate the main ideas. This more concrete model provides a good
reference point for the later more general theory.

2.2 Early Stages

If we seek to approximate the early stages of the households model using discrete
generation-based arguments along the lines of Section 1.2 in Part I of this volume,
with a view to calculating R0 and the probability of a major outbreak, then we soon
encounter difficulties because of the household structure. An individual infected
through a household infection and an individual infected through a global infection
have different ‘neighbourhoods’ of susceptibles whom they might infect. Specifi-
cally, the person infected globally will have the remainder of their household sus-
ceptible, but for the individual infected through the household at least one other
individual in their household (their infector) has already been infected and is thus
not susceptible. Whilst it is possible to formulate and analyze an approximating
branching process that reflects this structure, it is rather involved (see Section 3.3.3
below).

A crucial observation in what follows is that although within-household (i.e. lo-
cal) contacts may have non-negligible probability of being with a non-susceptible
individual, in the early stages of the epidemic (when the number of infections is
small compared to m) global contacts will be with a susceptible individual with
probability close to 1. We therefore think of the epidemic as evolving in stages,
first considering the spread within a newly-infected household and then considering
the global contacts made by those infected in the local epidemic. This leads to a
Galton–Watson branching process approximation where the ‘particles’ correspond
to infectious households, from which we can calculate a threshold parameter (which
can be interpreted in terms of household to household spread) and then the proba-
bility of a major outbreak. (Cf. the real-time branching process approximation in
Section 1.2 of Part I of this volume.) We say that a major outbreak occurs if, in the
limit as m→ ∞, infinitely many households are infected. Since the mean household
size is bounded, this is equivalent to infinitely many individuals being infected.
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To specify this branching process of infected households we need to determine its
offspring distribution. To that end, let R be a random variable giving the number of
global contacts emanating from those infected in a within-household epidemic ini-
tiated by a single global contact. (In the early stages, all such global contacts will,
with probability close to 1, be with individuals in previously uninfected households,
and by construction their behaviour is independent of the previously infected house-
holds, so this is the appropriate random variable to act as the offspring distribution of
our branching process.) We first calculate the threshold parameter R∗ = E[R] which
determines whether or not a large outbreak is possible and then the probability gen-
erating function fR(s) = E[sR], from which we can determine the probability of a
large outbreak.

Consider an individual infected globally in the early stages of the epidemic. It
is in a household that is otherwise uninfected (with probability close to 1) and that
household is of size n with probability α̃n, since the newly infected individual is
chosen uniformly from all individuals and the number of individuals in households
of size n is proportional to nαn. Write µn(λL) for the mean size, including the initial
infective, of the within-household epidemic that ensues. Then, since each infective
makes global contacts at rate λG during an infectious period of mean µI = E[I] and
each such contact is with a different individual in a previously uninfected house-
hold, the mean number of global infectious contacts that emanate from this typical
household is

R∗ = λGµI
nmax

∑
n=1

α̃nµn(λL), (2.2.1)

the sum being the (unconditional) mean size of a within-household outbreak. The
conditional mean size µn(λL) can be calculated using Corollary 1.6.3; though unless
n is very small this is only practical to evaluate numerically, not analytically. (We
also note here that we may have R∗ = ∞ if limm→∞ ∑∞

n=1 n2m
(m)
n /N(m) = ∞, i.e. if

the limiting second moment of the household sizes is infinite.)

To compute the probability generating function fR of the random variable R we
start with the same conditioning on the size of the household that the globally in-
fected individual is in: with probability α̃n that size is n. Now, since each infective
in the local epidemic makes global contacts at rate λG throughout its infectious pe-
riod, the total number of such global contacts follows a Poisson distribution with
random mean λGAn, where An is the severity of the within-household epidemic. It
then follows that

E[sRn ] = E[E[sRn | An]] = E[e−λGAn(1−s)] = φn−1,1(1,λG(1− s))

(for all s ∈ [0,1]), where the Laplace transform φn−1,1(1,θ) of the severity An may
be calculated using Theorem 1.7.2. The law of total expectation thus implies that

fR(s) =
nmax

∑
n=1

α̃nE[sRn ] =
nmax

∑
n=1

α̃nφn−1,1(1,λG(1− s)); (2.2.2)
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and standard branching process theory implies that the chance of a large outbreak
in the large population limit is pmaj = 1−σ , where σ is the smallest non-negative
solution of fR(s) = s (see Appendix A.1.1 in Part I of this volume).

Ball et al. [14] extend these ideas to derive expressions for the probability of a
major outbreak with more general initial conditions, and to find some properties of
the number of individuals and households infected in a minor outbreak (in a similar
vein to Section 1.3 in Part I of this volume).

2.3 Final Outcome of a Major Outbreak

We now turn to the final outcome of a major outbreak; beginning with calculating
z, the expected proportion of the population infected by a major outbreak. Under
the assumption that there are few initial infectives, this can be viewed as the prob-
ability that a given initial susceptible, who is in a household that is not initially
infectious, is ultimately infected by the large outbreak. Recall from Section 1.8 the
model Ẽn,a(λ , I,π) for an epidemic amongst a homogeneously mixing population
with the additional feature that each initially susceptible individual is infected from
outside the population, independently and with probability 1−π . We use this to help
calculate z by considering an initially completely susceptible household, determin-
ing which individuals are infected from outside the household by global contacts
at some point during a major outbreak, and then letting those infectives initiate a
within-household epidemic.

Suppose that A is the total severity (i.e. the total length of the infectious periods
of all infected individuals) of a major outbreak. Then for large m we have that A is
approximately NzµI , since each of the Nz infected individuals is infectious for an
average of µI time units. Each initially susceptible individual therefore experiences
global infection a Poisson distributed number of times with mean NzµI ·λGN−1, and
thus avoids global infection with probability

π = exp(−λGzµI). (2.3.1)

To express z in terms of π we follow the argument outlined at the end of the previous
paragraph. A randomly chosen initial susceptible in the population belongs to a
household of size n with probability α̃n and conditional on this it will be ultimately
infected with probability µ̃n,0(λL,π)/n. Here µ̃n,0(λL,π) is the mean final size of
the epidemic Ẽn,0(λL, I,π), which may be computed using Corollary 1.8.2 (again
this is only practical numerically unless n is very small). We therefore have that

z=
nmax

∑
n=1

α̃nµ̃n,0(λL,π)/n. (2.3.2)

Equations (2.3.1) and (2.3.2) implicitly characterise the expected relative final
size of a large outbreak, in a manner that resembles the equation 1−z= e−R0z in the
homogeneously mixing framework. (Indeed this latter equation can be recovered
from (2.3.1) and (2.3.2) by considering the special case where all households are
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of size 1.) Analogously to the homogeneously mixing case, the equations (2.3.1)
and (2.3.2) always have a trivial solution z = 0 (and π = 1), and there is a unique
further solution z ∈ (0,1) (with π ∈ (0,1)) if and only if R∗ > 1. (Cf. Section 3.4.1
below.)

Having found z and therefore π , we can easily determine the within-household
final size distribution, i.e. the distribution of the number of individuals ultimately
infected within each household. In a household of size n this is simply the final size
distribution of Ẽn,0(λL, I,π), which can be computed (usually only numerically) via
Corollary 1.8.3.

It is also possible to establish a Gaussian approximation to the number of initially
susceptible individuals that are ultimately infected in the event of a large outbreak
(as in Section 3.3 in Part I of this volume). Though an interesting and valuable part
of the analysis of the households model, the arguments required to justify it are
rather technical and thus do not fit with the spirit of this chapter. This central limit
theorem is covered in Section 3.4.2 below in the case where all households are of
the same size; see also Section 4 of Ball et al. [14] and Section 3.3 in Part I of this
volume.

2.4 Vaccination

One of the motivations for studying the households model is that in real-life situ-
ations involving human diseases, vaccination strategies can be based on household
structure. In this section we introduce a mathematical framework for determining
how we should allocate a limited supply of vaccine; for example might we be better
to vaccinate everyone in half of all households or half of the individuals in all house-
holds? We work exclusively in the framework where vaccinations are prophylactic;
that is they are administered in advance of any outbreak. Reactive (as opposed to
proactive) measures, for example contact tracing or ring vaccination, are of course
interesting and worthwhile to study (see for example Becker et al. [26] and Ball et
al. [10]). They are however more complex to analyse because their implementation,
and thus their effect, is influenced by the real-time progression of the epidemic,
which our method of analysis does not consider.

2.4.1 Modelling Vaccination

There are two distinct (although related) aspects of vaccination that we need to
specify in order to capture the effect of vaccination in our mathematical model.
These are the allocation and the action of the vaccine; which describe respectively
(i) who gets vaccinated and (ii) what happens to vaccinated individuals in terms
of susceptibility and infectivity. Broadly speaking, the practical approach that we
take is to consider the vaccine action model as fixed (though an appropriate model
will of course vary for different vaccines and/or diseases, and determining or infer-
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ring an appropriate model for a given situation is an interesting question in its own
right) and then determine the allocation strategy that is in some sense optimal. This
may involve, for example, determining a vaccine allocation which will minimise
the amount of vaccine required subject to the requirement of rendering the epidemic
model sub-critical; or minimising some outcome measure (like R∗ or z) subject to a
constraint on the amount of available vaccine. For this reason our focus is primarily
on determining optimal vaccine allocation strategies, with the vaccine action model
assumed fixed.

We use the vaccine action (or vaccine response) model proposed by Becker and
Starczak [28] (see also Halloran et al. [38]), where the response of vaccinated indi-
viduals to the vaccine is described by independent realisations of the generic random
vector (A,B). Here A is the relative susceptibility and B the relative infectivity of the
vaccinated individual; both of these being relative to an unvaccinated individual. We
include this in the epidemic model by multiplying the rates at which that individual
receives infectious contacts by A and, should it become infectious, multiplying rates
at which it makes infectious contacts by B. We usually think of (A,B) as taking val-
ues in [0,1]2 so that vaccination reduces susceptibility and infectiousness, but the
interpretation and analysis is equally valid if (A,B) takes values in [0,∞)2.

For mathematical tractability we usually require that (A,B) can take only a finite
number of values, and we now describe some common vaccine action models that
appear in the literature. The vaccine is called all-or-nothing if
P(A = 0, B = 0) = ε = 1−P(A = 1, B = 1) for some ε ∈ [0,1]; i.e. the vaccine
confers either total protection or no protection at all, independently across differ-
ent vaccinees. The vaccine is called non-random if P(A = a, B = b) = 1 for some
(a,b) ∈ [0,∞)2; here every vaccinated individual has the same response to the vac-
cine. A non-random vaccine is called leaky if b = 1, so the vaccine affects suscep-
tibility but not infectivity. The simplest vaccine action model is the perfect vaccine,
where P(A= 0, B= 0) = 1, so every vaccinated individual is completely protected
from infection. (Here P(A= 0) = 1 is the crucial part for most purposes, but careful
interpretation may required if modelling assumptions make it possible for such a
vaccinated individual to be chosen as an initial infective and B> 0.)

The vaccine allocation model describes how vaccinees are chosen from the pop-
ulation. Following Becker and Starczak [27], we specify this through the quantities
(xnv, n= 1,2, . . . ,nmax, v= 0,1, . . . ,n), where xnv is the proportion of households of
size n in which v individuals are vaccinated. (These quantities must be non-negative
and satisfy ∑n

v=0 xnv = 1 for all n.) By conditioning on the household size of an indi-
vidual chosen uniformly at random from the population and then on the number of
vaccinated individuals in that household we find that the vaccine coverage, defined
as the proportion of the population that is vaccinated, is given by

c=
nmax

∑
n=1

α̃n

n

∑
v=0

xnv
v
n
. (2.4.1)

In the remainder of this section we first investigate the effect of a given vaccine
allocation strategy on the epidemic and then consider optimising these vaccine allo-
cation parameters (xnv) for fixed c.
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2.4.2 Threshold Parameter

We can construct households-based branching process approximations for the early
stages of the epidemic in the same spirit as for the basic model without vaccination.
The ideas are exactly the same but the calculations can be rather more involved,
depending on the details of the vaccine action and allocation. In this section we
just focus on calculating the post-vaccination threshold parameter, which we call
Rv. As a post-vaccination version of R∗, its derivation follows essentially the same
method. Note, however, that one needs to be careful with the precise description
of a generation, particularly with regard to whether an individual/particle in the
branching process corresponds to a newly infected household or a newly contacted
household (who if they are vaccinated might not actually get infected); the former
interpretation is perhaps more intuitively natural but here we prefer the latter since
it results in slightly simpler calculations.

With this in mind, let Rv be the expected number of global contacts made by
those infected in the within-household epidemic initiated by an individual contacted
globally, in the early stages of the outbreak. Conditioning on the size of the house-
hold and then the number of vaccinated individuals in the household that the newly
infected individual is in, we find that

Rv =
nmax

∑
n=1

α̃n

n

∑
v=0

xnv µnv, (2.4.2)

where µnv is the mean number of global infections emanating from a single-
household epidemic initiated by an individual chosen uniformly at random being
contacted globally, in a household in state (n,v) (by which we mean a house-
hold with n individuals, of whom v are vaccinated). Bearing in mind previous
results in this section, all that remains is to calculate the quantities µnv (for n =
1,2, . . . ,nmax, v= 1,2, . . . ,n), which depend on the vaccine action model being con-
sidered. We now calculate these quantities for some specific vaccine action models.

2.4.2.1 All-or-nothing Vaccine Action

Under this model each vaccinated individual becomes completely immune (and
thus plays no part in the epidemic, exactly as an individual in the recovered state)
with probability ε; with the complementary probability 1− ε the vaccine fails
and has no effect (so for the purposes of the epidemic they are indistinguishable
from an unvaccinated individual). We therefore need only explicitly keep track
of those individuals for whom the vaccine fails. A household in state (n,v) has
n− v individuals who are susceptible by virtue of not being vaccinated and up
to v further susceptibles who were vaccinated but for whom the vaccine failed.
Thus, for k ∈ {n− v,n− v+1, . . . ,n}, there are k susceptibles in the household pre-
cisely when n− k of the v vaccines are successful, which happens with probability( v
n−k
)
εn−k(1−ε)v−n+k. In such a household the globally contacted individual is sus-

ceptible, and thus initiates a within-household epidemic, with probability k/n; and



2.4 Vaccination 151

if this is the case then the mean number of global contacts that result from the local
epidemic is µk(λL)λGµI . We therefore have that

µnv =
n

∑
k=n−v

(
v

n− k

)
εn−k(1− ε)v−n+k k

n
µk(λL)λGµI , (2.4.3)

where the µk(λL) terms can be calculated using Corollary 1.6.3 in Section 1.6. Note
that for a perfect vaccine we have ε = 1, so only the k = n− v term in this sum is
non-zero.

2.4.2.2 Non-random Vaccine Action

Now we suppose that all individuals respond identically to the vaccine, with the
positive constants a and b characterising their relative susceptibility and infectiv-
ity, respectively. (Actually a and b are non-negative, but taking them to be strictly
positive eliminates some degeneracies which are straightforward but a bit cumber-
some to deal with.) Describing the local spread of the epidemic within a household
now requires a 2-type SIR epidemic, with the types corresponding to vaccinated and
unvaccinated individuals. We write ΛL for the matrix of local infection rates

ΛL =

(
λL
UU λL

UV
λL
VU λL

VV

)
=

(
λL aλL
bλL abλL

)
,

where, for A,A′ ∈ {U,V} representing the Unvaccinated and Vaccinated types re-
spectively, λL

AA′ is the rate at which a type-A individual makes contact with a given
type-A′ individual in the same household. For a household with ni individuals of
type i we write n = (nU ,nV ) and let µµµn,i(ΛL) = (µn,i, j(ΛL), j =U,V ) be a vector
where the j-th entry is the mean number of type- j individuals that are ultimately in-
fected (including the initial case if applicable) in the local epidemic in a household
of n individuals of the two types, with one of the type-i individuals being the initial
infective.

Now consider a household in state (n,v) that is contacted globally. If the contact
is with a vaccinated (respectively, unvaccinated) individual then with probability a
(respectively, 1) it becomes infected and thus initiates a local epidemic. Should this
local epidemic occur then any individual infected by it makes on average λGµI or
bλGµI global contacts during their infectious period, according as they are unvacci-
nated or vaccinated. Writing n(n,v) = (n− v,v) and suppressing the ΛL dependence
of µn,i, j(ΛL) for brevity, we therefore have that

µnv =
[
n− v
n

(µn(n,v),U,U +bµn(n,v),U,V )+
v
n
a(µn(n,v),V,U +bµn(n,v),V,V )

]
λGµI .

(2.4.4)
The quantities µµµn,i(ΛL) can be calculated using Proposition 1.9.1 in Section 1.9;
which is a multitype analogue of Corollary 1.6.3 in Section 1.6.
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2.4.2.3 General Discrete Vaccine Action

As mentioned in Section 2.4.1, we can handle vaccine action models where the
random vector (A,B) describing vaccine response takes finitely many values. If it
takes k values then each household contains (up to) k+ 1 types of individual; and
conditional on the number of vaccinated individuals the numbers of each type follow
a multinomial distribution. One can then calculate µnv using Proposition 1.9.1 in
Section 1.9. (Note that the non-random case above fits into this framework with
k = 1.)

2.4.3 Vaccination Schemes

We can use equation (2.4.2) to compute the effect of specific vaccination strategies
on the threshold parameter Rv. In particular we can determine whether or not some
proposed vaccination strategy will control a supercritical epidemic, in the sense of
reducing Rv below one so that major outbreaks are not possible. Two (mathemati-
cally) relatively simple allocation strategies involve (i) vaccinating all individuals in
randomly chosen households and (ii) vaccinating randomly chosen individuals. We
first briefly consider these before moving on to optimal schemes. Note that because
of the often highly nonlinear dependence of µnv on v, we do not expect explicit for-
mulae for Rv to be available except in some very simple cases. Numerical evaluation
and exploration of the models is therefore an important tool; see for example Ball
and Lyne [13]. We see later though that there is enough structure to be able to make
some analytical progress in determining optimal vaccination schemes.

Since our analysis of these models is household based, analysis of the random
households strategy is relatively straightforward, since every household is either
completely unvaccinated or completely vaccinated. Vaccinating a proportion c of
all households in the population gives (for all n) xn0 = 1− c, xnn = c and xnv = 0
for v = 1,2, . . . ,n− 1. Substitution into equation (2.4.1) confirms that the overall
coverage is indeed c, and the formula (2.4.2) for Rv simplifies considerably because
many of the summands are zero. Indeed, for a perfect vaccine it is readily seen that
Rv = (1− c)R∗, so when R∗ > 1 the critical vaccination coverage is 1−R−1

∗ ; cf.
equation (1.4.1) in Part I of this volume.

The random individuals strategy is slightly more complex, since now there are
more than two possible ‘vaccination structures’ within a household. Assuming that
we vaccinate a proportion c of individuals chosen uniformly at random from the
population, the number of vaccinated individuals in a household of a given size
follows a binomial distribution, so xnv =

(n
v
)
cv(1− c)n−v. Substitution into equa-

tion (2.4.1) again confirms that the coverage is c (as expected: any other result would
indicate a serious problem with our model and/or calculations).

Now we consider optimal vaccination schemes, which arise naturally in the real-
istic contexts of (i) minimising the amount of vaccination required to ‘control’ the
epidemic in the sense of eliminating the possibility of major outbreaks, or (ii) opti-
mising (interpreted as minimising Rv) the allocation of a limited amount of available
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vaccine. Mathematically these amount to choosing the vaccine allocation parame-
ters (xnv) (for n = 1,2, . . . , v = 0,1, . . . ,n) to either (i) minimise c subject to the
constraint Rv ≤ 1; or (ii) minimise Rv subject to a constraint on c. Since Rv and c are
both linear functions of the decision variables xnv (see equations (2.4.2) and (2.4.1))
and the constraints on the xnv (described in the last paragraph of Section 2.4.1) are
all linear, these are both linear programming problems.

In the linear programming framework it is also possible to compute worst-case
scenarios, for example to determine the ‘worst’ vaccine allocation for a given cov-
erage. Whilst not of direct practical interest this does allow comparison of proposed
or actual vaccine allocation policies with the best-possible and worst-possible cases;
which is helpful for establishing context when interpreting numerical results from
such modelling calculations.

We now outline an analytical approach which allows us to characterise the opti-
mal (and worst possible) vaccine allocation in the households model. It may be of
interest in its own right if household-based transmission is a key driver of infection
for some specific disease; but it is also indicative of the kind of analysis we might
strive for when analysing vaccine allocation in more complex structured models.

The key tool, introduced by Ball and Lyne [13], is to re-write the formula in
equation (2.4.2) for Rv as

Rv =
nmax

∑
n=1

n

∑
v=0

hnvMnv,

were hnv = mnxnv is the number of households of size n that have v occupants vac-
cinated and Mnv = nµnv/N. This representation implies that Mnv can be viewed
as the contribution to Rv of each household in state (n,v). Building on this we
can define (for n = 1,2, . . . ,nmax and v = 0,1, . . . ,n− 1) the gain Gnv = Mnv −
Mn,v+1(≥ 0), which is the reduction in Rv that is achieved by vaccinating one further
individual in a household currently in state (n,v). The gain matrix
G = (Gnv, n = 1,2, . . . ,nmax, v = 0,1, . . . ,n− 1) thus captures the impact (on this
threshold parameter) of vaccinating different numbers of individuals in households
of all possible states. When dealing with specific examples we usually work with
the re-scaled gain matrix G′ with entries G′

nv =NGnv = n(µnv−µn,v+1); partly since
these values are usually of a more practical order of magnitude and partly because
G′
nv does not depend on the population size (and therefore may retain some meaning

in the context of the infinite population size limiting framework that we are working
in).

Interpretation of the gain matrix to reveal optimal vaccination schemes is straight-
forward if Gnv is decreasing in v for every fixed n, representing a diminishing return
on vaccination for successive vaccinations in each household. For determining the
optimal strategy the ordering of the entries of the gain matrix is the crucial feature:
it determines which individuals should be prioritised for vaccination. Consider for
example the gain matrix given in Table 2.4.1, for a model with households only
of sizes 1, 2 and 3. In this example the largest entry is G′

3,0, so the first priority is
to vaccinate a single individual in every household of size 3. This is followed by
vaccinating a second individual in those households of size 3 and then vaccinating
one individual in households of size 2. Finally we vaccinate the final unvaccinated
individual in households of each size, starting with the largest.
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Table 2.4.1 An example of a gain matrix with diminishing returns. Entries of the table are the
scaled gains G′

nv and superscripts indicate the ordering of the entries (decreasing). Model parame-
ters are (αn, n = 1,2,3) = (1,2,3)/6, I ∼ exp(1), λL = 3, λG = 1 and the vaccine action is all or
nothing with success probability ε = 0.7.

n v= 0 1 2
1 0.696

2 1.733 1.015
3 3.111 2.142 1.354

We note here that the diminishing returns structure of the gain matrix (i.e. Gnv
being decreasing in v for every n) that we observe above is a natural situation and
indeed it necessarily obtains in the present modelling framework so long as E[A]< 1
and E[B]< 1. However, examples whereGnv is not decreasing in v do naturally arise
in generalisations of the households model; for example if there is additional cost
associated with vaccinating the first individual in each household (Ball and Lyne
[12, Section 3.5]), if multiple types of individuals are present in the model (Ball et
al. [8, Section 3]), or if the homogeneously mixing framework for global contacts
is replaced by a network model (Ball and Sirl [20, Section 3.4]). In these situations
of non-diminishing returns, the construction of optimal schemes is still possible but
requires rather more care.

An important special case is that of a perfect vaccine, where all vaccinated indi-
viduals are completely immune to infection. In this situation Gnv depends on n and v
only through n−v, the number of susceptible individuals in the household. One can
show that if nµn(λL) is convex (as a function of n) then this function is decreasing
in n− v; and in this case an equalising strategy, where one tries to equalise (as far
as possible) the number of susceptible/unvaccinated individuals in the households,
is optimal (Ball et al. [14, Section 5.2.1]). When the equalising strategy is not op-
timal there are plausible parameter sets where it is near-optimal, but also plausible
parameter values where it is far from being so (see, for example, Keeling and Ross
[44] and the non-random case in Exercise 2.6.3).

2.5 Other Measures of Epidemic Impact

The post-vaccination household-to-household reproduction number Rv is not nec-
essarily a reliable indicator of overall epidemic impact. Whilst Rv quantifies an im-
portant aspect of the early proliferation of infection, infected households, it only
indirectly takes into account how many individuals become infected in each house-
hold. Furthermore, it directly relates to the generation-based proliferation of infec-
tion in the early stages of an outbreak, not any other more direct measure of epi-
demic impact. (See also the discussion of the first paragraph of Section 3.3.3 below,
which discusses several potential shortcomings of a reproduction number like R∗,
and Keeling and Ross [44].)
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It is possible to calculate modified versions of the probability generating function
given by equation (2.2.2) and/or the balance equations (2.3.1) and (2.3.2); in much
the same way as we modified the calculation of R∗ to find Rv. Then we can calculate,
at least numerically, the probability and size of a major outbreak. One might then
aim to optimise these quantities instead of Rv. The resulting implicit equations, how-
ever, do not readily lend themselves to analytical results concerning the behaviour
of their solutions. Nevertheless, the analysis performed above exemplifies the kind
of exploration of these structured population models that can provide insight into
vaccination strategies that one might hope to deploy, or at least to approximate, in a
real-world epidemic planning situation where reliable information is available about
the structure relating to inhomogeneous mixing of individuals in the population.

2.6 Exercises

A useful approach to these exercises, and indeed to much work in this area, is to
complement analytical results with numerical methods. Here numerical methods
include developing simulation code for the underlying stochastic models and nu-
merical routines for calculating threshold parameters, properties of a large or small
outbreak, etc. In addition to facilitating exploration of the behaviour of the model,
these two numerical methods allow fairly reliable error checking: for example, if
empirical estimates of the size of large outbreaks from simulations seem to con-
verge to the approximate size one expects from asymptotic calculations (for a vari-
ety of different parameter values) then one can be fairly confident in the asymptotic
analysis, the numerical implementation of it and the simulation code!

Exercise 2.6.1. Consider a simple version of the households model, with household
size distribution α1 =

2
3 , α2 =

1
3 (and αi = 0 for i= 3,4,5, . . . ) and a fixed infectious

period of length 1.
For this model, calculate

(a) The value of the threshold parameter R∗.
(b) The Laplace transform of the severity of a single-household epidemic with

specified household size, and thus the probability generating function of the
offspring distribution for the branching process approximation of the early
stages of the proliferation of infected households and an equation satisfied by
σ = 1−P(major outbreak).

(c) The system of equations satisfied by the proportion of the population infected
by a large outbreak, z, and the probability that each individual escapes global
infection, π .

(d) The scaled gain matrix G′ = (G′
nv) that results when a perfect vaccine is intro-

duced into this model with infection rates λG = 1.2 and λL = 3; and hence a
description of the optimal vaccine allocation policy.

(e) Determine an optimal vaccine allocation scheme if there is enough vaccine to
cover 0.6 of the population. What is the effect of such a vaccination scheme on
the epidemic?
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Note that all necessary properties of within-household epidemics can be calcu-
lated using results from Chapter 1. However, with such small household sizes it is
possible (and fairly straightforward) to derive them directly from their definitions
and interpretations.

Exercise 2.6.2 (The highly locally infectious case).
Consider a special case of the households model where half of the households are

of size 2 and the other half are of size 3; so (αn, n= 1,2, . . .) satisfies α2 = α3 =
1
2

and αn = 0 for all n 1= 2,3. Also suppose that I ∼ Exp(γ), so that φI(θ) =E[e−θ I ] =
γ/(γ +θ). Assume that λG is fixed, but that the disease is highly locally infectious.
This means that we consider the limit λL → ∞. (This is a version of the model
considered by Becker and Deitz [25].)

(a) State and justify the distribution (that is, the probability mass function) of Z(n),
the final size (amongst the whole household; i.e. including any initial sus-
ceptibles who become infected and the initial infective) of an epidemic in a
household of size n. Hint: think about Z(n) directly/intuitively, not in terms of
Gontcharoff polynomials or other formulas.

(b) Hence (i) state the value of µn(∞) = limλL→∞ µn(λL) and (ii) find a formula for
the threshold parameter R∗ (it should depend on λG and γ only).

(c) Determine mn(θ) = limλL→∞ φn−1,1(1,θ), the Laplace transform of the severity
An of a single-household outbreak in a household of size n with n− 1 initial
susceptibles and 1 initial infective. Hint: look at the definition of severity and
your answer to part (a).

(d) Hence find (i) a formula for fR(s), the probability generating function of the off-
spring distribution for the branching process approximation of the early stages
of the proliferation of infected households, and (ii) an equation satisfied by
σ = 1−P(major outbreak).

(e) For what values of (λG,γ) do we have this model including local infection
supercritical, but the simpler model with global contacts only (which ignores
within-household contacts) subcritical?

Exercise 2.6.3 (Vaccination in the highly locally infectious case). Consider intro-
ducing vaccination in the model of Exercise 2.6.2. Separately for each of the fol-
lowing vaccine action models, (i) determine a formula for the entries of the rescaled
the gain matrix G′, then (ii) taking λG = 2 and γ = 1, find G′ numerically and inter-
pret these results in terms of which ‘types’ of households should be the priority for
vaccination.

(a) A perfect vaccine.
(b) An all-or-nothing vaccine with success probability 1

2 .
(c) A non-random vaccine with a= b= 1/

√
2.

(The latter two vaccine action models are comparable in the sense that they have
the same value of the vaccine efficacy 1−E[AB], which is one possible high-level
measure of vaccine effectiveness; see Becker et al. [24].)

(d) Show that with a leaky vaccine the optimal vaccine allocation concentrates vac-
cination in the largest households.
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Exercise 2.6.4 (Self-isolation of the initial case in a household). Consider the fol-
lowing variant of the households model (which is quite similar to the “all-or-none
case” discussed by Ball et al. [14, Section 5.2.1]) and similar in terms of mean be-
haviour to the approximation defined by Becker and Starczak [27, Equation (2)]).
Suppose that with probability δ ∈ [0,1] the initial case in a household self-identifies
their illness and completely isolates themself, so that they do not infect anyone else
(locally or globally); otherwise (i.e. with probability 1− δ ) the epidemic proceeds
as usual.

(a) Determine a formula for a threshold parameter R∗ = E[R] for this model, where
R is defined as in Section 2.2.

(b) Determine a formula for fR, analogous to (2.2.2). Use this to show that the
chance of a major outbreak is bounded above by the corresponding probability
when δ = 0.



Chapter 3
A General Two-Level Mixing Model

In the households model analysed in Chapter 2, infectives make two types of infec-
tious contacts: local contacts with individuals in their household and global contacts
with individuals chosen uniformly at random from the whole population. This is an
example of an epidemic in a population with two levels of mixing. We now define
and analyse a general model for epidemics among populations that mix in this way.
In Section 3.1, we define a general framework for such models and give a variety
of examples that arise as special cases. In Section 3.2, we define the concepts of
local infectious clump and local susceptibility set, which are crucial in analysing
the early stages and final outcome of an epidemic in Sections 3.3 and 3.4, respec-
tively. Finally, in Section 3.5, we illustrate the general theory by applying it to the
above-mentioned special cases.

The chapter is long and can be read at different levels depending on the inter-
est of the reader. A quick overview of the main results can be obtained by reading
the model definition and special cases in Section 3.1, the definitions of local infec-
tious clumps and susceptibility sets in Section 3.2 and the heuristic accounts of how
they are used to analyse the early stages of an epidemic and the final outcome of
a global epidemic (i.e. one that takes off) in Sections 3.3.2 and 3.4.1, respectively.
The heuristic arguments are made rigorous in Sections 3.3.6 (early stages) and 3.4.2
(final outcome), respectively. These sections may be omitted by a reader who is
not interested in detailed proofs, though the latter also contains a central limit the-
orem for the outcome of a global epidemic. We recommend that the reader reads at
least the above (apart from the rigorous proofs) before turning to the analysis of the
special cases in Section 3.5.

The early stages of an epidemic are analysed using an approximating branch-
ing process of local infectious clumps, which is a natural extension of the house-
holds model branching process of infected households, studied in Section 2.2, to the
more general two-level mixing setting. As with the households model, the offspring
mean of that branching process yields a threshold parameter R∗ for the epidemic
model. Suitable elaboration of that branching process leads to the definition of a
basic reproduction number R0 for the epidemic. The threshold parameter R∗ is not
an individual-based reproduction number, so typically R∗ 1= R0, though R0 is also a
threshold parameter and R∗ takes the critical value one if and only if R0 = 1. The

159© Springer Nature Switzerland AG 2019 
T. Britton, E. Pardoux (eds.), Stochastic Epidemic Models with Inference,  
Lecture Notes in Mathematics 2255, https://doi.org/10.1007/978-3-030-30900-8_7 

https://doi.org/10.1007/978-3-030-30900-8_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30900-8_7&domain=pdf


160 Part II. Chapter 3. A General Two-Level Mixing Model

basic reproduction number R0 is defined in Section 3.3.3 and its relation to the crit-
ical vaccination coverage for uniform vaccination with a perfect vaccine is studied
in Section 3.3.4. A key finding is that the usual formula 1−R−1

0 (cf. equation (1.4.1)
on page 18 in Part I of this volume) yields only a lower bound for the critical vacci-
nation coverage. Altering the time clock of the elaborated branching process enables
the early exponential growth rate for an epidemic that takes off to be calculated; see
Section 3.3.5. Readers interested in R0, vaccination and early exponential growth
rate for specific models should read these sections before studying the special cases
in Section 3.5.

The presentation in Sections 3.3 and 3.4 is deliberately generic, with the aim of
describing key concepts in a model-independent fashion. Thus Section 3.5 consists
mainly of showing how the generic results are used to determine and calculate prop-
erties of epidemics in the various special cases. This is relatively straightforward for
the standard SIR, households and great circle models but requires some further re-
sults for the households-workplaces and network with casual contacts models; see
Exercise 3.5.7 and Lemma 3.5.19, respectively, the proofs of which may be omitted.

3.1 Definition and Examples

Consider a populationN = {1,2, . . . ,N} of N individuals. Let I1, I2, . . . , IN be i.i.d.
copies of a non-negative random variable I, having an arbitrary but specified dis-
tribution; Ii is the length of individual i’s infectious period if i becomes infected.
For i ∈ N , if individual i becomes infected then throughout its infectious period
it makes local infectious contacts with individual j ( j ∈ N \ {i}) at the points of
a Poisson process having rate λL

i j and global infectious contacts, with individuals
chosen uniformly and independently from N , at the points of a Poisson process
having rate λG. If a contacted individual is susceptible then it is immediately able
to infect other individuals. If a contacted individual is infective or recovered then
nothing happens. Thus the model does not include an exposed period but incorpo-
rating an exposed period does not alter the distribution of the final outcome of the
epidemic (cf. Remark 1.2.2 on page 127). An infective recovers at the end of its in-
fectious period and is then immune to further infection. The epidemic is initiated by
a number of individuals becoming infective at time t = 0, with the other individuals
all being susceptible, and ends when there is no infective present if the population.
Explicit assumptions about which individuals are initially infective are made as and
when they are required. All infectious period random variables, all Poisson pro-
cesses governing infective contacts and all uniform samplings for global contacts
are mutually independent. We denote this model by EN .

Note that the model is formulated so that it is possible for an individual to glob-
ally contact itself. This may appear odd but such contacts have no effect and their
inclusion simplifies the analysis of the model. The key point is that the individual to
individual global infection rate is λG/N. We analyse the limiting behaviour of the
model as the population size N → ∞. Observe that the distribution of the number of
global contacts made by a typical infective is independent of N. The limiting results
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hold also if the global contact rate depends on N, say it is λ (N)
G , and λ (N)

G → λG as
N→∞, though some require that the rate of convergence of λ (N)

G to λG is sufficiently
fast. We do not consider that generalisation here and assume that λG is independent
of N, which is sufficient for all practical purposes.

The local infection rates λL
i j (i, j ∈N , i 1= j) reflect the structure of the popula-

tion as the following special cases illustrate.

3.1.1 Standard SIR Model

If there is no local infection (i.e. λL
i j = 0 for all i 1= j) then the epidemic EN is

homogeneously mixing. The model EN then reduces to the standard SIR epidemic
model in Section 1.1 with λ = λG/N.

3.1.2 Households Model

Suppose that the population is partitioned into m households of size n, so N = mn,
and that

λL
i j =

{
λH if i and j belong to the same household,
0 otherwise.

Then EN is the households model analysed in Section 2, but now with the restriction
that the households all have the same size n. We are interested in the asymptotic
situation where m→ ∞ with the household size n held fixed. We treat here just the
case of equal household sizes, as it fits more easily into the general framework for
EN . The analysis can be extended to the case of unequal-sized households, as seen
in Section 2.

3.1.3 Households-workplaces Model

Suppose that the population is partitioned into mH households of size nH and also
into mW workplaces of size nW , so mHnH = mWnW = N. Thus each individual in
the population belongs to precisely one household and precisely one workplace.
Suppose also that

λL
i j =






λH if i and j belong to the same household,
λW if i and j belong to the same workplace,
λH +λW if i and j belong to the same household and the same workplace
0 otherwise.
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Hence infective individuals make two types of local contacts: household contacts,
with individuals in their own household, and workplace contacts, with individu-
als in their own workplace. The model has its origins in Andersson [3, Section 6]
(cf. Andersson [2]) and was analysed in Ball and Neal [15], where it is called the
overlapping groups model; see also Pellis et al. [55, 54] and Ball et al. [19]. Of
course the mixing groups need not be actual households and workplaces. They
could for example be households and school classes. The model can be extended
to include unequal-sized households and/or workplaces (note, for example, that al-
lowing workplaces of size 1 means not everyone belongs to a workplace), and also
to more that two local mixing groups.

We are interested in the asymptotic regime where the population size N → ∞
with both the household size nH and the workplace size nW held fixed. In order to
facilitate explicit asymptotic analysis, it is necessary to make strong assumptions
about the configuration of households and workplaces as N → ∞; specifically that
the density of simple cycles of local contacts that are not either within the same
household or within the same workplace tends to 0 as N → ∞ (see Section 3.5.3
below). In particular this implies that the probability that two members of a given
household have the same workplace tends to zero as N → ∞.

3.1.4 Great Circle Model

In this model the N individuals are assumed to be equally spaced around a circle
and local contacts are nearest-neighbour, so

λL
i j =

{
λL if i− j =±1 mod N,
0 otherwise.

The model was motivated originally by the spread of infection between pigs in a
line of stalls (M.C.M. de Jong, personal communication). It was introduced in Ball
et al. [14] and analysed further in Ball and Neal [15]. The model is closely related to
the ‘small-world’ model introduced by Watts and Strogatz [65], which has received
much attention in the physics literature. The great circle model was extended by
Ball and Neal [16] to include non-nearest-neighbour local contacts, though here we
restrict attention to the nearest-neighbour case.

3.1.5 Network Model with Casual Contacts

As seen in Part III in this volume, in the past two decades there has been con-
siderable interest in the analysis of models for epidemics on random graphs. The
usual paradigm is that individuals in a population are nodes in an undirected ran-
dom graph, G say, and are able to transmit infection only to their neighbours in G .
However, this does not allow for contacts outside a person’s circle of social contacts,
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for example with people on a train or at a supermarket, and such casual contacts can
have a significant impact on the spread of a disease. We include casual contacts by
assuming that a given infective makes them at rate λG and that they are with indi-
viduals chosen independently and uniformly from the population. The model fits the
general two-level-mixing framework with

λL
i j =

{
λL if i and j are neighbours in G ,

0 otherwise.
(3.1.1)

Note that the households model is obtained by letting G be the union ofm disjoint
fully-connected cliques of size n and setting λL = λH . Also, the great circle model
is obtained when G is a simple cycle of length N. We consider the case when G is a
realisation of the configuration model; see Definition 1.2.5 on page 246 in Part III of
this volume. The possibility of incorporating casual contacts into network models
of epidemics is mentioned in the concluding comments of Diekmann et al. [31].
Kiss et al. [45] analyse an approximate deterministic model, which also includes
degree-correlation. The model considered here was first analysed rigorously in Ball
and Neal [17].

3.2 Local Infectious Clumps and Susceptibility Sets

Key tools in our asymptotic analysis of the epidemic EN as N → ∞ are local infec-
tious clumps and local susceptibility sets, which we now define. Recall the random
directed graph GE defined for the standard SIR epidemic model in Section 1.2 on
page 126. One can define a similar graph for the general two-level-mixing model
EN , in which the directed edges are also typed according to whether they corre-
spond to a local or global contact. Thus now let GE be a random directed graph with
vertex setN in which for each (i, j) ∈N 2 there is a directed local edge from i to j
if and only if i, if infected, contacts j locally and a directed global edge from i to j
if and only if i, if infected, contacts j globally. (Note that there may be both a local
and a global directed edge from i to j.)

Let GL be the random directed graph obtained from GE by deleting all global
directed edges. For (i, j)∈N 2, write i L! j if and only if there is a chain of directed
edges in GL from i to j, with the convention that i L! i. For i ∈N , let

Ci = { j ∈N : i L! j}, Ci = |Ci| and Ai = ∑
j∈Ci

I j. (3.2.1)

Thus Ci is the set of individuals that are infected in the (local) epidemic in which
there is only local contact and initially individual i is infective and all other indi-
viduals are susceptible;Ci and Ai are respectively the total size (including the initial
infective) and severity of that local epidemic. We refer to Ci as i’s local infectious
clump.
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For i ∈N , let

Si = { j ∈N : j L! i} and Si = |Si|. (3.2.2)

Thus, in the epidemic corresponding to the random graph directed GE , if any mem-
ber of Si becomes infected by a global contact then individual i will necessarily
become infected by a chain of local contacts, possibly by a chain having length 0.
We refer to Si as i’s local susceptibility set. With slight abuse of notation, we use
Si instead ofS{i}.

Observe that in all of the special cases in Section 3.1, Ci (i ∈N ) are identically
distributed, as are Ai (i ∈N ) and Si (i ∈N ); see Remark 3.5.18 on page 207 con-
cerning the network model with casual contacts. Further, in the households model,
the distributions of (Ci,Ai) and Si are both independent of N (provided the house-
hold size n and the within-household infection rate λH do not depend N). This is not
the case for the other special cases, so in general we write Ci,Ai and Si as CN

i ,A
N
i

and SNi , respectively, to show explicitly their dependence on N.

In the asymptotic analysis that follows we make the following assumptions con-
cerning local infectious clumps and local susceptibility sets; D−→ denotes conver-
gence in distribution.

(A.1) For each N, the random vectors (CN
i ,A

N
i ) (i ∈N ) are identically distributed,

according to (CN ,AN) say. Further, there exists a random vector (C,A) such
that

(CN ,AN)
D−→ (C,A) as N → ∞. (3.2.3)

(A.2) For each N, the random variables SNi (i ∈ N ) are identically distributed,
according to SN say. Further, there exists a random variable S such that

SN D−→ S as N → ∞. (3.2.4)

It is immediate that these assumptions hold for the special cases of the stan-
dard SIR and households models, and easily seen that they hold for the households-
workplaces model (subject to suitable assumptions concerning the configuration of
households and workplaces), the great circle and the network model with casual
contacts; see Section 3.5 below and also Remark 3.5.18 on page 207 concerning the
network model with casual contacts.

Note that when P(I < ∞) = 1, the random variables C,A and S are each finite
(almost surely) in the great circle model but, depending on the parameters, they may
have non-zero probability of being infinite in the households-workplaces model and
the network model with casual contacts.
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3.3 Early Stages of an Epidemic

3.3.1 Introduction

We consider the early stages of the epidemic EN with few initial infectives and
show that it can be approximated by a branching process, denoted by B, of local
infectious clumps. Heuristic arguments are given in Section 3.3.2, which use the
branching process B to derive a threshold parameter R∗, which determines, in the
limit as N → ∞, whether a global outbreak (i.e. one infecting at least logN individu-
als) is possible and if so the probability of such an outbreak. The basic reproduction
number R0 for the epidemic EN is defined in Section 3.3.3. Vaccination prior to an
epidemic is considered in Section 3.3.4, where it is shown that if R∗ > 1 and indi-
viduals are selected independently with probability v for vaccination with a perfect
vaccine then the critical vaccination coverage vc satisfies

1−R−1
0 ≤ vc ≤ 1−R−1

∗ ;

see Theorem 3.3.3. Note that the inequality 1−R−1
0 ≤ vc can be strict, so the usual

formula for the critical vaccination coverage (equation (1.4.1) on page 18 in Part I
of this volume) may yield an underestimate. The early exponential growth rate of a
global outbreak is studied in Section 3.3.5. Formal proofs that, as N → ∞, the total
size of EN converges in distribution to the total number of ‘individuals’ (as opposed
to clumps) in the branching processB and the probability that the total size of EN is
at least logN converges to the survival probability ofB are given in Section 3.3.6.

3.3.2 Heuristics

The set of individuals that become infected during the epidemic EN can be con-
structed using the random directed graph GE as follows. To simplify the notation
we do not index quantities by N. In the graph GE , write i

L−→ j if there is a directed
local edge from i to j, and i G−→ j if there a directed global edge from i to j. For sim-
plicity, suppose that there is one initial infective which, without loss of generality,
we assume is individual 1.

For k = 1,2, . . . , define sets Dk and Gk as follows. Let

D1 = G1 = C1, (3.3.1)

and, for k = 2,3, . . . , let

Kk−1 = {i ∈N \Gk−1 : j
G−→ i for some j ∈Dk−1}, (3.3.2)

Dk =



 ⋃

i∈Kk−1

Ci



∩G c
k−1, (3.3.3)
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Gk = Gk−1∪Dk, (3.3.4)

where c denotes set complement.
In words, the above iteration is as follows. It starts by forming the local infec-

tious clump of individual 1. Members of that clump are necessarily infected by the
epidemic EN . Then, setting k= 2 in (3.3.2)–(3.3.4), it determines which individuals
not in that clump are contacted globally by a member of that clump, to giveK1. All
individuals in the local infectious clumps of members ofK1 are necessarily infected
by the epidemic EN ; so D2 is the set of individuals in those clumps which are not
in C1 (the latter have already been infected in the construction of the epidemic) and
G2 is the set of all individuals infected so far in the construction. The construction
then proceeds in the obvious fashion. It is determined which individuals are con-
tacted globally by membersD2 and then which individuals are in the local infectious
clumps of such globally contacted individuals, and so on. This iteration terminates
after a finite number of steps since N is finite. Let k∗ = min{k : Gk = Gk−1}. Then
Gk∗ is the set of all individuals that are infected during the epidemic EN .

Now suppose that N is large and consider first the case when P(C < ∞) = 1.
Then, since global contacts are with individuals chosen uniformly at random from
the population N , in the early stages of the iteration given by (3.3.1)–(3.3.4), it
is unlikely that the local infectious clump of a globally contacted individual will
intersect with a local infectious clump used previously in the iteration. It follows
that the process of local infectious clumps can be approximated by a Galton–Watson
branching process (see Appendix A.1.1 of Part I in this volume), BN say, in which
individuals are (local infectious) clumps and the number of offspring of a typical
individual is the number of global contacts that emanate from the corresponding
clump.

Let RN denote the offspring random variable of the branching process BN .
Then, conditional upon AN , RN has an independent Poisson distribution with mean
λGAN , since individuals make global contacts at the points of independent Pois-
son processes, each having rate λG, throughout their infectious periods. We de-
note this distribution by Poi(λGAN). Thus, if X ∼ Poi(λGAN), then P(X = k) =
E[(λGAN)k exp(−λGAN)/k!] (k = 0,1, . . .) and we say that X has a mixed-Poisson
distribution with mean λGAN . Now AN D−→ A as N → ∞, so BN converges in dis-
tribution to a branching process, B say, as N → ∞, where B has offspring random
variable R ∼ Poi(λGA). Thus, for large N, we can approximate the early stages of
the epidemic EN (on a clump basis – see Section 3.3.3) by the branching processB.

For the present, we say that a global outbreak occurs if in the limit as N → ∞ the
epidemic infects infinitely many individuals (i.e. contains infinitely many clumps, as
P(C<∞)= 1). Thus a global outbreak occurs if and only if the branching processB
does not go extinct. This definition of a global outbreak is not fully satisfactory, as
it requires N → ∞ and in any practical setting N is finite. We show in Section 3.3.6
below that the current definition is asymptotically equivalent to defining a global
outbreak as one which infects at least logN individuals. Moreover, logN can be
replaced by εN, where ε > 0 depends on the parameters of the epidemic EN .

Let R∗ = E[R] and fR(s) = E[sR] (0 ≤ s ≤ 1) be respectively the mean and
probability-generating function of R. Now by the dominated convergence theorem,
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for 0≤ s≤ 1,

fR(s) = lim
N→∞

E[sRN ]

= lim
N→∞

E[E[sRN |AN ]]

= lim
N→∞

E[e−λG(1−s)AN ]
[
as RN |AN ∼ Poi(λGAN)

]

= φA(λG(1− s))
[
since AN D−→ A as N → ∞

]
,

where φA(θ) = E[exp(−θA)] (θ ≥ 0) is the Laplace transform of A.

To determine R∗, observe using the third equation in (3.2.1) that

E[AN
1 ] = E

[

∑
i∈N

Ii1{i∈C N
1 }

]
= ∑

i∈N
E
[
Ii1{i∈C N

1 }

]
.

Now the event {i ∈ C N
1 } is independent of i’s infectious period Ii, so

E
[
Ii1{i∈C N

1 }

]
= µIP(i ∈ C N

1 ),

where µI = E[I], whence

E[AN
1 ] = µI ∑

i∈N
P(i ∈ C N

1 ) = µIµN
C ,

where µN
C = E[CN ]. Recall that RN ∼ Poi(λGAN). Thus, conditioning on AN ,

E[RN ] = E[E[RN |AN ]] = E[λGAN ] = λGµIµN
C .

We suppose further that CN is stochastically increasing in N, i.e. CN+1
st
≥ CN

for N = 1,2, . . . . (The random variable X is stochastically greater than the random

variable Y , written X
st
≥ Y , if

P(X > a)≥ P(Y > a) for all a ∈ R;

see, for example, Ross [59, page 251].) This is shown easily for the special cases
described in Section 3.1. Then the monotone convergence theorem implies that µN

C ↑
µC = E[C] as N → ∞; note that µC may be infinity. Hence,

R∗ = λGµIµC. (3.3.5)

By standard branching process theory (for example, Jagers [42, Theorem 2.3.1];
see Proposition A.1.1 on page 98 in Part I of this volume) a global outbreak occurs
with strictly positive probability if and only if R∗ > 1 and the probability that a
global outbreak occurs is 1− pext, where pext is the smallest solution of fR(s) = s in
[0,1].



168 Part II. Chapter 3. A General Two-Level Mixing Model

The above arguments extend in the natural way to the case when P(C < ∞)< 1.
In that case a global outbreak is possible in the model with only local infection
(i.e. with λG = 0). The process of infected clumps is still approximated by the
branching process B but now the offspring random variable R of B has a strictly
positive mass at infinity.

3.3.3 The Basic Reproduction Number R0

The quantity R∗ is sometimes called the clump-to-clump reproduction number, or
simply the clump reproduction number. It is a threshold parameter for the epidemic
EN in that it determines whether a global epidemic can occur in the limit as N → ∞.
However, it does have some limitations, which are discussed by Pellis et al. [55] in
the context of the households-workplaces model. First, R∗ can be infinite; see, for
example, the analyses of the households-workplaces model and the network model
with casual contacts in Sections 3.5.3 and 3.5.5 below. In that case it is completely
uninformative about how much effort (for example, by vaccination) is required to
bring the epidemic below threshold. Secondly, when very large and even infinite
clumps are possible, the time taken for a clump to form (when considering the epi-
demic in real time) can be very long and indeed comparable with the duration of
the whole epidemic. Thirdly, R∗ cannot generally be related to a critical vaccination
coverage when a fraction of the population, chosen uniformly at random, is vacci-
nated with a perfect vaccine (i.e. one that necessarily renders the recipient immune
to infection) prior to an epidemic. A fourth limitation of R∗, not discussed in Pellis
et al. [55], is that it can be misleading when comparing different models as it is
a clump-to-clump reproduction number and two models may have rather different
distributions of clump size. For an example, see Figure 7 in Ball et al. [21], which
is concerned with a network model that also incorporates household structure. The
household structure induces clustering in the network, which normally slows down
disease transmission; indeed, in this example, both the probability and size of a
major epidemic decrease with clustering but R∗ initially increases as clustering is
introduced into the model.

The basic reproduction number R0 is probably the most important quantity in
epidemic theory. It determines whether or not an epidemic with few initial infec-
tives in a large population can become established and lead to a large epidemic and,
for a wide range of models, if R0 > 1 then the critical vaccination coverage (with a
vaccine that guarantees immunity) to prevent a large epidemic is given by 1−R−1

0
(see equation (1.4.1) on page 18 in Part I of this volume). For many models, R0 can
be defined informally as ‘the expected number of secondary cases produced by a
typical infected individual during its entire infectious period, in a population con-
sisting otherwise of susceptibles only’; see, for example, Heesterbeek and Dietz [40]
and Heesterbeek [39]. However, for structured population models like those in this
chapter it is far from clear how to define a typical infected individual. For example,
in the households model, the initial infective in a household has more susceptibles
in their household to which to transmit infection than subsequent infectives in that
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household. The above informal definition also needs modifying slightly for many
epidemic models on networks (see, for example, Section 2.2 of Part III in this vol-
ume), since the initial infective is usually atypical, as its degree distribution is differ-
ent from those of subsequent infectives. Consequently it is appropriate to consider a
typical non-initial infective (in the early stages of an epidemic), for whom the popu-
lation does not otherwise consist of susceptibles alone as that individual’s infector is
not susceptible. Several individual-based reproduction numbers have been proposed
for the households model (see Ball et al. [19, Section 2] and the references therein).
A definition for R0 for epidemic models with households and other social structures
was introduced by Pellis et al. [54]. We introduce and motivate this definition; show
how this definition of R0 and its calculation extend to the two-level mixing model
of this chapter; and discuss both the comparison of R0 with R∗ and, in Section 3.3.4
below, its relationship to the above critical vaccination coverage.

A key component of this definition of R0 is the generation of an infective individ-
ual. Consider the directed random graph representation GE of the epidemic EN (see
page 127). As above, suppose that there is one initial infective, who is individual
1. The initial infective belongs to generation 0. For any other individual infected by
the epidemic, i say, its generation is given by the length of (number of edges in) the
shortest chain of directed edges (allowing for both global and local edges) from 1
to i in GE . Thus generation 0 consists of just individual 1, generation 1 consists of
those individuals with whom the initial infective has at least one infectious contact
(either local or global), generation 2 consists of those individuals that are contacted
by at least one generation-1 infective but not by the initial infective, and so on. For
k = 0,1, . . . , let Y (N)

k be the number of generation-k infectives in EN .
Consider the standard SIR epidemic model so, in the setting of EN , the clumps all

have size 1. The branching processB is a branching process of infective individuals
and its offspring mean R∗ = λGµI coincides with R0. By standard branching process,
for k= 0,1, . . . , the mean size of the kth generation ofB is Rk

0 and, for large N, this
approximates the mean number of generation-k infectives in the epidemic EN . More
precisely, using the coupling argument of Ball and Donnelly [9] and the dominated
convergence theorem,

lim
N→∞

E
[
Y (N)
k

]
= Rk

0 (k = 0,1, . . .).

Thus, for the standard SIR epidemic model, R0 is the geometric rate of growth of
the approximating branching processB. Note that R0 is also given by

R0 = lim
k→∞

lim
N→∞

(
E
[
Y (N)
k

]) 1
k
. (3.3.6)

The outer limit in (3.3.6) is superfluous for the standard SIR epidemic model, since
the sequence is independent of k, but the definition (3.3.6) of R0 extends to more
complicated models, such as multitype SIR epidemics where R0 given by (3.3.6)
agrees with that given by the usual definition as the maximum eigenvalue of the
mean next-generation matrix. In particular, Pellis et al. [54] use (3.3.6) to define R0
for models with small mixing groups such as households. The definition (3.3.6) also
extends to the general two-level-mixing model EN , assuming that the assumptions
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leading to the approximating branching process B are satisfied and that the proba-
bility law of the generation structure of a typical clump C N

i is independent of i and
converges suitably as N → ∞.

To calculate R0 for the epidemic EN , recall that individuals in B correspond to
infectious clumps in EN and suppose that the time of the birth of an infectious clump
is given by the generation of the initial case in that clump, so a typical individual in
B reproduces only at ages 1,2, . . . . (To ease the presentation we treat the limiting
branching process B directly, rather than considering BN and letting N → ∞, and
leave the technicalities required to make the argument fully rigorous to the interested
reader.) Consider the local infectious clump Ci of a typical individual i. Individual i
is said to have clump generation 0. Individuals contacted locally by i are said to have
clump generation 1, and so on. Thus the clump generation of an individual j ∈ Ci is
the length of the shortest chain of directed edges from i to j in the random graph GL
defined in Section 3.2.

Consider a typical individual in B, i.e. a typical local infectious clump, Ci say.
Then, with time given by generation, the global contacts made by the ancestor i of
the clump occur when the clump has age 1 and, for j ∈ Ci, the global contacts made
by individual j occur when the clump has age gC( j)+1, where gC( j) is the clump
generation of individual j. For k= 0,1, . . . , let µC

k be the mean number of individuals
in generation k of Ci. Thus µC

0 = 1 and µC = ∑∞
k=0 µC

k . Then, inB, for k = 1,2, . . . ,
the mean number of offspring produced by an individual at age k is νk = λGµIµC

k−1.
It follows that the asymptotic (Malthusian) geometric growth rate of B is given by
the unique positive solution of the discrete-time Lotka–Euler equation

∞

∑
k=1

νk
λ k = 1; (3.3.7)

see, for example, Haccou et al. [37, Section 3.3.1] adapted to the discrete-time set-
ting. Thus, using (3.3.7), R0 satisfies g0(R0) = 0, where

g0(λ ) = 1−λGµI
∞

∑
k=0

µC
k

λ k+1 (λ ∈ (0,∞)). (3.3.8)

Now g0 is strictly increasing on (0,∞) and limλ↓0 g0(λ ) =−∞, so g0 has either one
or zero roots in (0,∞). In the former case then R0 is given by that root, otherwise
R0 = ∞. The basic reproduction R0 is finite for most models. If R0 = ∞ then a clump
must grow faster than geometrically on a generation basis. This happens in the net-
work model with casual contacts if the degree distribution has infinite variance, see
Section 3.5.5.4 below.

3.3.4 Uniform Vaccination

We now consider vaccination prior to the arrival of an epidemic; cf. Section 1.4
of Part I in this volume. Suppose that R∗ > 1 and individuals in the population
are vaccinated with a perfect vaccine independently, each with probability v. (A
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perfect vaccine is one which necessarily renders its recipient immune to infection.)
Thus the (expected) vaccination coverage is v. Let R∗(v) be the post-vaccination
clump reproduction number and let vc solve R∗(vc) = 1, so vc is the corresponding
critical vaccination coverage. The notation v (and vc) is consistent with that used
in Section 1.4 of Part I in this volume. It differs from the notation in Section 2.4.1,
where vaccine coverage is denoted by c and v denotes the number of individuals
vaccinated in a household. The perfect vaccine-associated reproduction number RV
is defined by

RV =
1

1− vc
; (3.3.9)

cf. Goldstein et al. [34], where it was introduced in the setting of the households
model. Note from (3.3.9) that

vc = 1− 1
RV

.

Thus, RV is defined so that the formula for the critical vaccination coverage vc par-
allels that for a homogeneously mixing population; cf. equation (1.4.1) on page 18
in Part I of this volume.

Remark 3.3.1. Note that choosing individuals uniformly at random for vaccination
may not be optimal in the general two-level-mixing model, as demonstrated for the
households model in Section 2.4.3. Indeed for most two-level-mixing models it is
suboptimal.

Remark 3.3.2. Note that if vc = 1, i.e. it is impossible to reduce the threshold param-
eter R∗ to 1 by vaccination unless essentially the whole population is vaccinated,
then RV = ∞. This is the case for both the SIR epidemic on a configuration model
random graph (see Section 2.6 of Part III in this volume) and the network model
with casual contacts (see Section 3.5.5.4 below), when the degree distribution has
infinite variance.

The following theorem compares R∗,R0 and RV ; cf. Ball et al. [19, Theorems
1 and 3], which make similar comparisons for the households and households-
workplaces models, respectively, and include other reproduction numbers not con-
sidered here. Following Ball et al. [19], we call an epidemic growing if R∗ > 1 and
declining if R∗ < 1. Note that RV = 1 if R∗ = 1 and RV is not defined for a declining
epidemic. We adopt the convention that ∞ ≥ ∞.

Theorem 3.3.3.

(a) R∗ = 1 ⇐⇒ R0 = 1 =⇒ RV = 1.
(b) In a growing epidemic,

R∗ ≥ RV ≥ R0 > 1,

and in a declining epidemic
R∗ ≤ R0 < 1.

The inequalities R∗ ≥ RV and R∗ ≤ R0 are strict if P(C > 1)> 0.

Proof. First note that
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g0(1) = 1−λGµI
∞

∑
k=0

µC
k = 1−λGµIµC = 1−R∗, (3.3.10)

and part (a) follows, since R0 = 1 if and only if g0(1) = 0. In a growing epidemic,
(3.3.10) implies that g0(1) < 0, so R0 > 1 as g0(R0) = 0 and g0 is increasing on
(0,∞). Similarly, in a declining epidemic, (3.3.10) implies that g0(1) > 0, whence
R0 < 1.

Suppose that R∗ < 1. Then,

g0(R∗) = 1−λGµI
∞

∑
k=0

µC
k

Rk+1
∗

≤ 1−λGµI
∞

∑
k=0

µC
k

R∗
(3.3.11)

= 1− λGµIµC
R∗

= 0,

so R0 ≥ R∗ as g0(R0) = 0 and g0 is increasing on (0,∞). Further, the inequal-
ity (3.3.11) is strict if P(C> 1)> 0, since then ∑∞

k=1 µC
k > 0, so in that case R0 > R∗.

Turning to the inequalities involving RV , clearly R∗ ≥ RV if R∗ = ∞, so sup-
pose that R∗ ∈ (1,∞) and individuals in the population are vaccinated independently
with probability v, where v > 0. The early stages of the epidemic can then be ap-
proximated by a branching process, B(v) say, defined analogously to B except the
probability that a global contact is with an unvaccinated individual, and hence leads
to a new clump, is 1− v. Also, if C (v) denotes a typical post-vaccination local in-

fectious clump andC(v) = |C (v)|, thenC
st
≥C(v), since a realisation of C (v) can be

obtained from one of C by vaccinating members of C , apart from the initial case,
independently with probability v. The clump C (v) then consists of the initial case,
i0 say, in C together with all other unvaccinated j ∈ C with the property that there
exists a chain of directed edges from i0 to j in the underlying graph GL used to
construct C that involves only unvaccinated individuals. Hence, µC(v) ≤ µC, where
µC(v) = E[C(v)]. Let R∗(v) denote the post-vaccination clump reproduction number,
i.e. the mean of the offspring distribution ofB(v). Then

R∗(v) = (1− v)λGµIµC(v) (3.3.12)
≤ (1− v)λGµIµC (3.3.13)
= (1− v)R∗.

Hence, using (3.3.9) and (3.3.13),

1= R∗(vc)≤
R∗
RV

,

whence RV ≤ R∗. The inequality (3.3.13) is strict if P(C > 1) > 0, since then there
is strictly positive probability that at least one member of C is vaccinated, so in that
case RV < R∗.
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To show that RV ≥ R0 in a growing epidemic, suppose first that R0 ∈ (1,∞) and,
as before, that individuals in the population are vaccinated independently with prob-
ability v, where v> 0, and let C (v) denote a typical post-vaccination local infectious
clump. For k = 0,1, . . . , let µC

k (v) be the mean number individuals in clump gener-
ation k of C (v). An infective in the clump C (v) makes successful global contacts
(i.e. that lead to a new infective) at rate λG(1− v), since a fraction v of global con-
tacts are with vaccinated individuals. Thus, in B(v), the mean number of offspring
produced by an individual at age k is νk(v) = λG(1− v)µIµC

k−1(v), so (cf. (3.3.7)
and (3.3.8)) the post-vaccination basic reproduction number, R0(v) say, is given by
the unique root in (0,∞) of g0,v, where

g0,v(λ ) = 1−λG(1− v)µI
∞

∑
k=0

µC
k (v)

λ k+1 (λ ∈ (0,∞)).

As in the proof of RV ≤ R∗, construct a realisation of C (v) by first constructing a
realisation of C and then vaccinating members of that clump, apart from the initial
case, independently with probability v. Recall that i0 is the initial case in C , and
hence also in C (v). For k= 1,2, . . . , individual j ∈ C \{i0} has clump generation k
in C if and only if there exists at least one chain of length k from i0 to j in (the graph
GL underlying) C , and there is no shorter chain from i0 to j. Suppose j has clump
generation k in C . Then there is a path of length k from i0 to j in C and individual j
also has clump generation k in C (v) if both j and that path is retained in C (v), the
probability of which is (1−v)k as all k members of that path, excluding i0, must not
be vaccinated. Hence,

µC
k (v)≥ (1− v)kµC

k (k = 0,1, . . .). (3.3.14)

(The inequality (3.3.14) holds trivially when k = 0, since µC
0 (v) = µC

0 = 1.)

Let v∗ = 1−R−1
0 . Then,

g0,v∗(1) = 1−λG(1− v∗)µI
∞

∑
k=0

µC
k (v∗)

≤ 1−λGµI
∞

∑
k=0

(1− v∗)k+1µC
k [using (3.3.14)]

= 1−λGµI
∞

∑
k=0

µC
k

Rk+1
0

= g0(R0)

= 0,

using the definition of R0. Hence, R0(v∗) ≥ 1, since g0,v∗(R0(v∗)) = 0 and g0,v∗ is
strictly increasing on (0,∞). Therefore, the critical vaccination coverage vc is at least
v∗, so

1− 1
RV

≥ 1− 1
R0

⇐⇒ RV ≥ R0.
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Finally, suppose that R0 = ∞, so g0(λ ) < 0 for all λ ∈ (0,∞). Now, for any
v ∈ (0,1), (3.3.14) implies that

g0,v(λ ) ≤ 1−λGµI
∞

∑
k=0

(1− v)k+1 µC
k

λ k+1

= g0(λ/(1− v))
< 0,

so R0(v) > 1, whence vc ≥ v. It follows that vc = 1 and hence that RV = ∞, so
RV ≥ R0. '(

Remark 3.3.4 (Condition for RV = R0). Observe from the above proof that, unless
they are both infinite, RV = R0 if and only if there is equality in (3.3.14), i.e. if and
only if

µC
k (v) = (1− v)kµC

k (v ∈ (0,1),k = 0,1, . . .), (3.3.15)

otherwise RV > R0. Further a necessary and sufficient condition for (3.3.15) to hold
is that, for k = 1,2, . . . , the probability of there being more than one (self-avoiding)
path of length k from i0 to an individual j in C is zero. Note that (3.3.15) is satisfied
in the great circle model (cf. Exercise 3.5.14) and also in the network model with
casual contacts if the network is constructed via the configuration model, so for both
of those models the critical vaccination coverage vc is given by the usual formula
1−R−1

0 . However, it is not satisfied in the households and the households-work-
places models, unless all households and also all workplaces in the latter model
have size at most 3. Thus for these models vaccinating a fraction 1−R−1

0 of the
population uniformly at random is insufficient to be sure of preventing a global
outbreak.

Remark 3.3.5 (Bounds for RV and vc). Theorem 3.3.3 shows that 1−R−1
0 and 1−

R−1
∗ are respectively lower and upper bounds for the critical vaccination coverage

vc. Sharper upper bounds than 1−R−1
∗ for vc for the households and households-

workplaces models are given in Ball et al. [19].

3.3.5 Exponential Growth Rate

Recall the branching processB of local infectious clumps, which approximates the
early stages of the epidemic EN . Let BR be the corresponding branching process
run in real time. In the graph GL defined in Section 3.2, attach to each directed edge
i→ j a weightWi j giving the time elapsing after i’s infection before i makes local
contact with j; cf. Remark 1.2.1 on page 127. The weighted graph, together with
the infectious periods I1, I2, . . . , IN , is sufficient to reconstruct the development of
the local infectious clump C N

1 in real time.
Suppose that the clump C N

1 is initiated by individual 1 becoming infected at time
t = 0. For t ≥ 0, let YN

1 (t) be the number of infectives in C N
1 at time t. As usual, we

assume that, for t ≥ 0, there exists a random variable Y1(t) such that YN
1 (t) D−→Y1(t)
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and µN
Y (t)→ µY (t) as N → ∞, where µN

Y (t) = E[YN
1 (t)] and µY (t) = E[Y1(t)]. The

process BR is a general (or Crump-Mode-Jagers) branching process. For t ≥ 0, a
typical individual (i.e. clump) inBR having age t, reproduces at mean rate λGµY (t),
so the Malthusian parameter, r say, ofBR is given by the unique solution in (−∞,∞)
of ∫ ∞

0
λGe−rtµY (t)dt = 1. (3.3.16)

The asymptotic theory of counts associated with supercritical general branching
processes (see Haccou et al. [37, Chapter 6]) implies that, if R∗ > 1 and BR does
not go extinct, the total number of infective individuals (as opposed to clumps) in
BR asymptotically grows exponentially at rate r. Thus, in the limit as N → ∞, the
early exponential growth rate of the epidemic EN in the event of a global outbreak
is given by r.

Note that ∫ ∞

0
µY (t)dt = E[A] = µIµC,

so wG(t) = (µIµC)−1µY (t) (t ≥ 0) may be interpreted as the probability density
function of a random variable,WG say. Let φWG(θ)=E[e−θWG ] (θ ∈ (−∞,∞)) be the
Laplace transform ofWG. (For a function f : [0,∞)→ [0,∞), we denote its Laplace
transform by φ f and for ease of notation we give the domain of φ f as (−∞,∞),
though usually the domain is (θ f ,∞), where θ f depends on f , as the integral is
infinite for θ ≤ θ f .) Recall that R∗ = λGµIµC. It follows from (3.3.16) that

R∗ =
1

φWG(r)
. (3.3.17)

The practical usefulness of (3.3.17) is discussed in Section 3.5.1 below.

3.3.6 Formal Results and Proofs

In this section, we prove that the total size of the epidemic EN converges in distri-
bution to the total number of ‘individuals’ (as opposed to clumps) in the branching
process B as N → ∞ (Theorem 3.3.6) and also a result (Theorem 3.3.7) which in-
cludes as a special case that, as N → ∞, the probability that the total size of EN is at
least logN tends to the survival probability of the branching processB.

Consider the epidemic EN . For i ∈N , let C N
i denote the local infectious clump

of individual i,CN
i = |C N

i | and

RN
i = ∑

j∈C N
i

R̃N
j , (3.3.18)

where R̃N
j is the number of attempted global contacts that emanate from individual

j in EN . Thus RN
i ∼ Poi(λGAN

i ), where A
N
i = ∑ j∈C N

i
I j is the severity of the clump

C N
i . In addition to assumption (A.1) on 164, we make the following assumptions

concerning local infectious clumps.
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(A.3) For each N, the random vectors (CN
i ,R

N
i ) (i ∈N ) are identically distributed,

according to (CN ,RN) say. Further, there exists a random vector (C,R) such
that (CN ,RN)

D−→ (C,R) as N → ∞. As in Section 3.3.2, we allow the possi-
bility that P(C < ∞)< 1, in which case P(R< ∞)< 1.

(A.4) For each N and i= 2,3, . . . ,N, a realisation of C N
i can be obtained from one

of C N
1 .

(A.5) For each N, k = 2,3, . . . ,N and any given set F ⊆ N with |F | = k, if J is
uniformly distributed onN independently of C N

i (i ∈N ) then

P(F ∩C N
J 1= /0|CN

J )≤
kCN

J
N

. (3.3.19)

It is immediate that Assumption (A.3) holds for the special cases of the standard
SIR model and the households model. We indicate how to prove that it holds for the
other special cases described in Section 3.1 when we analyse them in Section 3.5
below. It is easily shown that Assumptions (A.4) and (A.5) hold for the special
cases described in Section 3.1. For example, in the great circle model we may let
C N
i = {i− 1+ j mod N : j ∈ C N

1 } and in that case the elements of C N
J are each

distributed as J (though not independently) and (3.3.19) follows easily. Note that
the above assumptions do not preclude the case λL

i j = λL > 0 for all i 1= j, i.e. local
mixing is also homogeneous, but in that case P(C < ∞) = P(R< ∞) = 0.

For ease of exposition we assume that there is one initial infective in EN , who is
chosen uniformly from N . Let (C N

i ,RN
i ) (i= 0,1, . . .) be i.i.d. copies of (C N

1 ,RN
1 )

andCN
i = |C N

i | (i= 0,1, . . .). Then (CN
i ,R

N
i ) (i= 0,1, . . .) can be used to construct

a realisation of the branching process BN defined in Section 3.3.2 below, in which
clumps are labelled sequentially as they are born. Let ZN

C denote the total number of
clumps inBN , including the initial clump, and

ZN
I =

ZNC−1

∑
i=0

CN
i

denote the total number of ‘individuals’ in BN . Define ZC and ZI similarly for the
branching processB.

The same realisation (C N
i ,RN

i ) (i = 0,1, . . .) of random variables can also be
used to construct a realisation of the set of individuals infected by the epidemic EN

as follows. Let JN0 ,J
N
1 , . . . be i.i.d. random variables, each distributed as J above,

that are also independent of (C N
i ,RN

i ) (i = 0,1, . . .). The initial infective in EN is
individual JN0 . The epidemic is constructed on a generation basis analogous to that
given by (3.3.1)-(3.3.4) on page 165. The epidemic follows the branching process
BN , with the individual in EN corresponding to the ancestor of the kth clump inBN

being given by JNk , until a clump that has a non-empty intersection with a clump used
previously in EN is born. The construction of the epidemic then needs modifying but
the details of such modification are not necessary for our arguments.

Let ZN be the total number of individuals infected in EN , including the initial
infective. For k = 0,1, . . . , let Ĉ N

k be the set of individuals in N that belong to the
clump in EN that corresponds to the kth clump inBN . Let
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MN =min

{
k ≥ 1 : Ĉ N

k ∩
k−1⋃

i=0
Ĉ N
i 1= /0

}
+1

be the number of clumps required until the construction of EN needs modifying.
The key observation is that

ZN
C <MN =⇒ ZN = ZN

I . (3.3.20)

Theorem 3.3.6. Suppose that Assumptions (A.3), (A.4) and (A.5) hold. Then

ZN D−→ ZI as N → ∞. (3.3.21)

Proof. For k = 1,2, . . . ,

P(ZN ≤ k) = P(ZN ≤ k,MN > k)+P(ZN ≤ k,MN ≤ k)
= P(ZN

I ≤ k,MN > k)+P(ZN ≤ k,MN ≤ k), (3.3.22)

using (3.3.20). Also,

P(ZN
I ≤ k) = P(ZN

I ≤ k,MN > k)+P(ZN
I ≤ k,MN ≤ k). (3.3.23)

Equations (3.3.22) and (3.3.23) imply

|P(ZN ≤ k)−P(ZN
I ≤ k)|≤ P(MN ≤ k). (3.3.24)

If the clump sizes are bounded, i.e. there exists an integer K > 0 such that
P(CN ≤ K) = 1 for all N, then, for k = 1,2, . . . ,

P(MN ≤ k) = P
(

k−2⋃

i=0

k−1⋃

j=i+1
Ĉ N
i ∩ Ĉ N

j

)

≤
k−2

∑
i=0

k−1

∑
j=1

P
(
Ĉ N
i ∩ Ĉ N

j

)

≤
(
k
2

)
K2

N
,

using (3.3.19). Thus, P(MN ≤ k)→ 0 as N → ∞ and, using (3.3.24),

lim
N→∞

P(ZN ≤ k) = lim
N→∞

P(ZN
I ≤ k) = P(ZI ≤ k) (k = 1,2, . . .),

since (CN ,RN)
D−→ (C,R) as N → ∞, proving (3.3.21) when the clump sizes are

bounded.

Turning to the general case, for k = 1,2, . . . , equation (3.3.22) implies

P(ZN ≤ k)≥ P(ZN
I ≤ k)P(MN > k|ZN

I ≤ k).
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Now ZN
I ≤ k implies ZN

C ≤ k, as all clumps contain at least one individual, so us-
ing (3.3.19),

P(MN ≤ k|ZN
I ≤ k)≤ (k−1)

k2

N
→ 0 as N → ∞,

whence P(MN > k|ZN
I ≤ k)→ 1 asM → ∞. Thus,

liminf
N→∞

P(ZN ≤ k)≥ liminf
N→∞

P(ZN
I ≤ k) = P(ZI ≤ k). (3.3.25)

To show that limsupN→∞P(ZN ≤ k)≤ P(ZI ≤ k), and hence complete the proof
of Theorem 3.3.6, we consider, for each integerK> 0, modifications of the epidemic
EN and the branching processes BN and B in which the clump sizes are capped at
K. From (3.3.18) we may write RN in an obvious notation as

RN =
CN

∑
j=1

R̃N
j .

Let

(CN(K),RN(K)) D
=

{
(CN ,RN) ifCN ≤ K,
(K,∑K

j=1 R̃N
j ) ifCN > K,

where D
= denotes equal in distribution. Let EN(K) denote the epidemic constructed

analogously to EN but using (CN(K),RN(K)) instead of (CN ,RN), and define
BN(K) and B(K), similarly. We use a similar notation for quantities associated
with these processes, for example, ZN(K) is the total number of individuals infected
in EN(K).

Fix integers k,K > 0. Clearly, ZN
st
≥ ZN(K), so

P(ZN ≤ k)≤ P(ZN(K)≤ k),

whence

limsup
N→∞

P(ZN ≤ k) ≤ limsup
N→∞

P(ZN(K)≤ k)

= P(ZI(K)≤ k), (3.3.26)

as the clump sizes are bounded. Now R(K) D−→ R as K → ∞, so

P(ZI(K)≤ k)→ P(ZI ≤ k) as K → ∞,

and letting K → ∞ in (3.3.26) yields

limsup
N→∞

P(ZN ≤ k)≤ P(ZI ≤ k),

which combined with (3.3.25) yields
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lim
N→∞

P(ZN ≤ k) = P(ZI ≤ k) (k = 1,2, . . .),

proving (3.3.21). '(

Recall from Section 3.3.2 that R∗ and pext are respectively the offspring mean
and extinction probability of the branching process B. Thus it follows from Theo-
rem 3.3.6 that if R∗ ≤ 1 then, with probability tending to one as N→∞, the epidemic
EN infects only a very small fraction of the population. If R∗ > 1 then the epidemic
EN infects a very small fraction of the population with probability tending to pext
as N → ∞. We now consider, for large N, the behaviour of EN when the branching
processB does not go extinct.

Theorem 3.3.7. Suppose that Assumptions (A.3), (A.4) and (A.5) hold. Let (gN) be
any sequence of nonnegative real numbers satisfying gN → ∞ and N−1gN → 0 as
N → ∞. Then

lim
N→∞

P(ZN ≥ gN) = 1− pext.

Proof. We prove the theorem by first obtaining, for fixed ε ∈ (0,1), bounds on
liminfN→∞P(ZN ≥ Nε) and limsupN→∞P(ZN ≥ Nε).

For any k > 0,

limsup
N→∞

P(ZN ≥ Nε)≤ limsup
N→∞

P(ZN ≥ k) = P(ZI ≥ k),

using Theorem 3.3.6. Letting k→ ∞ yields

limsup
N→∞

P(ZN ≥ Nε)≤ 1− pext. (3.3.27)

To get a lower bound for P(ZN ≥ Nε) we use a device that originates in Whit-
tle [66]. Consider a typical clump, (C N

i ,RN
i ) say, used in the constructions of BN

and EN . While the total number of infectives in EN remains below Nε , it follows
from (3.3.19) that the probability this clump intersects a clump previously used in
EN is at most εCN

i . Thus, until the total number of infectives reaches Nε , the epi-
demic EN is stochastically greater than a branching process, B̂N(ε) say, derived
from BN , by independently deleting clumps (and all of their descendants in BN),
with probability min(1,εCN) if the clump has sizeCN . In particular,

P(ZN ≥ Nε)≥ P(ẐN
I (ε)≥ Nε),

where ẐN
I (ε) is the total number of ‘individuals’ in B̂N(ε).

For integer K > 0, let BN(ε,K) be obtained from B̂N(ε) in the same way that
BN(K) is obtained from BN , i.e. by truncating the clump sizes at K, and define
B(ε,K) in the obvious fashion. Let pNext(ε,K) and pext(ε,K) be the extinction
probability of BN(ε,K) and B(ε,K), respectively. Let RN(ε,K) and R(ε,K) de-
note the offspring random variables of BN(ε,K) and B(ε,K), respectively. Then
RN(ε,K) D−→ R(ε,K) as N → ∞, so limN→∞ pNext(ε,K) = pext(ε,K) (cf. Britton et
al. [29, Lemma 4.1]). Now
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P(ZN ≥ Nε) ≥ P(ZN(K)≥ Nε)
≥ P(ẐN

I (ε,K)≥ Nε)
≥ 1− pNext(ε,K), (3.3.28)

so

liminf
N→∞

P(ZN ≥ Nε) ≥ liminf
N→∞

[1− pNext(ε,K)]

= 1− pext(ε,K). (3.3.29)

Let (gN) satisfy the conditions of the theorem. Then arguing as in the derivation
of (3.3.27) yields

limsup
N→∞

P(ZN ≥ gN)≤ 1− pext. (3.3.30)

Also, for any ε ∈ (0,1) and any K > 0,

liminf
N→∞

P(ZN ≥ gN)≥ liminf
N→∞

P(ZN ≥ Nε)≥ 1− pext(ε,K), (3.3.31)

using (3.3.29). Note that pext(ε,K) ↓ pext(K) as ε ↓ 0, since R(ε,K) D−→ R(K),
and pext(K) ↓ pext as K ↑ ∞, since R(K) D−→ R. Thus, (ε,K) can be chosen so that
pext(ε,K) is arbitrarily close to pext, and it follows from (3.3.31) that

liminf
N→∞

P(ZN ≥ gN)≥ 1− pext. (3.3.32)

The theorem follows immediately from (3.3.30) and (3.3.32). '(

Remark 3.3.8 (Definition of global outbreak). Theorem 3.3.7 implies immediately
that limN→∞P(ZN ≥ logN) = 1− pext, so as indicated in Section 3.3.2 we can use
ZN ≥ logN to define a global outbreak. Suppose that R∗ > 1 and (gN) satisfies
gN ≥ logN for all N and limN→∞N−1gN = 0. Then Theorem 3.3.7 implies that

lim
N→∞

P(ZN ≥ gN |ZN ≥ logN) = 1,

so we could equivalently use such gN to define a global outbreak.
Further, if R∗ > 1 then pext < 1, so (ε,K) can be chosen so that pext(ε,K) < 1.

Consider the epidemic EN but having Ilog logNJ initial infectives, where for x ∈R,
IxJ is the greatest integer ≤ x. Then using the lower bounding branching process
BN(ε,K) and arguing as in the derivation of (3.3.28) yields

liminf
N→∞

P(ZN ≥ εN)≥ liminf
N→∞

{
1−
[
pNext(ε,K)

]Ilog logNJ}
= 1. (3.3.33)

This suggests that
lim
N→∞

P(ZN ≥ εN|ZN ≥ logN) = 1, (3.3.34)

so a global outbreak infects a strictly positive fraction of the population in the limit
as N → ∞.
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The gap in the argument is that we have not proved anything about the num-
ber of infectives in EN when the total number of infectives (which includes those
who are no longer infectious) reaches logN. We provide a proof of (3.3.34) for a
closely related model in Section 3.4.2 below. Note that ε in (3.3.34) depends on the
parameters of the epidemic model EN .

3.4 Final Outcome of a Global Outbreak

We consider now the final outcome of a global outbreak in the limit as the population
size N → ∞. In Section 3.4.1, heuristic arguments are used to determine the fraction
of the population that is infected by a global outbreak and also the distribution of
the number ultimately infected in a fixed subset of initial susceptibles, such as an
initially fully-susceptible household in the households model. In Section 3.4.2, a
framework is described for proving these results and an associated central limit
theorem.

3.4.1 Heuristics

Suppose that N is large, there are few initial infectives and a global outbreak occurs.
Let zN be the expected proportion of the population that is infected by the epidemic
EN and πN be the probability that a given initial susceptible, i say, is not contacted
globally during the course of EN . (Note that i may still be infected in EN by a local
contact.) Let AN be the sum of the infectious periods of all individuals infected
during the epidemic EN , i.e. the severity of EN . Now a given infective, i∗ say, makes
global contacts at the points of a Poisson process having rate λG and such contacts
are with individuals chosen independently and uniformly from the whole population
N . Thus i∗ contacts i globally at the points of a Poisson process having rate N−1λG.
Further, distinct infectives behave independently, so, given AN , individual i is not
contacted globally if and only if there is no point of a Poisson process having rate
N−1λG in an interval of length AN . Hence,

P(individual i not contacted globally during EN |AN) = exp(−N−1λGAN).

The number of individuals infected in the epidemic EN is approximately NzN ,
and each infective is infectious on average for a time µI , so AN is approximately
NzNµI . Thus,

πN = E
[
P(individual i not contacted globally during EN |AN)

]

= E
[
exp(−N−1λGAN)

]

≈ exp(−N−1λGNzNµI)
= exp(−λGµIzN). (3.4.1)
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Note that individual i is not infected by the epidemic EN if and only if no member
of individual i’s local susceptibility setSi is contacted globally during the epidemic
and no member of Si is an initial infective. For large N, individuals avoid global
infection approximately independently, each with probability πN , so if GN is the
event that all members of Si avoid global infection then, conditioning on the size
SN ofSi,

P(GN) = E
[
P(GN |SN)

]

= E
[
πSN
N

]

= fSN (πN), (3.4.2)

where fSN (s) = E
[
(s)S

N
]
(0≤ s≤ 1) is the probability-generating function of SN .

Recall that we assume that SN D−→ S as N → ∞, so limN→∞ fSN (s) = fS(s) (0 ≤
s≤ 1), where fS(s) (0≤ s≤ 1) is the probability-generating function of S. If S< ∞,
then the probability that i’s susceptibility setSi contains an initial infective tends to
0 as N → ∞. Also, if S= ∞, then the probability that all members ofSi avoid global
infection tends to 0 as N → ∞. Thus letting N → ∞ in (3.4.1) and (3.4.2) yields

lim
N→∞

P(i is not infected by a global outbreak) = fS(π), (3.4.3)

where
π = exp(−λGµIz) (3.4.4)

and z is the expected fraction of the population infected by a global outbreak. Fur-
ther, if the fraction of the population that is initially infected tends to 0 as N → ∞,
then z is given by the (limiting) probability that a typical initial susceptible is in-
fected by a global outbreak, so substituting (3.4.4) into (3.4.3) yields that z satisfies

1− z= fS(e−λGµI z). (3.4.5)

To investigate the solutions of (3.4.5), consider a Galton–Watson branching pro-
cess with offspring random variable, R̃ say, that has a mixed-Poisson distribution
with mean λGµIS, i.e. R̃ ∼ Poi(λGµIS). Then, for s ∈ [0,1],

fR̃(s) = E
[
sR̃
]

= E
[
E
[
sR̃|S

]]

= E
[
e−λGµIS(1−s)

] [
as R̃|S∼ Poi(λGµIS)

]

= fS(e−λGµI(1−s)),

so, from (3.4.5), s= 1− z satisfies the equation governing the extinction probability
of this branching process: viz. fR̃(s) = s. Let

µR̃ = E[R̃] = λGµIµS. (3.4.6)
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By standard branching process theory (Proposition A.1.1 on page 98 in Part I of
this volume), the equation fR̃(s) = s has exactly one root in [0,1) if µR̃ > 1 and none
if µR̃ ≤ 1. Thus the equation (3.4.5) governing z has exactly one root in (0,1], giving
the limiting mean fraction of the population infected by a global outbreak as N → ∞
(assuming few initial infectives), if µR̃ > 1 and none if µR̃ ≤ 1.

We show now that µR̃ = R∗. Note from (3.2.1) and (3.2.2) on page 163 that, for
i ∈N ,

CN
i = ∑

j∈N
1
{i L! j}

and SNi = ∑
j∈N

1
{ j L!i}

,

so
E[CN

i ] = ∑
j∈N

P(i L! j) and E[SNi ] = ∑
j∈N

P( j L! i).

NowCN
i (i ∈N ) are identically distributed, as are SNi (i ∈N ), so

E[CN
1 ] =

1
N ∑

i∈N
E[CN

i ]

=
1
N ∑

i∈N
∑
j∈N

P(i L! j)

=
1
N ∑

j∈N
∑
i∈N

P(i L! j)

=
1
N ∑

j∈N
E[SNj ]

= E[SN1 ],

and letting N → ∞ yields µC = µS. Thus, using (3.3.5) on page 167 and (3.4.6),

µR̃ = λGµIµS = λGµIµS = R∗. (3.4.7)

Summarising, if R∗ ≤ 1, the only solution of the equation (3.4.5) in [0,1] is z= 0,
corresponding to there being no large epidemic, which is consistent with the ap-
proximating branching process B going extinct almost surely. If R∗ > 1, then the
equation (3.4.5) has two solutions in [0,1], z= 0 and z= ẑ say, and we still need to
determine which of these solutions gives the fraction of the population infected by
a global outbreak. We explore this more rigorously in Section 3.4.2 below, where
we show that if Z̄N is the fraction of the population infected during the epidemic
EN then Z̄N D−→ Z̄ as N → ∞, where the limiting random variable Z̄ takes only the
values 0 and ẑ, corresponding to a non-global and a global outbreak, respectively.
We also derive a central limit theorem for the the size of a global outbreak.

The above heuristic argument can be extended to the finer structure of the final
outcome of a global outbreak. Let H denote a set of initial susceptibles that is held
fixed as N → ∞. Thus, for example, H could be a typical initially fully-susceptible
household in the households (or the households-workplaces) model or, for fixed
k ≥ 2, a typical chain of k initially susceptible individuals in the great circle model.
Let
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XH = {i ∈ H : i is ultimately uninfected by the epidemic EN}.

We calculate the distribution of the set XH in the limit as N → ∞.
For F ⊆ H, let

SF = { j ∈N : j L! i for some i ∈ F}, (3.4.8)

denote the local susceptibility set of F , with the convention thatS /0 = /0. Let

SF = |SF | and fSF (s) = E[sSF ] (0≤ s≤ 1). (3.4.9)

All members of F avoid infection by the epidemic EN if and only if all members of
SF avoid global infection, so

P(XH ⊇ F) = fSF (e
−λGµI ẑ) (F ⊆ H), (3.4.10)

since, in the limit as N → ∞, each member of SF avoids global infection indepen-
dently and with probability e−λGµI ẑ (see (3.4.4) with z replaced by ẑ). Thus, using
the Möbius inversion formula (1.3.2) on page 128,

P(XH = F) = ∑
F⊆G⊆H

(−1)|G|−|F | fSG(e
−λGµI ẑ) (F ⊆ H). (3.4.11)

3.4.2 ‘Rigorous’ Argument and Central Limit Theorem

In this section, we describe a framework for proving rigorously a law of large num-
bers and a central limit theorem for the final outcome of a global outbreak. This in-
volves adapting the embedding technique of Scalia-Tomba [60, 61], see Section 3.3
of Part I in this volume, to the present general two-level mixing model. We describe
the general argument. In a few places, which we point out, further details are re-
quired to make the arguments fully rigorous. These details are model dependent,
so they are different for different special cases. The starting point is the following
alternative construction of the model EN , which uses a Sellke-type construction (see
Sellke [62] and Section 3.2 of Part I of this volume) for global contacts.

As in Section 3.1 on page 160, label the individuals in the population 1,2, . . . ,N,
and let I1, I2, . . . , IN be i.i.d. copies of I, where Ii is the infectious period of individual
i if it becomes infected. Local spread of infection is modelled as in Section 3.1, lead-
ing to a directed graph of local contacts G N

L and for i ∈N , local susceptibility sets
S N

i (i∈N ) (see Section 3.2), where now we show explicitly the dependence of GL
and S on the population size N. We assume that Assumption (A.2) on page 164 is
satisfied, i.e. that SN D−→ S as N → ∞. Global spread of infection is modelled as fol-
lows. Let L1,L2, . . . ,LN be i.i.d. exponential random variables, having rate λG and
hence mean λ−1

G . At any given time, t say, each susceptible accumulates exposure
to global infection at rate N−1Y (t), where Y (t) is the total number of infectives at
time t. For i ∈N , individual i is infected globally when its total exposure to global
infection reaches Li, provided that it is still susceptible at that time. It is easily seen,



3.4 Final Outcome of a Global Outbreak 185

using the lack-of-memory property of both the Poisson process and the exponen-
tial distribution, together with the thinning property of the Poisson process, that this
yields an epidemic process which satisfies the same probability law as EN .

Construct a related epidemic model as follows. Suppose that initially all N indi-
viduals are susceptible and then each individual is exposed to t units of global in-
fection. Now use L1,L2, . . . ,LN to determine which individuals, if any, are infected
globally so, for i ∈N , individual i is infected globally if and only if Li ≤ t. Then
use the random directed graph G N

L to determine which individuals are subsequently
infected locally. Denote this epidemic by ẼN(t). Note that in the construction of
ẼN(t) the individuals do not make global contacts. Note also that individual i ∈N
is infected in ẼN(t) if and only if i’s local susceptibility setS N

i contains at least one
individual that is contacted globally.

For i= 1,2, . . . ,N, let

χN
i (t) = 1{i infected in ẼN(t)}

=

{
1 if min j∈S N

i
L j ≤ t,

0 otherwise.

Further, let

RN(t) =
N

∑
i=1

χN
i (t) and AN(t) =

N

∑
j=1

I jχN
j (t)

be respectively the size and severity of ẼN(t).

Now return to the epidemic EN and suppose that EN is initiated by exposing the
population to TN

0 units of global infection, so each individual is exposed to T̄ N
0 =

N−1TN
0 units of global infection. These TN

0 units of global infection will infect some
individuals globally and trigger local infections. The total amount of global infection
created by the individuals contacted globally and the ensuing local infectious clumps
is given by AN(T̄ N

0 ), so the population has now been exposed to a total of TN
0 +

AN(T̄ N
0 ) units of infection. The process is continued in the obvious fashion, viz.

T̄ N
1 = T̄ N

0 +N−1AN(T̄ N
0 )

T̄ N
2 = T̄ N

0 +N−1AN(T̄ N
1 )

...
T̄ N

∞ = T̄ N
k∗ ,

where k∗ =min{ j : T̄ N
j+1 = T̄ N

j }. Note that the process must stop after a finite number
of iterations as the population is finite. Note also that

T̄ N
∞ =min{t > 0 : t = T̄ N

0 +N−1AN(t)}. (3.4.12)

(An illustration of the above iteration and the stopping time T̄ N
∞ is given in Fig-

ure 3.4.1.) Further the size of the epidemic EN is given by
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RN(T̄ N
∞ ) =

N

∑
i=1

χN
i (T̄

N
∞ ) (3.4.13)

and the severity of EN is given by

TN
0 +

N

∑
j=1

χN
j (T̄

N
∞ )I j = TN

0 +AN(T̄ N
∞ ). (3.4.14)

Fig. 3.4.1 Example of the iteration T̄ N
k (k = 0,1, . . .) and the associated stopping time T̄ N

∞ , which
satisfies (3.4.12).

For i= 1,2, . . . ,N,

E[χN
i (t)]] = P

(
min
j∈S N

i

L j ≤ t

)

= 1−P(Lj > t for all j ∈S n
i )

= 1−E
[
e−λGtSNi

]

= 1− fSN (e
−λGt)

→ 1− fS(e−λGt) as N → ∞,

since SN D−→ S as N → ∞. Also, since Ii andS N
i are independent,

E[IiχN
i (t)]] = µIE[χN

i (t)]]

→ µI(1− fS(e−λGt)) as N → ∞.

By an appropriate weak law of large numbers, for all t ≥ 0,
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N−1RN(t) p−→ r(t) and N−1AN(t) p−→ a(t) as N → ∞, (3.4.15)

where

r(t) = lim
N→∞

E[χN
1 (t)] = 1− fS(e−λGt) and a(t) = lim

N→∞
E[χN

1 (t)I1] = µIr(t).
(3.4.16)

This of course needs justifying. It is straightforward to prove (3.4.15) for the house-
holds model, since both RN(t) and AN(t) can be expressed as a sum of contri-
butions from the different households, which are independent and identically dis-
tributed, so (3.4.15) follows immediately from the weak law of large numbers; in-
deed (3.4.15) holds with p−→ replaced by almost sure convergence. More generally,
using Chebyshev’s inequality, sufficient conditions for the first and second results
in (3.4.15) are N−2Var(RN(t))→ 0 and N−2Var(AN(t))→ 0 as N→∞, respectively.

By construction the random functions RN(t) and AN(t) are non-decreasing with
t, as are r(t) and a(t). Using this, it is straightforward to extend (3.4.15) to

sup
0≤t<∞

|N−1RN(t)− r(t)| p−→ 0 and sup
0≤t<∞

|N−1AN(t)−a(t)| p−→ 0, (3.4.17)

as we now show.
Fix ε > 0 and choose 0= t0 < t1 < t2 < · · ·< tp = ∞ such that

0< r(ti)− r(ti−1)≤
ε
2
, i= 1,2, . . . , p,

this being possible since r(t) is non-decreasing, r(0) = 0 and r(∞) = 1. Then, ob-
serving that (3.4.15) holds also when t = ∞,

lim
N→∞

P
(

p⋂

i=0

{
|N−1RN(ti)− r(ti)|≤

ε
2

})
= 1. (3.4.18)

For i= 0,1, . . . , p−1, since RN(t) and r(t) are non-decreasing in t,

N−1RN(ti)− r(ti)−
ε
2
≤ N−1RN(t)− r(t)≤ N−1RN(ti+1)− r(ti+1)+

ε
2
,

for all t ∈ [ti, ti+1), which together with (3.4.18), yields

lim
N→∞

P
(

sup
0≤t<∞

|N−1RN(t)− r(t)|≤ ε
)
= 1.

The first result in (3.4.17) then follows as ε > 0 is arbitrary. The second result is
proved similarly. (Note that the above proof of (3.4.17) is nothing but a proof of the
second Dini theorem, adapted to convergence in probability. The same theorem for
almost sure convergence is used in the proof of Proposition 2.2.6 of Part I in this
volume.)

Observe from (3.4.12) that T̄ N
∞ satisfies

T̄ N
∞ = T̄ N

0 +N−1AN(T̄ N
∞ ). (3.4.19)
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Suppose T̄ N
0

p−→ µ as N → ∞, where µ ≥ 0 is constant. The situation of a trace
of initial infection, considered in Section 3.4.1, yields µ = 0. We consider first the
simpler case of µ > 0.

Consider the equation
t = a(t)+µ. (3.4.20)

Now a(0) = 0, a(∞) = µI and, for t ∈ [0,∞),

a′′(t) =−µIλ 2
Ge

−λGt
[
f ′S(e

−λGt)+ e−λGt f ′′S (e
−λGt)

]
< 0,

where ′ and ′′ denote first and second derivative, respectively. Thus, a(t) is concave
on (0,∞) and the equation (3.4.20) has a unique solution, τ say, in [0,∞). Moreover,
a′(τ)< 1, so (3.4.17) implies that

T̄ N
∞

p−→ τ and Z̄N p−→ z as N → ∞, (3.4.21)

where Z̄N = N−1RN(T̄ N
∞ ) is the fraction of the population that is infected by the

epidemic and z= µ−1
I τ . Note that (3.4.16) and (3.4.20) imply that

z= µ−1
I µ+1− fS(e−λGµI z),

which reduces to (3.4.5) when µ = 0.
We can also obtain a central limit theorem for ZN . Suppose that

1√
N

{(
RN(t)−Nr(t)
AN(t)−Na(t)

)
: t ≥ 0

}
w−→
{(

XR(t)
XA(t)

)
: t ≥ 0

}
as N → ∞,

(3.4.22)

where
{(

XR(t)
XA(t)

)
: t ≥ 0

}
is a zero-mean Gaussian process and w−→ denotes weak

convergence in an appropriate space. This again needs justifying and details, which
can be lengthy, are application dependent; see Ball et al. [14] and Ball and Lyne [11]
for the households model, Ball and Neal [16] for the great circle model and Neal [51,
Chapter 4] for the households-workplaces model. Note that (3.4.22) implies the
weak law of large numbers at (3.4.15).

Recalling that T̄ N
∞

p−→ τ as N → ∞, it follows from (3.4.22), using Slutsky’s
lemma and the continuous mapping theorem, that

1√
N

(
RN(T̄ N

∞ )−Nr(T̄ N
∞ )

AN(T̄ N
∞ )−Na(T̄ N

∞ )

)
D−→
(
XR(τ)
XA(τ)

)
as N → ∞, (3.4.23)

where (
XR(τ)
XA(τ)

)
∼ N(0,Σ(τ)) and Σ(τ) =

[
σ2
R(τ) σRA(τ)

σRA(τ) σ2
A(τ)

]

with

σ2
R(τ) = lim

N→∞
N−1Var(RN(τ)),

σRA(τ) = lim
N→∞

N−1cov(RN(τ),AN(τ)),
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σ2
A(τ) = lim

N→∞
N−1Var(AN(τ)).

By the mean value theorem,

1√
N

(
RN(T̄ N

∞ )−Nr(τ)
)
=

1√
N

(
RN(T̄ N

∞ )−Nr(T̄ N
∞ )
)
+
√
N
(
r(T̄ N

∞ )− r(τ)
)

=
1√
N

(
RN(T̄ N

∞ )−Nr(T̄ N
∞ )
)
+
√
Nr′(ξN)

(
T̄ N

∞ − τ
)
,

for some ξN between τ and T̄ N
∞ .

Now (3.4.19) and (3.4.20) imply

T̄ N
∞ − τ = T̄ N

0 +N−1AN(T̄ N
∞ )−a(τ),

and T̄ N
∞

p−→ τ (see (3.4.21)) implies that ξN
p−→ τ as N → ∞, so

1√
N

(
RN(T̄ N

∞ )−Nr(τ)
)
=

1√
N

(
RN(T̄ N

∞ )−Nr(T̄ N
∞ )
)

+ r′(τ)
[√

N(T̄ N
0 −µ)+ 1√

N

(
AN(T̄ N

∞ )−Na(τ)
)]

+op(1), (3.4.24)

where a sequence of random variables (XN) is op(1) if XN p−→ 0 as N → ∞. Simi-
larly,

1√
N

(
AN(T̄ N

∞ )−Na(τ)
)
=

1√
N

(
AN(T̄ N

∞ )−Na(T̄ N
∞ )
)

+a′(τ)
[√

N(T̄ N
0 −µ)+ 1√

N

(
AN(T̄ N

∞ )−Na(τ)
)]

+op(1). (3.4.25)

Suppose that
√
N(T̄ N

0 −µ) p−→ 0 as N → ∞. Then, (3.4.23)-(3.4.25) imply

H
1√
N

(
RN(T̄ N

∞ )−Nr(τ)
AN(T̄ N

∞ )−Na(τ)

)
D−→
(
XR(τ)
XA(τ)

)
as N → ∞,

where
H =

[
1 −r′(τ)
0 1−a′(τ)

]
=

[
1 −r′(τ)
0 1−µIr′(τ)

]
,

using (3.4.16), so

1√
N

(
RN(T̄ N

∞ )−Nr(τ)
AN(T̄ N

∞ )−Na(τ)

)
D−→ N

(
0,H−1Σ(τ)(H−1)K

)
as N → ∞.

Let ZN = RN(T̄ N
∞ ) and AN = AN(T̄ N

∞ ) so, recalling (3.4.13) and (3.4.14), the size
and severity of EN are ZN and AN+TN

0 , respectively. Then calculatingH−1Σ(τ)(H−1)K

yields the following theorem.
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Theorem 3.4.1. Suppose that Assumption (A.2) (see page 164) and (3.4.22) hold,
and

√
N(T̄ N

0 −µ) p−→ 0 as N → ∞, where µ > 0. Then

1√
N

(
ZN −Nr(τ)
AN −Na(τ)

)
D−→ N(0,Σ),

where

Σ =

[
σ2
R σRA

σRA σ2
A

]
(3.4.26)

with

σ2
R =

1
(1−µIr′(τ))2

[
(1−µIr′(τ))2σ2

R(τ)+2r′(τ)(1−µIr′(τ))σRA(τ)+ r′(τ)2σ2
A(τ)

]
,

σRA =
1

(1−µIr′(τ))2
[
(1−µIr′(τ))σRA(τ)+ r′(τ)σ2

A(τ)
]
,

σ2
A =

1
(1−µIr′(τ))2

σ2
A(τ).

The next corollary follows immediately from Theorem 3.4.1 on noting that when
I is almost surely constant, σRA(τ) = µIσ2

R(τ) and σ2
A(τ) = µ2

I σ2
R(τ).

Corollary 3.4.2. Suppose that P(I = µI) = 1. Then, under the conditions of Theo-
rem 3.4.1,

1√
N

(
ZN −Nr(τ)

) D−→ N
(
0,

1
(1−µIr′(τ))2

σ2
R(τ)

)
as N → ∞.

Suppose now that µ = 0. The equation (3.4.20) becomes

t = a(t). (3.4.27)

Clearly t = 0 is a solution of (3.4.27). Using (3.4.7), (3.4.16) and the concavity of
a(t), there is a (unique) solution, τ̂ say, in (0,∞) if and only if R∗ > 1. Suppose that
R∗ > 1. Then (3.4.17) implies that, as N → ∞,

min{T̄ N
∞ , |T̄ N

∞ − τ̂|} p−→ 0 and min{Z̄N , |Z̄N − ẑ|} p−→ 0, (3.4.28)

where ẑ is the unique solution of (3.4.5) in (0,1]. Hence, with probability tending to
1 as N → ∞, the fraction of the population infected by the epidemic, Z̄N , is close to
either 0 or ẑ.

Suppose that R∗ > 1, T̄ N
0

p−→ 0 as N → ∞ but limN→∞P(TN
0 ≥ K) = 1 for all

K > 0. Then an analogous argument to the derivation of (3.3.33) in Section 3.3.6
shows that there exists an ε > 0 such that limN→∞P(Z̄N

∞ > ε) = 1. It then follows
from (3.4.28) that (3.4.21) holds, with (τ,z) replaced by (τ̂, ẑ), as do Theorem 3.4.1
and Corollary 3.4.2 (both with µ = 0).

Theorem 3.4.1 and its above extension with µ = 0 are for a version of the epi-
demic EN , in which the entire population is initially susceptible and the epidemic is
initiated by exposing each individual in the population to T̄ N

0 units of global infec-
tion. This is different from the assumption made when using branching processes
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to approximate the early stages of an epidemic in Section 3.3, where it is assumed
that the epidemic is initiated by an individual chosen uniformly at random from the
population becoming infected. When R∗ > 1, we would like to develop a central
limit theorem analogous to Theorem 3.4.1, for epidemics that are initiated by a sin-
gle infective and result in a global outbreak. For the special case of the standard SIR
epidemic this can be achieved by assuming that initially there are N susceptibles, la-
belled 1,2, . . . ,N and setting TN

0 = I0, where I0 is the infectious period of the initial
infective. In the households model, we can similarly add an extra household, which
contains the initial infective, and let TN

0 be the severity of the corresponding local
infectious clump (single-household epidemic). In the latter there is a slight com-
plication because it is possible for the initially infected household to be reinfected
later in the epidemic, unless the single-household epidemic infects all individuals in
that household. However, it is easily shown that possibility does not effect the limit-
ing distribution in Theorem 3.4.1, since the extra severity owing to such reinfection
is stochastically bounded above by Ť N = I1 + I2 + · · ·+ In, so N−1/2Ť N p−→ 0 as
N → ∞. (Recall that the household size is n.)

In view of the above, suppose finally that R∗ > 1 and there exists a non-negative
random variable T0 such that TN

0
D−→ T0 as N → ∞. Then RN(T0)

D−→ Poi(λGT0) as
N → ∞ and arguing as in Section 3.3.6 shows that Theorem 3.3.7 holds, with pext
replaced by p̃ext = E

[
e−λGT0(1−pext)

]
. (In the limit as N → ∞ the epidemic EN is

initiated by Poi(λGT0) infectives, so can be approximated by the branching process
B having Poi(λGT0) initial ancestors. It is easily verified, and left as an exercise,
that p̃ext = pext in the two special cases discussed in previous paragraph.) Thus, in
particular,

lim
N→∞

P(ZN ≥ logN) = 1− p̃ext. (3.4.29)

Also,
limsup
N→∞

P(Z̄N > ẑ/2)≤ 1− p̃ext. (3.4.30)

In an obvious notation, arguing as in the derivation of (3.3.28) shows that, for ε ∈
(0,1),

liminf
N→∞

P(Z̄N > ε)≥ 1− p̃ext(ε,K),

which together with (3.4.28) implies that

liminf
N→∞

P(Z̄N > ẑ/2)≥ 1− p̃ext(ε,K). (3.4.31)

Now (ε,K) can be chosen so that pext(ε,K) is arbitrarily close to pext, and hence
so that p̃ext(ε,K) is arbitrarily close to p̃ext. Therefore, (3.4.30) and (3.4.31) imply
that

lim
N→∞

P(Z̄N > ẑ/2) = 1− p̃ext,

which, together with (3.4.28), yields the following theorem. (Assumptions (A.2) to
(A.5) are stated on page 176.)
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Theorem 3.4.3. Suppose that Assumptions (A.2) to (A.5) and (3.4.15) hold, and that
TN
0

D−→ T0 as N → ∞. Then

Z̄N D−→ Z̄ as N → ∞,

where
P(Z̄ = 0) = p̃ext = 1−P(Z̄ = ẑ).

Theorem 3.4.3 and (3.4.29) yield the following law of large numbers for global
outbreaks.

Corollary 3.4.4. Suppose that R∗ > 1 and TN
0

D−→ T0 as N → ∞. Then, under the
conditions of Theorem 3.4.3,

Z̄N |ZN ≥ logN p−→ ẑ as N → ∞.

Note that, under the conditions of Corollary 3.4.4, T̄ N
∞ |ZN ≥ logN p−→ τ̂ as N →

∞. It is tempting to conclude that the argument leading to Theorem 3.4.1 yields the
following theorem.

Theorem 3.4.5. Suppose that R∗ > 1, Assumptions (A.2) to (A.5) and (3.4.22) hold
and TN

0
D−→ T0 as N → ∞. Then,

1√
N

[(
ZN −Nr(τ̂)
AN −Na(τ̂)

)]
| ZN ≥ logN D−→ N(0, Σ̂) as N → ∞,

where Σ̂ is given by (3.4.26) with τ = τ̂ .

The result is generally true but the above argument fails because the distribution
of the sample paths of {(RN(t),AN(t)) : t ≥ 0} conditional upon ZN ≥ logN is dif-
ferent from the unconditional distribution. One way to obtain a valid proof for some
models, which also works for other initial conditions, is to use a branching process
approximation to the epidemic until there are logN infectives and then apply the
above-mentioned version of Theorem 3.4.1 (with µ = 0) to the remaining suscep-
tible population. The details are messy and are not considered here. Theorem 3.4.5
has an equivalent corollary to Corollary 3.4.2 when the infectious period random
variable I is almost surely constant.

3.5 Applications to Special Cases

We now apply the general theory developed in Sections 3.2–3.4 to the special cases
in Section 3.1 on pages 161 to 163. Further details on the application to the re-
production number R∗, and the probability and size of a global outbreak, may be
found for the households, households-workplaces and great circle model in Ball
and Neal [15] and for the network model with casual contacts in Ball and Neal [17].
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Further details on the calculation of the basic reproduction number R0 and the ex-
ponential growth rate r for the households and households-workplaces models are
given in Ball et al. [19].

3.5.1 Standard SIR Model

As noted previously, setting λL
i j = 0 for all i 1= j yields the standard SIR epidemic

model of Section 1.1 with λ = λG/N, which has the same final size distribution as
the corresponding SEIR model incorporating a latent period. Thus results about the
asymptotic distribution of the final size of a homogeneously mixing SEIR epidemic
presented in Section 3.3 of Part I in this volume arise as special cases of the theorems
in Section 3.3 and 3.4. The local infectious clumps all have size 1 so, using (3.3.5)
on page 167, R∗ = λµI . Further, µC

0 = 1 and µC
k = 0 (k = 1,2, . . .), and it follows

from (3.3.8) that R0 = λµI , so R0 = R∗.

Exercise 3.5.1. Derive the central limit theorem (Theorem 3.3.2 of Part I in this
volume) using Theorem 3.4.5.

Turning to the exponential growth rate (see Section 3.3.5 on page 174), note that
Y1(t) = 1{I1>t}. It follows that µY (t) = P(I > t) and wG(t) = µ−1

I P(I > t) (t ≥ 0),
whence

φWG(θ) = (µIθ)−1(1−φI(θ))

and, since R0 = R∗, (3.3.17) gives

R0 =
µIr

1−φI(r)
. (3.5.1)

The practical usefulness of (3.5.1) is that if estimates of the exponential growth
rate r and the distribution of I are available from data on an emerging epidemic,
then (3.5.1) yields an estimate of R0 and hence of the critical vaccination coverage
vc; see Nowak et al. [53], Lloyd [48], Wallinga and Lipsitch [64] and Roberts and
Heesterbeek [58], which consider homogeneously mixing models with more general
infectivity curves (see Section 1.1.2 of Part I in this volume). However, it should
be borne in mind that φWG(θ) can be difficult to estimate unbiasedly owing to the
emerging nature of the data (Britton and Scalia-Tomba [30]). For example, early in
an epidemic completed infectious periods are likely to be atypically short.

One can also use (3.5.1) to estimate R0 for more complicated models, though of
course such an estimate has no theoretical grounding without further work. How-
ever, for many common departures from homogeneous mixing, such as those owing
to household and network structures, (3.5.1) typically yields overestimates of both
R0 and vc (Trapman et al. [63] and Section 2.6 of Part III in this volume).

Exercise 3.5.2. Determine the exponential growth rate r for the Markovian SEIR
model, defined in Section 1.1.2 of Part I in this volume, with I ∼ Exp(γ) and L ∼
Exp(ν). (For γ > 0, Exp(γ) denotes an exponential random variable with probability
density function f (t) = γe−γt (t ≥ 0) and hence mean γ−1.)
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3.5.2 Households Model

Recall from Section 3.1.2 on page 161 that we consider the special case of the
households model in which all the households have size n. The more general case
of unequal-sized households is analysed extensively in Chapter 2, so here we fo-
cus mainly on the basic reproduction number R0 and the exponential growth rate
r, which are not considered in Section 3.1.2, and the final outcome of a global
outbreak, where the results obtained by specialising the general two-level mixing
theory yield different (though of course equivalent) expressions to those obtained in
Section 3.1.2. In the following qi = φI(iλH) (i= 0,1, . . .).

3.5.2.1 Threshold Parameter R∗

First note that the sizeC of a typical local infectious clump is distributed as the total
size (including the initial infective) of the standard SIR epidemic En−1,1(λH , I) so,
using (3.3.5) on page 167 and Corollary 1.6.3 on page 135,

R∗ = λGµI

[
n−

n−1

∑
i=1

(n−1)[i]qn−i
i Gi−1(1 |V )

]
,

where V is given by vi = qi+1 (i= 0,1, . . .).

3.5.2.2 Basic Reproduction Number R0

To calculate R0 we need the clump generation means µC
k (k= 0,1, . . .). In the house-

holds model, the clumps are single-household epidemics, so we call clump genera-
tions, household generations, and denote the mean number of individuals in house-
hold generation k by µH

k (k= 0,1, . . . ,n−1). (The maximum household generation
is n−1 as the households all have size n.)

For small household size n, we can calculate the µH
k s by considering all possible

chains of infection as in Section 3.1 of Part I of this volume.

Exercise 3.5.3. Suppose I is constant, so P(I = µI) = 1, and n= 3.

(a) Show that µH
0 = 1,µH

1 = 2pH and µH
2 = 2p2H(1− pH), where pH = 1−e−λHµI .

(b) Determine µH
0 ,µH

1 and µH
2 when I is not constant.

(c) Repeat parts (a) and (b) when n= 4, calculating all non-zero µH
k .

For larger household sizes, such enumeration becomes tedious and we present a
method that is amenable to numerical calculation. Consider the standard SIR epi-
demic model En,a(λH , I), defined in Section 1.1 and recall the probabilities Pn,a(k)
(k = 0,1, . . .n) defined in Exercise 1.3.2 on page 129. For k = 0,1, . . . ,n, let Yn,a,k
be the number of infectives in household generation k and let µn,a,k = E[Yn,a,k], so

P(Yn,a,1 = i) = Pn,a(n− i) (i= 0,1, . . . ,n).
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Then, for n,a= 1,2, . . . and k = 1,2, . . . ,n,

µn,a,k = E[E[Yn,a,k|Yn,a,1]]

=
n−k+1

∑
i=1

E[Yn,a,k|Yn,a,1 = i]P(Yn,a,1 = i)

=
n−k+1

∑
i=1

Pn,a(n− i)µn−i,i,k−1,

which, together with µn,a,0 = a and µ0,a,k = 0 (n,a= 1,2, . . . and k= 1,2, . . . ,n), can
be solved recursively for the µn,a,k. Note that µH

k = µn−1,1,k (k= 0,1, . . . ,n−1). See
Appendix A in Pellis et al. [54] for further discussion, including another method of
computing the µH

k s.

3.5.2.3 Exponential Growth Rate r

The difficulty in calculating r for the households model is the absence in general of
a closed-form expression of µY (t), the mean number of infectives at time t in the
single-household epidemic En,1(λH , I). Various approximations to r are discussed
in Ball et al. [19, Section 2.8] (see also Fraser [33]). If I is exponentially distributed,
En,1(λH , I) is described by a continuous-time Markov chain, and the Laplace trans-
form LµY (θ) of µY (t) can be computed as follows (see Pellis et al. [56, Section
4.2]).

Suppose I ∼ Exp(γ). For t ≥ 0, let X(t) and Y (t) be respectively the num-
bers of susceptibles and infectives at time t in En,1(λH , I). Then {(X(t),Y (t))} =
{(X(t),Y (t)) : t ≥ 0} is a continuous-time Markov chain with (X(0),Y (0)) =
(n−1,1) and state space

E = {(i, j) : i= 0,1, . . . ,n−1, j = 0,1, . . . ,n− i}

having size nE = n(n+3)/2. For (i, j) 1= (i′, j′), the transition rates of {(X(t),Y (t))}
are

q(i, j),(i′, j′) =






λHi j if (i′, j′) = (i−1, j+1),
γ j if (i′, j′) = (i, j−1),
0 otherwise;

the first transition corresponds to an infection and the second to a recovery. For
(i, j) ∈ E, let

q(i, j),(i, j) =− ∑
(i′, j′)1=(i, j)

q(i, j),(i′, j′).

Give the states of E the labels 1,2, . . . ,nE . For (i, j) ∈ E, let h(i, j) denote the
label of state (i, j). Choose the labels so that h(n− 1,1) = 1 and h(i,0) = nE − i
(i= 0,1, . . . ,n−1). Thus the initial state is given the label 1 and the terminal states
(i.e. those with no infective) are given the labels nA+ 1,nA+ 2, . . . ,nA+ n, where
nA = nE − n = n(n+ 1)/2 is the number of active states (i.e. those with at least
one infective). For k = 1,2, . . . ,nE , let (x(k),y(k)) = h−1(k), so x(k) and y(k) are
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respectively the numbers of susceptibles and infectives in the state having label k.
Let Q̃= [q̃kl ] be the nE ×nE matrix with elements given by q̃kl = q(x(k),y(k)),(x(l),y(l)).
Thus Q̃ is the transition-rate matrix of {h(X(t),Y (t)) : t ≥ 0} and, for t ≥ 0,

P[(X(t),Y (t)) = (i, j)] =
[
eQ̃t
]

1,h(i, j)
((i, j) ∈ E),

where eQ̃t = ∑∞
k=0 t

kQ̃k/k! is the usual matrix exponential. Further, if EA denotes set
of active states in E and Q̃AA is the nA× nA submatrix of Q̃ corresponding to EA,
then

P[(X(t),Y (t)) = (i, j)] =
[
eQ̃AAt

]

1,h(i, j)
((i, j) ∈ EA).

Let u0 = (1,0,0, . . . ,0) have dimension nA and vY = (y(1),y(2), . . . ,y(nA))K.
Then

µY (t) = E[Y (t)] = u0eQ̃AAtvY ,

whence
LµY (θ) = u0[θ InA − Q̃AA]

−1vY , (3.5.2)

where InA is the nA×nA identity matrix. Equation (3.5.2) enablesLµY (θ) and hence
r to be computed numerically.

By enlarging suitably the state space E, the above argument can be extended to
the case when I has a gamma distribution with an integer shape parameter, and more
generally to when I has a phase type distribution (see Asmussen [5, pages 71–78]).
However, the state space E can become prohibitively large for numerical calculation.
When the household size n is very small, LµY (θ) can be found by enumerating all
possible real-time chains of infection, as in the following exercise.

Exercise 3.5.4. Suppose that n= 2.

(a) Suppose that I has an arbitrary but specified distribution. Show that, when it is
finite,

LµY (θ) = ψI(θ) [1+λHψI(λH +θ)] , (3.5.3)

where ψI(θ) = θ−1[1−φI(θ)].
Hint: the contribution of the initial infective toLµY (θ) is ψI(θ).

(b) Determine r when I ∼ Exp(γ).

3.5.2.4 Final Outcome of Global Outbreak

Turning to the final outcome, let H denote the set of individuals in a household and
F ⊆ H having size |F | = j, where j = 0,1, . . . ,n. (If j = 0 then F = /0.) Recall the
definitions of SF and SF from (3.4.8) and (3.4.9). The distribution of SF depends
only on F through j, so write P jn(SF = k) for the probability that SF = k, where
k= j, j+1, . . . ,n. Now P0n(SF = 0) = 1, asS /0 = /0 by convention, and application
of Lemma 1.5.2 on page 132 yields that, for j = 1,2, . . . ,n,

P jn(SF = k) = (n− j)[k− j]qn−k
k Gk− j(1 | E jU) (k = j, j+1, . . . ,n), (3.5.4)
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whereU is given by uk = qk (k = 0,1, . . .) and E jU is the sequence u j,uJ+1, . . . .
Recall also that fSF (s) = E[sSF ] (0 ≤ s ≤ 1), so write fSF (s) as f jn(s). Then

f0n(s) = 1 and, for j = 1,2, . . . ,n,

f jn(s) =
n

∑
k= j

(n− j)[k− j]skqn−k
k Gk− j(1 | E jU). (3.5.5)

Suppose that R∗ > 1. Noting that S is distributed as SF when j = 1, it follows
using (3.4.5) that, as N → ∞, the fraction of the population that is infected by a
global outbreak, ẑ, is given by the unique solution in (0,1] of

1− z= f1n(e−λGµI z). (3.5.6)

Exercise 3.5.5. Show that equation (3.5.6) for ẑ is the same as equation (2.3.2) in
Section 2.3 (assuming a common household size).

Now let H be a household that initially contained only susceptibles and let XH
be the set of susceptibles in that household at the end of a global outbreak. Then
XH is a set obtained from a symmetric sampling procedure (see Section 1.3) on H,
so P(|XH | = k) =

(n
k
)
P(XH = G), where G is any given size-k subset of H, and it

follows from (3.4.11) on page 184 that

P(|XH |= k) =
(
n
k

) n

∑
j=k

(−1) j−k
(
n− k
j− k

)
f jn(e−λGµI ẑ) (k= 0,1, . . . ,n). (3.5.7)

Exercise 3.5.6. Show that (3.5.7) yields the same distribution for the number in-
fected in a typical household in the event of a global outbreak as that derived in
Section 2.3, i.e. that |XH |

D
= S̃, where S̃ is the final number of susceptibles in the

epidemic Ẽn,0(λH , I, π̂), defined in Section 1.8, and π̂ = e−λGµI ẑ.

3.5.3 Households-workplaces Model

For reasons explained later, the distribution of the sizeC of a typical local infectious
clump is difficult to obtain unless the infectious period I is constant, so we focus
first on the size S of a typical local susceptibility set. When I is constant, C and S
have the same distribution as we now explain (cf. Remark 1.5.3 on page 133).

If I is constant, say P(I = µI) = 1 for some µI > 0, the random directed graph
GL, defined in Section 3.2 on page 163, can be replaced by an undirected random
graph, ĜL say, in which for any unordered pair (i, j) of distinct vertices in N the
edge between i and j is present independently with probability pL(i, j), where

pL(i, j) =






1− e−λHµI if i and j belong to the same household,
1− e−λW µI if i and j belong to the same workplace,
0 otherwise.
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For i ∈N , the random graph ĜL can be used to construct the local infectious clump
Ci of individual i, in an analogous fashion to that used to construct the final outcome
of the Reed–Frost epidemic in Remark 1.2.3 on page 128. The random graph ĜL
can also be used to construct the local susceptibility setSi of individual i. For j 1= i,
individual j ∈Si if and only if their is a path of edges from i to j in ĜL. Note that
Ci =Si by construction, soC and S above are identically distributed.

3.5.3.1 Size of Local Susceptibility Set

For i ∈N , let Hi andWi denote the sets of individuals in i’s household and work-
place, respectively, and define i’s household and workplace local susceptibility sets
by S H

i = { j ∈ Hi : j
L! i} and SW

j = { j ∈Wi : j
L! i}. For i ∈N , the local sus-

ceptibility setSi of individual i can be constructed on a generation basis as follows.
Let

P0 =S H
i ,

and, for k = 1,2, . . . , let

Pk =






(⋃
j∈Pk−1

SW
j

)
\
(⋃k−1

l=0 Pl

)
if k is odd,

(⋃
j∈Pk−1

S H
j

)
\
(⋃k−1

l=0 Pl

)
if k is even.

Let k∗ =min(k :Pk = /0) and note that k∗ < ∞ sinceN is finite. Then

Si =
k∗−1⋃

k=0
Pk.

In words, the local susceptibility setSi is constructed by first forming the household
susceptibility set of individual i, to give generation 0, then forming the workplace
susceptibility set of each generation-0 individual to form generation-1, then forming
the household susceptibility set of each generation-1 individual to form generation-
2, and so on, where at each generation an individual is not included if it has already
been used in the construction ofSi.

The above construction ofSi can be approximated by a two-type branching pro-
cess B̂, which assumes that, for k = 0,1, . . . , if k is even then the households of the
individuals inPk are disjoint and also have empty intersection with the households
of individuals used in previous generations of the construction, and similarly if k
is odd but with households replaced by workplaces. In the branching process B̂,
individuals in generation k all have type H if k is even and all have type W if k is
odd, so individuals beget only individuals of the opposite type. The initial ancestors
(i.e. generation 0) in B̂ comprise all individuals in individual i’s household sus-
ceptibility set S H

i . The offspring of a typical generation-0 individual, j ∈S H
i say,

are all individuals in j’s workplace susceptibility set excluding j, i.e. SW
j \ { j},

and so on. Let SH and SW denote the size of a typical household and workplace
susceptibility set, respectively. Then, in B̂, the number of initial ancestors, Ŷ0 say,
is distributed as SH , the number of offspring of a typical type-H individual is dis-
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tributed as SW − 1, and the number of offspring of a typical type-W individual is
distributed as SH − 1. The distribution of SH is given by setting j = 1,n = nH and
qi = φI(iλH) (i= 0,1, . . .) in (3.5.4). The distribution of SW is given similarly, with
(nH ,λH) replaced by (nW ,λW ).

For k= 0,1, . . . , let Ŷk be the size of generation k in B̂, and let Ẑ = ∑∞
k=0 Ŷk be the

total size of B̂ including the initial ancestors. We assume that SN D−→ Ẑ as N → ∞
(see Exercise 3.5.7 below), so, as detailed in the next two subsections, we may
set S = Ẑ in the results in Section 3.4.1. This implicitly imposes strong conditions
on the configuration of households and workplaces in the population, as indicated
at the end of Section 3.1.3, which are unrealistic in many practical settings. One
situation when SN D−→ Ẑ as N → ∞ is when the partitioning of the population N
into households is independent of the partitioning into workplaces, as follows.

Recall that the individuals in N are labelled 1,2, . . . ,N, Label the mH house-
holds 1,2, . . . ,mH and, for i = 1,2, . . . ,N, assign individual i to household Ai/nHB.
(For x ∈ R, AxB is the smallest integer ≥ x.) Thus individuals 1,2, . . . ,nH are as-
signed to household 1, individuals nH+1,nH+2, . . . ,2nH are assigned to household
2, and so on. Now let (σ(1),σ(2), . . . ,σ(N)) be a (uniform) random permutation of
(1,2, . . . ,N). Label the mW workplaces 1,2, . . . ,mW . Then for i = 1,2, . . . ,N, indi-
vidual i is assigned to workplace Aσ(i)/nW B.

Exercise 3.5.7. Show that SN D−→ Ẑ as N→∞ under the above allocation of individ-
uals to households and workplaces, so Assumption (A.2) on page 164 holds. Hint:
consider the above construction of Si and for fixed k = 1,2, . . . , obtain an upper
bound for the probability that Pk contains two individuals that belong to the same
household and the same workplace.

3.5.3.2 Threshold Parameter R∗

Let µH = E[SH ] and µW = E[SW ]. Then E[Ŷ0] = µH and, conditioning on Ŷ0,

E[Ŷ1] = E[E[Ŷ1|Ŷ0]] = E[(µW −1)Ŷ0] = (µW −1)µH ,

where in the second equality we have used that, given Ŷ0, Ŷ1 is the sum of Ŷ0
i.i.d. copies of SW − 1. Continuing in a similar fashion, it is easily shown by in-
duction that, for k = 0,1, . . . ,

E[Ŷk] =
{
µH [(µH −1)(µW −1)]l if k = 2l,
µH(µW −1)[(µH −1)(µW −1)]l−1 if k = 2l+1.

Now E[S] = E[Ẑ] = ∑∞
k=0E[Ŷk] so, using (3.4.7) on page 183,

R∗ =

{
λGµIµHµW

µH+µW−µHµW if (µH −1)(µW −1)< 1,
∞ otherwise.
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Expressions for µH and µW in terms of Gontcharoff polynomials are obtained easily
using (3.5.4).

3.5.3.3 Final Outcome of Global Outbreak

To determine the fraction of the population infected by a global outbreak, we need
the probability-generating function of S= Ẑ. Let fH(s) = E[sSH ] (0≤ s≤ 1) be the
probability-generating function of SH . Let fZH(s) = E[sẐH ] (0 ≤ s ≤ 1), where ẐH
is the total size of the branching process which has the same offspring distributions
as B̂H but starts with a single individual whose type is H. Define the probability-
generating functions fW and fZW similarly. Then, conditioning on Ŷ1 yields that

fZH(s) = fW ( fZW (s)) and fZW (s) = fH( fZH(s)),

whence
fZW (s) = fH( fW ( fZW (s))) (0≤ s≤ 1). (3.5.8)

The equation (3.5.8) has a unique solution (cf. Jagers [42, page 39]). Conditioning
on Ŷ0 then yields

fS(s) = fH( fZH(s)) = fZW (s),

which can also be obtained directly. The fraction ẑ of the population that is infected
by a global outbreak can now be obtained using (3.4.5) on page 182.

The distribution of the final size, ZH say, within a typical, initially fully-susceptible
household in the event of a global outbreak can be obtained using (3.4.11) on
page 184.

Exercise 3.5.8. Show that if λH ,nH , ẑ and the distribution of I are fixed, then any
choice of (nW ,λW ,λG) consistent with ẑ yields the same distribution of ZH .

3.5.3.4 Size of Local Infectious Clump

The size C of a typical local infectious clump can be approximated by a two-type
process, B̌ say, that is similar to B̂ but with household and workplace local suscepti-
bility sets replaced by household and workplace local infectious clumps (i.e. single-
household and single-workplace epidemics). A similar argument to Exercise 3.5.7
shows that Assumptions (A.1) and (A.3) (see pages 164 and 176) hold. However,
unless the infectious period I is constant, B̂ is not a branching process since the
infectious periods of infectives in a single-household epidemic, which are the initial
cases in the ensuing single-workplace epidemics, are not independent of the size of
the single-household epidemic. This dependence does not affect calculation of the
means required for R∗, or R0 below, but it does make calculation of the probability
of a global outbreak difficult. If individuals in B̌ are also typed by the length of the
initial infective in the single-household (or workplace) epidemic then B̌ becomes
a branching process with a larger (infinite if the support of I is infinite) type space;
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cf. Ball et al. [22]. The difficulty disappears if I is constant; the processes B̂ and B̌
are then identically distributed.

3.5.3.5 Basic Reproduction Number R0

As in Ball et al. [19, Section 4.2], the basic reproduction number R0 for the
households-workplaces model can be obtained by considering the following three-
type branching process, B̄ say, which approximates the process of infectives on
a generation basis. The three types of individuals in B̄ are: double-primary cases
(type 1), who are infected by a global contact; household-primary cases (type 2),
who are infected by a within-workplace contact; and workplace-primary cases (type
3), who are infected by a within-household contact. Recall from Section 3.5.2 the
household mean generation sizes µH

k (k= 0,1, . . . ,nH−1) and define the workplace
mean generation sizes µW

k (k = 0,1, . . . ,nW −1) similarly.
In B̄, the mother of a double-primary (type-1) individual, is the person who

infected it in the epidemic; the mother of a household-primary (type-2) individual
is the initial case in the corresponding within-workplace epidemic; and the mother
of a workplace-primary (type-3) individual is the initial case in the corresponding
within-household epidemic. As indicated above, time in the branching process B̄
corresponds to generation in the epidemic EN . All individuals in B̄ produce a mean
number µG = λGµI of type-1 individuals (corresponding to global contacts in EN)
at age 1. In addition, a type-2 individual triggers a within-household epidemic in its
household, so it produces a mean number µH

k of type-3 individuals at age k, where
k = 1,2, . . . ,nH − 1. Similarly, a type-3 individual produces a mean number µW

k of
type-2 individuals at age k, where k = 1,2, . . . ,nW − 1. Finally, a type-1 individual
triggers both a within-household and a within-workplace epidemic, so it produces a
mean number of µW

k of type-2 individuals at age k, where k = 1,2, . . . ,nW −1, and
a mean number µH

k of type-3 individuals at age k, where k = 1,2, . . . ,nH − 1. The
basic reproduction number R0 is given by the asymptotic geometric growth rate of
the branching process B̄.

For i, j = 1,2,3 and k = 1,2, . . . , let vi, j(k) be the mean number of type- j indi-
viduals produced by a type-i individual at age k, and let

vi j(λ ) =
∞

∑
k=1

vi, j(k)
λ k (λ ∈ (0,∞)).

Let V (λ ) be the 3× 3 matrix with elements vi j(λ ) and let v∗(λ ) be the dominant
eigenvalue of V (λ ). Then, using multitype general branching process theory (for
example, Haccou et al. [37, Section 3.3.2] and Jagers [43]), R0 is given by the unique
solution in (0,∞) of v∗(λ ) = 1.

The matrix V (λ ) is given by

V (λ ) =




vG(λ ) vW (λ ) vH(λ )
vG(λ ) 0 vH(λ )
vG(λ ) vW (λ ) 0



 ,
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where

vG(λ ) =
µG
λ

vH(λ ) =
nH−1

∑
k=1

µH
k

λ k and vW (λ ) =
nW−1

∑
k=1

µW
k

λ k .

Exercise 3.5.9. Show that the characteristic polynomial of V (λ ) is

x3−vG(λ )x2− [vG(λ )vH(λ )+vG(λ )vW (λ )+vH(λ )vW (λ )]x−vG(λ )vH(λ )vW (λ ),

and hence that v∗(λ ) = 1 if and only if

vG(λ )(vH(λ )+1)(vW (λ )+1)+ vH(λ )vW (λ )−1= 0. (3.5.9)

It follows from (3.5.9) that R0 is given by the unique solution in (0,∞) of
gHW0 (λ ) = 0, where

gHW0 (λ ) = 1−
nH+nW−2

∑
k=0

ck
λ k+1 , (3.5.10)

with c0 = µG and, for k = 1,2, . . . ,nH +nW −2,

ck = µG
min(k,nH−1)

∑
i=max(0,k−nW+1)

µH
i µW

k−i+
min(k,nH−1)

∑
i=max(1,k−nW+2)

µH
i µW

k+1−i, (3.5.11)

where the second sum in (3.5.11) is zero if k = nH +nW −2. The equation (3.5.10)
governing R0 was first obtained by Pellis et al. [54] using a different derivation.

3.5.3.6 Exponential Growth Rate r

The Malthusian parameter of the branching process BR (see Section 3.3.5 on
page 174) is given by that of the three-type branching process, B̄R say, correspond-
ing to B̄ but run in real time. For i, j = 1,2,3 and t ≥ 0, let λi j(t) be the mean rate
that a type-i individual has a type- j child at age t. Let Λ(t) be the 3×3 matrix with
elements λi j(t). Then,

Λ(t) =




λGP(I > t) νW (t) νH(t)
λGP(I > t) 0 νH(t)
λGP(I > t) νW (t) 0



 ,

where νH(t) is the mean rate that new infections occur at time t in the epidemic
EnH−1,1(λH , I) and νW (t) is defined similarly. For θ ∈ (−∞,∞), let LΛ (θ) =∫ ∞
0 e−θ tΛ(t)dt, where the integration is elementwise. The exponential growth rate r
is given by the unique r ∈ (−∞,∞) such that the dominant eigenvalue of LΛ (r) is
one.

Note that
∫ ∞
0 e−θ tP(I > t)dt = ψI(θ), where ψI(θ) is defined in Exercise 3.5.4

on page 196. The matrix LΛ (r) has the same structure of non-zero elements as
V (λ ), so the argument of Exercise 3.5.9 shows that r is given by the unique solution
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in (−∞,∞) of the equation

λGψI(r)(LνH (r)+1)(LνW (r)+1)+LνH (r)LνW (r) = 1.

The difficulty in calculating r is the absence of closed-form expressions for
LνH (r) andLνW (r). Note thatLνW (r) can be obtained fromLνH (r) by substituting
(nW ,λW ) for (nH ,λH). Various approximations to LνH (r) are discussed in Ball et
al. [19, Section 4.7] (see also Pellis et al. [56]). If I is exponentially distributed then
LνH (r) can be computed numerically as follows (see Pellis et al. [56, Section 4.3]).

We use the same notation as in Section 3.5.2 and let n = nH . Note that if
(X(t),Y (t)) = (i, j) a new infection occurs at rate λHi j. Let

vXY = (x(1)y(1),x(2)y(2), . . . ,x(nA)y(nA))K.

Then,
νH(t) = λHu0eQ̃AAtvXY ,

whence
LνH (r) = λHu0[rInA − Q̃AA]

−1vXY ,

thus enablingLνH (r) to be computed.

3.5.4 Great Circle Model

3.5.4.1 Threshold Parameter R∗ and Probability of a Global Outbreak

Consider first the early stages of an epidemic. The local infectious clump of a typical
individual, i say, assuming an infinite population can be partitioned as

Ci = CL∪{i}∪CR, (3.5.12)

where CL and CR are the sets of individuals in Ci that are to the left and right of {i},
respectively. Thus, C = 1+CL+CR, where CL = |CL| and CR = |CR| and we have
writtenC forCi. In the populationN ,

CN D
=min(C,N), (3.5.13)

from which it is seen easily that CN D−→ C and µN
C → µC as N → ∞. Note that CL

and CR are identically distributed but they are not independent unless the infectious
period I is constant.

Let pL = 1− φI(λL) be the probability that a given individual infects locally a
given neighbour. Then,

P(i+ k ∈ Ci) = pkL (k = 1,2, . . .), (3.5.14)

since infectives behave independently. Hence,
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E[CR] =
∞

∑
k=1

pkL =
pL

1− pL
,

so, µC = 1+2pL/(1− pL) and, using (3.3.5) on page 167,

R∗ = λGµI
(
1+ pL
1− pL

)
.

Turning to the probability of a global outbreak, note that A admits the decompo-
sition

A= I+AL+AR, (3.5.15)

where I (= Ii) is the infectious period of individual i, AL = ∑ j∈CL I j is the severity
of the left clump CL and AR is defined similarly for the right clump CR. Note that
AL|AL > 0 and AR|AR > 0 are independent but, unless I is constant, AL and AR are
dependent.

Exercise 3.5.10. Show that

E[e−θAR |AR > 0] =
φI(λL+θ)

1−φI(θ)+φI(λL+θ)
(θ ≥ 0) (3.5.16)

and hence, by conditioning on I, that

φA(θ) =
φI(θ +2λL)(1−φI(θ))2+φI(λL+θ)2(2−φI(θ))

(1−φI(θ)+φI(λL+θ))2
(θ ≥ 0).

(3.5.17)

Recall from the end of Section 3.3.2 on page 167 that the probability of a global
outbreak is given by the 1− pext, where pext is the smallest solution of fR(s) = s in
[0,1] with fR(s) = φA(λG(1− s)). Thus (3.5.17) enables the probability of a global
outbreak to be calculated.

Remark 3.5.11 (Proof of Assumptions (A1) and (A3)).Note that since P(C<∞) = 1,
it is easily shown using (3.5.13) that Assumptions (A.1) on page 164 and (A.3) on
page 176 are satisfied.

3.5.4.2 Basic Reproduction Number R0 and Vaccination

The early stages of the great circle epidemic can also be analysed using a two-type
approximating branching process, B̃ say, of infected individuals, in which infec-
tives are typed G or L according to whether they are infected by a global or a local
contact. The initial infective is of type G. A type-G [type-L] infective has two [one]
susceptible local neighbours so in B̃, conditional upon its infectious period I, it
produces Poi(λGI) type-G offspring and Bin(2,1−e−λGI) [Bin(1,1−e−λGI)] type-
L offspring. Thus the mean offspring matrix of B̃ is

M̃ =

[
mGG mGL
mLG mLL

]
=

[
µIλG 2pL
µIλG pL

]
, (3.5.18)
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where, for example, mGL is the mean number of type-L offspring of a typical type-
G individual. By standard branching process theory, for example, Haccou et al. [37,
Section 5.5], the branching process B̃ has a non-zero probability of not going extinct
if and only if the dominant eigenvalue of M̃ is strictly greater than one. Let R0 be the
dominant eigenvalue of M̃ and note that this coincides with the classical definition
of R0 as, in the epidemic setting, M̃ is an individual-to-individual mean offspring
matrix. A simple calculation shows that

R0 =
1
2

[
λGµI + pL+

√
(λGµI)2+6λGµI pL+ p2L

]
. (3.5.19)

Exercise 3.5.12. Determine the clump generation means µC
k (k = 0,1, . . .) for the

great circle model and show that the positive solution of (3.3.8) (see page 170) is
indeed given by (3.5.19).

Remark 3.5.13. Note that the above typing cannot be used to analyse the households
model, unless the household size n = 2, since in that model the distribution of the
number of local (within-household) infections made by a type-L individual depends
on how many susceptibles are remaining in that household and is not independent
for different individuals in the same household.

Exercise 3.5.14 (Uniform vaccination in the great circle model). Suppose that
R∗ > 1 and individuals are vaccinated with a perfect vaccine independently, each
with probability v. Compute the post-vaccination clump reproduction number R∗(v),
defined in Section 3.3.4 on page 170. Hence determine the critical vaccination cov-
erage vc and verify that it is given by 1−R−1

0 .

Exercise 3.5.15 (Optimal vaccination in the great circle model). Suppose that
R∗ > 1 (or equivalently that R0 > 1, see Theorem 3.3.3 on page 171) and a fraction
v of individuals are vaccinated with a perfect vaccine. Note that the corresponding
post-vaccination clump reproduction number, R̃∗(v) say, is determined by the distri-
bution of the length, LS, of runs of susceptibles between vaccinated individuals. (If
two vaccinated individuals are adjacent the corresponding LS = 0.) Show that, for
given v ∈ (0,1), the reproduction number R̃∗(v) is minimised by making the distri-
bution of LS as constant as possible subject to the constraint imposed by v, i.e. that
the support of LS is concentrated on a single integer, if vN ∈ Z, and on a pair of
consecutive integers, otherwise. Thus the equalising strategy is optimal for the great
circle model (Ball et al. [14]).

Hint: consider the finite N problem, as in Section 2.4.3, so analogous to (3.3.12),

R̃∗(v) = µG(1− v)E[C̃(v)],

where C̃(v) = |C̃ (v)| and C̃ (v) is the post-vaccination local infectious clump of an
individual, i0 say, chosen uniformly at random from the unvaccinated individuals in
the population N . Suppose that post-vaccination the population contains a run of
k susceptibles and a run of k+ l susceptibles, for some k ≥ 0 and l ≥ 2. Consider
the effect on R̃∗(v) of replacing these runs by one of length k+1 and one of length
k+ l−1.
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3.5.4.3 Exponential Growth Rate r

The exponential growth rate r can be calculated by a similar method to that used
in Section 3.5.3.6 for the households-workplaces model, i.e. by determining the
Malthusian parameter of the two-type branching process, B̃R say, corresponding to
the branching process B̃ but run in real time. For t ≥ 0, let λGG(t) be the mean rate
that a type-G individual has a type-G child at age t in B̃R and define λGL(t), λLG(t)
and λLL(t) similarly.

Note that λGG(t) = λLG(t) = λGP(I > t), so LλGG(θ) = λGψI(θ). Consider a
type-L individual, i say. It has one susceptible neighbour, j (= i± 1) say, who it
infects (locally) at age t if and only if (i) it contacts j at age t (which occurs at
rate λL), (ii) it is still infectious at age t (which happens with probability P(I > t))
and (iii) it has not previously contacted j (which happens with probability e−λLt ).
These three events are independent, so λLL(t) = λLP(I > t)e−λLt and LλLL(θ) =
λLψI(θ +λL). A type-G individual has two susceptible neighbours, so LλGL(θ) =
2λLψI(θ +λL).

LetLΛ (θ) =
∫ ∞
0 e−θ tΛ(t)dt, where

Λ(t) =
[

λGG(t) λGL(t)
λLG(t) λLL(t)

]
.

Then
LΛ (θ) =

[
λGψI(θ) 2λLψI(θ +λL)
λGψI(θ) λLψI(θ +λL)

]
(3.5.20)

and r is given by the unique r∈ (−∞,∞) such that the dominant eigenvalue ofLΛ (r)
is one.

Exercise 3.5.16 (Great circle model exponential growth rate r). Show that r is
given by the unique real solution of

λGψI(r)+λLψI(r+λL)+λGλLψI(r)ψI(r+λL) = 1.

3.5.4.4 Final Outcome of Global Outbreak

The local susceptibility set Si of a typical individual i, assuming an infinite pop-
ulation, can be partitioned analogously to Ci at (3.5.12), leading to, in an obvious
notation, S= 1+SL+SR. Note that SL and SR are independent, and

P(SL = k) = P(SR = k) = pkL(1− pL) (k = 0,1, . . .),

whence

fS(s) = s
(

1− pL
1− pLs

)2
(s ∈ (−p−1

L , p−1
L ).

It then follows using (3.4.5) that ẑ, the fraction of the population infected by a global
outbreak, is given by the unique solution in (0,1] of
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1− z= e−λGµI z
(

1− pL
1− pLe−λGµI z

)2
. (3.5.21)

At a more detailed level, note that at the end of an epidemic the great circle
consists of alternating runs of susceptible and recovered individuals, which form
an alternating renewal process (see, for example, Grimmett and Stirzaker [36, page
403]) in the limit as N → ∞. Let TS and TR denote the lengths of typical runs of
susceptibles and recovered individuals, respectively, in this alternating renewal pro-
cess.

Exercise 3.5.17.

(a) Show that
P(TS = k) = π̂k−1(1− π̂) (k = 1,2 . . .), (3.5.22)

where π̂ = e−λGµI ẑ. Thus, given π̂ , the distribution of TS is independent of the
local infection rate λL, which may seem surprising at first sight.

(b) Show that

E[TR] =
1− p2Lπ̂

π̂(1− pL)2
. (3.5.23)

3.5.5 Network Model with Casual Contacts

3.5.5.1 Configuration Model Random Graph

We assume that a configuration model random graph is defined on the popula-
tion N , as follows. Let D1,D2, . . . ,DN be i.i.d. copies of a random variable D,
which describes the degree of a typical individual. (These random variables are
independent of the infectious periods and Poisson process used to define the epi-
demic EN .) For i= 1,2, . . . ,N, attach Di half-edges to individual i. Then pair up the
D1+D2+ · · ·+DN half-edges uniformly at random to form the edges in the random
graph, which we refer to as the network. If D1 +D2 + · · ·+DN is odd, there is a
left-over half-edge, which is ignored; this has no effect on the asymptotic proper-
ties of the epidemic model as N → ∞. The network may have some imperfections,
specifically self-loops and multiple edges, but they are sparse as N → ∞, provided
σ2
D = Var(D) < ∞ (Durrett [32, Theorem 3.1.2]). The above construction gives the

Newman–Strogatz–Watts (Newman et al. [52]) version of the configuration model.
In the Molloy–Reed version (Molloy and Reed [50]) the degrees of individuals are
prescribed deterministically. As indicated in Section 3.1.5, we assume that any given
infectives makes local contacts with its neighbours in the network, at rate λL per
neighbour (see (3.1.1)). Let pk = P(D= k) (k= 0,1, . . .) and µD = E[D], which we
assume to be finite.

Remark 3.5.18. The model described above does not fit exactly the framework de-
fined in Section 3.1 on page 160, since the local infection rates λL

i j (i, j ∈N , i 1= j)
depend on the realisation of the configuration model network. We consider the anal-
ysis of a single epidemic defined on a single realisation of the configuration model.
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Local infectious clumps and local susceptibility sets can then be defined as in Sec-
tion 3.2 on page 163. Note, for example, that the random variableCN

i describing the
size of individual i’s local infectious clump is not conditioned on i’s degree since
the random variables D1,D2, . . . ,DN are i.i.d.

3.5.5.2 Size of Local Infectious Clump

The local infectious clump Ci of individual i ∈ N is a realisation of the outcome
of an SIR epidemic on the configuration model random graph G defined on N as
above (cf. Chapter 3 of Part III in this volume), with individual i as the initial infec-
tive. The early stages of the clump C1 can be approximated on a generation basis by
the (forward) branching process,BF say, defined as follows. The branching process
BF has one initial ancestor, who corresponds to individual 1 in EN . This individual
has D1 neighbours in the network, so the number of individuals it infects locally is
distributed as Bin(D,1− eλLI). (If D and I are independent random variables, then
Bin(D,1− eλLI) denotes a mixed-Binomial random variable obtained by first sam-
plingD and I independently and then, conditional on (D, I), sampling independently
from the binomial distribution havingD trials and success probability 1−eλLI .) Note
that, since the half-edges are paired up uniformly at random, for k= 1,2, . . . , a given
half-edge is k times as likely to be paired with a half-edge attached to a given indi-
vidual having degree k than with one attached to a given individual having degree
1. It follows that, in the limit as N → ∞, the degree D̃ of a typical neighbour of a
typical individual has the size-biased distribution given by P(D̃= k) = p̃k = µ−1

D kpk
(k = 1,2, . . .). Thus, apart from individual 1, the number of susceptible neighbours
of a typical infective in the early stages of the clump C1 is distributed as D̃−1, since
one of the neighbours of that individual (i.e. its infector) is not susceptible. Hence,
the number of individuals infected locally by such an individual is distributed as
Bin(D̃−1,1−eλLI). Thus the offspring distribution of the branching processBF is
Bin(D,1− eλLI) in the initial generation and Bin(D̃− 1,1− eλLI) in all subsequent
generations. Let ZF denote the total size of BF , including the initial ancestor, and
recall thatCN is the size of a typical local infectious clump in EN .

Lemma 3.5.19.
CN D−→ ZF as N → ∞.

Proof. We construct realisations of CN (N = 1,2, . . .) and ZF on the same proba-
bility space and show that CN a.s.−→ ZF as N → ∞, where a.s.−→ denotes almost sure
convergence. The lemma then follows as almost sure convergence implies conver-
gence in distribution.

To that end, let (Ω ,F ,P) be a probability space on which are defined the fol-
lowing independent sets of random variables.

(i) D1,D2, . . . , i.i.d. copies of D.
(ii) U0,U1, . . . , i.i.d., each uniformly distributed on (0,1).
(iii) Ri, j (i, j = 0,1, . . .), independent with Ri, j ∼ Bin(i,1− eλLI).

Let ck = ∑k
l=0 pl (k = 0,1, . . .) and c̃k = ∑k

l=1 p̃l (k = 1,2, . . .). For x ∈ (0,1), let
d(x) =min(k : ck ≤ x) and d̃(x) =min(k : c̃k ≤ x).
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A realisation of the branching process BF is defined on (Ω ,F ,P) as follows.
The initial individual has degree d0 = d(U0) and Rd0,0 offspring. For k = 1,2, . . . ,
the kth individual born inBF has degree dk = d̃(Uk) and Rdk−1,l+1 offspring, where
l is the number of individuals used previously in the construction ofBF which have
degree dk, excluding the initial ancestor.

For N = 1,2, . . . , define a branching processBN
F on (Ω ,F ,P) as follows. Let

pNk = N−1
N

∑
i=1

1{Di=k} (k = 0,1, . . .),

µN
D = N−1

N

∑
i=1

Di and

p̃Nk = (NµN
D )

−1
N

∑
i=1

k1{Di=k} (k = 1,2, . . .).

Let cNk = ∑k
l=0 p

N
l (k = 0,1, . . .) and c̃Nk = ∑k

l=1 p̃
N
l (k = 1,2, . . .). For x ∈ (0,1), let

dN(x) =min(k : cNk ≤ x) and d̃N(x) =min(k : c̃Nk ≤ x). The branching processBN
F is

defined analogously toBF , using the functions dN(x) and d̃N(x) instead of d(x) and
d̃(x), respectively. (If µN

D = 0, the p̃Nk s, and hence also d̃N(x), are not well-defined
but in that case BN

F dies out immediately.)
For N = 1,2, . . . , define on (Ω ,F ,P) a realisation of a typical local infectious

clump, C N say, in EN as follows. The N individuals in N have degrees given by
D1,D2, . . . ,DN . Without loss of generality, label the individuals 1,2, . . . ,N in in-
creasing order of degree. Label the NµN

D half-edges 1,2, . . . ,NµN
D , starting with the

half-edges attached to individual 1, then the half-edges attached to individual 2, and
so on. The initial member of the clump, i0 say, is individual ANU0B. Note that this
individual has degree dN0 = dN(U0), i.e. the same as the initial ancestor in BN

F . It
makes local contacts down RdN0 ,0

of its dN0 half-edges. For k = 1,2, . . . , the kth half-
edge down which a contact is made is paired with half-edge

⌈
NµN

DUk
⌉
. Note that

this latter half-edge is attached to an individual, i∗ say, having degree dNk = d̃N(Uk),
i.e. the same as the corresponding individual in BN

F . Suppose that i∗ has not been
used previously in the construction of C N . Then i∗ joins C N and makes local con-
tacts down Rj,l+1 of those half-edges, where l is the number of individuals with j
unpaired half-edges used previously in the construction of C N , excluding the ini-
tial the initial member i0. The construction continues in the obvious fashion but
needs modifying when an attempt is made to pair a half-edge with one attached
to a previously-used individual. The details of that modification are not important
for proving the lemma. The key observation is that the sizes of BN

F and C N are
necessarily equal if no such modification is required.

Let c̃0 = 0 and define the piecewise-linear function f : [0,1)→ [0,1) by

f (x) = c̃i+
(
c̃i+1− c̃i
ci+1− ci

)
(x ∈ [ci,ci+1); i= 0,1, . . .).

(This function is well-defined as [ci,ci+1) is empty if ci = ci+1.) For N = 1,2, . . . ,
define f N : [0,1) → [0,1) analogously, using (cNi , c̃

N
i ) (i = 0,1, . . .), with c̃N0 = 0.
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Note that in the construction of C N , the lowest-numbered half-edge attached to the
initial member i0 is

⌈
NµN

D f N(U0)
⌉
.

By the strong law of large numbers, pNk
a.s.−→ pk (k = 0,1, . . .) and µN

D
a.s.−→ µD as

N → ∞, so there exists an F0 ∈F , with P(F0) = 1, such that limN→∞ pNk (ω) = pk
(k = 0,1, . . .) and limN→∞ µN

D (ω) = µD for all ω ∈ F0. Let

F11 =

{
ω ∈ Ω :

∞⋃

i=0
{U0 = ci}

}
and F12 =

{
ω ∈ Ω :

∞⋃

i=0

∞⋃

k=1
{Uk = c̃i}

}
.

Then P(F11)=P(F12)= 0, as both F11 and F12 are countable unions of events having
probability zero. Thus P(F1) = 1, where F1 = Fc

11∩Fc
12. Let

F21 =

{
ω ∈ Ω :

∞⋃

i=1
{ f (U0) =Ui}

}
and F12 =

{
ω ∈ Ω :

∞⋃

i=1

∞⋃

j=i+1
{Ui =Uj}

}
.

Then P(F21) = P(F22) = 0, as F21 and F22 are also countable unions of events having
probability zero, since F(U0),U1,U2, . . . are independent continuous random vari-
ables. Hence, P(F2) = 1, where F2 = Fc

21∩Fc
22. Let F = F0∩F1∩F2, so P(F) = 1.

Fix ω ∈ F and let k = ZF(ω). Suppose that k < ∞. Now ω ∈ F0 implies that
limN→∞ cNk (ω) = ck and limN→∞ c̃Nk (ω) = c̃k. It follows that dNl (ω) = dl(ω) (l =
0,1, . . . ,k) for all sufficiently large N, say N ≥N1(ω), since ω ∈ F1. Thus, ZN

F (ω) =
k for N ≥ N1(ω), where ZN

F is the total size ofBN
F .

Let dmax = max(d1,d2, . . . ,dk) be the maximum degree of the k individuals in
B. In the construction of C N (the local infectious clump of an individual chosen
uniformly at random from N ), for 1 ≤ i < j ≤ k, the half-edges

⌈
NµN

DUi
⌉
and⌈

NµN
DUj

⌉
are attached to the same individual only if

|NµN
D (ω)Ui(ω)−NµN

D (ω)Uj(ω)|≤ dmax(ω) =⇒ |Ui(ω)−Uj(ω)|≤ dmax(ω)

NµN
D (ω)

.

Now dmax(ω)
NµN

D (ω)
→ 0 as N → ∞, since µN

D → µD > 0. Thus, since ω ∈ F2, there exists
an N2(ω) such that, for all N ≥ N2(ω), the individuals attached to the half-edges⌈
NµN

DUi
⌉
(i= 1,2, . . . ,k−1) in the construction of C N are all distinct.

Note that limN→∞ f N(x,ω) = f (x), for x ∈ [c̃0,1)\{c̃1, c̃2, . . .}, since ω ∈ F0. A
similar argument to the above shows that there exists an N3(ω) such that for all
N ≥ N3(ω), the individuals attached to the half-edges

⌈
NµN

DUi
⌉
(i= 1,2, . . . ,k−1)

in the construction of C N are all distinct from i0 = ANU0B. It follows that CN(ω) =
ZN
F (ω) = k for all N ≥max(N1(ω),N2(ω),N3(ω)).
Suppose instead that ZF(ω) = ∞. Then, for any K ∈ N, we can use the above

argument to show that CN(ω) ≥ K for all sufficiently large N, so CN(ω) → ∞ as
N → ∞. Thus, CN(ω) → ZF(ω) as N → ∞, for all ω ∈ F , which completes the
proof of the lemma as P(F) = 1. '(

Remark 3.5.20 (Proof of Assumptions (A1) and (A3)). The proof of Lemma 3.5.19
can be extended in an obvious fashion to show that Assumptions (A.1) on page 164
and (A.3) on page 176 are satisfied.
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3.5.5.3 Threshold Parameter R∗

Let mGL and mLL denote respectively the offspring means of the initial individual
and all subsequent individuals inBF . Then mGL = µDpL and mLL = µD̃−1pL, where
pL = 1−φI(λL) and

µD̃−1 = E[D̃−1] = µD+
σ2
D

µD
−1.

For k = 1,2, . . . , the mean size of the kth generation inBF is mGLmk−1
LL , so

µC = E[ZF ] = 1+
∞

∑
k=1

mGLmk−1
LL =

{
1+ mGL

1−mLL
if mLL < 1,

∞ otherwise,

so, using (3.3.5),

R∗ =

{
λGµI

(
1+ mGL

1−mLL

)
if mLL < 1,

∞ otherwise.
(3.5.24)

It is possible to derive an expression for φA(θ) (θ ≥ 0), and hence enable the
probability of a global outbreak to be calculated (see Ball and Neal [17, Section
3.3]). However, it does not take a pleasant form, unless I is constant, and we do not
consider it here.

3.5.5.4 Basic Reproduction Number R0 and Exponential Growth Rate r

As with the great circle model, the early stages of EN can be approximated by a
two-type branching process B̃ of infected individuals, in which infectives are typed
G or L according to whether they were infected by a global or a local contact.

Exercise 3.5.21 (Basic reproduction number R0). Determine the mean offspring
matrix of B̃. Hence, or otherwise, show that

R0 =
1
2

[
λGµI +mLL+

√
(λGµI −mLL)2+4λGµImGL

]
. (3.5.25)

Note that R0 = ∞ if σ2
D = ∞.

Exercise 3.5.22 (Exponential growth rate r).

(a) Using the real-time version of B̃, show that the exponential growth rate r is
given by the largest real solution of

λGψI(r)+λLµD̃−1ψI(r+λL)+λGλL(µD−µD̃−1)ψI(r)ψI(r+λL) = 1.

(b) Determine r when I ∼ Exp(γ).
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3.5.5.5 Size of Local Susceptibility Set

Turning to the final outcome of a global outbreak, the local susceptibility set S1 of
individual 1 can be approximated on a generation basis by a (backward) branching
process, BB, in much the same way as C1 is approximated by BF . Individual 1
has D1 neighbours, each of which, if they were infected, would infect individual
1 independently with probability pL. Thus, in BB, the offspring distribution of the
initial ancestor is, in an obvious notation, Bin(D, pL) and, by a similar argument, the
offspring distribution of any subsequent individual is Bin(D̃−1, pL). Let ZB denote
the total size of BB, including the initial ancestor. A similar argument to the proof
of Lemma 3.5.19 shows that

SN D−→ ZB as N → ∞,

so assumption (A.2) on page 164 is satisfied and we may set S= ZB in the results in
Section 3.4.1.

3.5.5.6 Final Outcome of Global Outbreak

The branching process BB is simpler to analyse than BF (unless the infectious
period is constant, in which case BF

D
= BB), as its offspring distribution depends

on the distribution of I only through pL. We now derive the probability-generating
function of ZB, and hence of S. Let Y be the number of offspring of the initial
ancestor inBB. Then,

ZB = 1+
Y

∑
i=1

Z̃B(i), (3.5.26)

where Z̃B(1), Z̃B(2), . . . are i.i.d. copies of a random variable Z̃B giving the total size
of the branching process started by a typical child of the initial ancestor in BB.
(Note that Z̃B(1), Z̃B(2), . . . are independent of Y .) A similar decomposition yields

Z̃B = 1+
Ỹ

∑
i=1

Z̃′
B(i), (3.5.27)

where Z̃′
B(1), Z̃

′
B(2), . . . are i.i.d. copies of Z̃B that are independent of Ỹ .

For 0 ≤ s ≤ 1, let g(s) = E[sD], as in Section 1.2 of Part III in this volume,
fY (s) = E[sY ], fỸ (s) = E[sỸ ], ψ(s) = E[sZB ] and ψ̃(s) = E[sZ̃B ]. Then,

fY (s) = E[E[sY |D]] = E[(1− pL+ pLs)D] = g(1− pL+ pLs) (0≤ s≤ 1);

the second equality follows as Y ∼ Bin(D, pL). Similarly,

fỸ (s) = E[(1− pL+ pLs)D̃−1] = µ−1
D g′(1− pL+ pLs) (0≤ s≤ 1).

Further, using (3.5.26),
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ψ(s) = E[s1+∑Y
i=1 Z̃B(i)]

= E[E[s1+∑Y
i=1 Z̃B(i)|Y ]]

= sE[(ψ̃(s))Y ]
= sg(1− pL+ pLψ̃(s)) (3.5.28)

and similarly, using (3.5.27),

ψ̃(s) =
s
µD

g′(1− pL+ pLψ̃(s)). (3.5.29)

Equation (3.5.29) uniquely determines ψ̃(s) (0 ≤ s ≤ 1) (see Jagers [42, page
39]) so, when R∗ > 1, it follows using (3.4.5) on page 182 that ẑ, the fraction of the
population infected by a global outbreak, is given by the unique solution in (0,1] of

1− z= ψ(e−λGµI z), (3.5.30)

where ψ(·) is given by (3.5.28) and (3.5.29).

Exercise 3.5.23. For most choices of degree distribution D, equation (3.5.29) does
not admit a closed-form solution. An exception is when D has a logarithmic distri-
bution, i.e.

P(D= k) =− 1
log(1− p)

pk

k
(k = 1,2, . . .),

where p ∈ (0,1) is a fixed parameter. For this degree distribution, determine R∗ and
an equation governing ẑ.
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Problems of Chapter 1

1.3.2 Note that S sus
1 is a symmetric sampling procedure on S sus

0 . For k =
1,2, . . . ,n, let Ak ⊆S sus

0 with |Ak|= k. Using notation from Section 1.2, the proba-
bility that all members of Ak are not contacted by the infective with label 0 is

P
(
⋂

i∈Ak

{W0i > I0}
)

= E
[
P
(
⋂

i∈Ak

{W0i > I0}|I0

)]

= E
[
e−kλ I0

]

= qk,

so P(S sus
1 ⊇ Ak) = qak , as distinct infectives behave independently. Thus, by Lemma

1.3.1, E[S1,[k]] = qak (k = 1,2, . . . ,n) and (1.3.4) follows. (When k = 0, (1.3.4) be-
comes ∑n

i=0Pn,a(k) = 1.) Part (b) follows immediately using (1.3.3).

Problems of Chapter 2

2.6.1 Firstly, we can find that µH = ∑i iαi =
4
3 , so α̃1 = α̃2 =

1
2 . Also P(I = 1) = 1

implies that φI(θ) = E[e−θ I ] = e−θ . We also use the fact that in the households of
size 2 the initial case in a household infects the other individual with probability
1−q1 = 1−φI(λL) = 1− e−λL .

(a) From equation (2.2.1) and the calculations above, we have R∗ = λG[
1
2µ1(λL)+

1
2µ2(λL)]. Since there are no possible secondary cases in a household of size 1
we have µ1(λL) = 1; and since the initially susceptible individual gets infected
with probability e−λL , we have µ2(λL) = e−λL + 2(1− e−λL) = 2− e−λL . We
therefore find that R∗ = λG

1
2 [3− e−λL ].

(b) First we find mn(θ) = φn−1,1(1,θ), the Laplace transform of the total sever-
ity. It is immediate that m1(θ) = e−θ , and by conditioning on the size of

215
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the outbreak we find that m2(θ) = e−λLe−θ + (1− e−λL)e−2θ . We therefore
have P(major outbreak) = 1−σ , where σ is the smallest solution in [0,1] of
s= fR(s) and (using equation (2.2.2))

fR(s) =
1
2
m1(λG(1− s))+

1
2
m2(λG(1− s))

=
1
2
(1+ e−λL)e−λG(1−s) +

1
2
(1− e−λL)e−2λG(1−s).

(c) To use equations (2.3.1) and (2.3.2), we first need to calculate µ̃1,0(λL,π) and
µ̃2,0(λL,π). It is immediate that µ̃1,0(λL,π) = 0 ·π +1 · (1−π) = 1−π , since
the size of the local outbreak is zero or one according as the individual under
consideration avoids or does not avoid outside infection. A household of size 2
will have size 0 precisely when both individuals avoid outside infection; it will
have size 1 when one is infected from outside and the other avoids infection
both from outside and inside the household. From this we deduce that

µ̃2,0(λL,π) = 0 ·π2+1 ·2π(1−π)e−λL +2 · [1−π2−π(1−π)e−λL)]

= 2(1−π)(1+π(1− e−λL)).

It then follows that

z=
1
2
µ̃1,0(λL,π)+

1
2
µ̃2,0(λL,π)

= (1−π)[3
2
+π(1− e−λL)],

where π = e−λGz.
(d) Using equation (2.4.3) we find that µnv = λG · µI · µn−v(λL), and using the for-

mulae for µk(λL) from part (a) and the given parameter values yields µ10 = 1.2,
µ20 = 2.34 and µ21 = 0.6 (to 2 decimal places). This gives the following scaled
gain matrix (again to two decimal places).

n v= 0 1
1 1.2
2 3.48 1.2

We therefore see that the highest priority is to vaccinate one of the individuals
in households of size 2. These households are then effectively of size 1 (since
the vaccinated individual is completely unaffected by the epidemic), so vacci-
nating a second individual in a household of size 2 has the same effect on Rv as
vaccinating a single individual in its own household.

(e) Following the ordering from (d) above, we vaccinate one individual in house-
holds of size 2 first: since α̃2 =

1
2 , half of the population are in such households,

so vaccinating one in each such household gives coverage of 1
4 . Then there is

enough vaccine left to vaccinate a further 3
5 −

1
4 = 7

20 of the population. Since
G′
10 = G′

21 it is equally effective (in terms of R∗) to allocate this vaccine to any
combination of the half of the population that are in single-resident households
and the quarter that are unvaccinated in 2-resident households. For simplicity
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of calculation, allocate it to the singletons: we can vaccinate 0.35/α̃1 = 0.7 of
them. Thus we have (x10,x11) = (0.3,0.7) and (x20,x21,x22) = (0,1,0).
For this (or any other specified) vaccine allocation regime (xnv, n = 1,2, v =
0, . . . ,n), equation (2.4.2) can be used to find the resulting value of R∗ (using the
values for µnv from (d) above). The resulting value of Rv is 0.48, so the epidemic
is certainly under control in the sense that major outbreaks are not possible.
(Compare with the original R∗ value, without vaccination, of approximately
1.77 which implies that major outbreaks are possible.)

2.6.2

(a) Since the infection is highly locally infectious, the initial infective in the house-
hold instantly infects all susceptibles in the household. Thus the whole house-
hold will become infected (with probability 1) and we have

P(Z(n) = z) =

{
0 z= 1,2, . . . ,n−1,
1 z= n.

(b) (i) Following directly from part (a) we have µn(∞) = E[Z(n)] = n.
(ii) We also have µH = ∑n nαn = 2 · 12 + 3 · 12 = 5

2 , so using α̃n = nαn/µH we
find that α̃2 = 2 · 12/

5
2 =

2
5 and α̃3 = 3 · 12/

5
2 =

3
5 . (This makes sense: with equal

numbers of households of size 2 and 3 there will be two fifths of individuals in
households of size 2 and three fifths in households of size 3.) Therefore

R∗ = ∑
n

α̃nnλG
1
γ
= (

2
5
·2+ 3

5
·3)× λG

γ
=

13
5

λG

γ
.

(c) The severity An is the sum of the infectious periods of all individuals in-
fected, including the initial infective. Since everyone in the household gets
infected, this is the sum of n independent Exp(γ) random variables; that is
An = ∑n

j=1 1{individual j is infected}I j = ∑n
j=1 I j. Since the variables I j are in-

dependent and have common Laplace transform φI(θ) = E[e−θ I ] = γ/(γ +θ),
we have

mn(θ) = E[e−θ ∑n
j=1 I j ] =

n

∏
j=1

φI(θ) =
(

γ
γ +θ

)n

.

(d) (i) Using the formula (2.2.2),

fR(s) = ∑
n

α̃nmn(λG(1− s))

=
2
5

(
γ

γ +λG(1− s)

)2
+

3
5

(
γ

γ +λG(1− s)

)3
.

(ii) Then σ = 1−P(major outbreak) is a fixed point of this function, that is it
satisfies fR(σ) = σ .

(e) We seek values of (λG,γ) which satisfy R0 = λG/γ < 1 (standard SIR model
subcritical) but R∗ =

13
5 λG/γ > 1 (households model supercritical). Values of

(λG,γ) satisfying both of these criteria are {(λG,γ) : λG/γ ∈ ( 5
13 ,1)}.
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2.6.3 In all cases the key is calculating µnv for all relevant values of n and v (i.e.
v = 0,1, . . . ,n for each n = 2,3); then it is straightforward (though maybe a bit
tedious) to compute G′

nv = n(µnv−µn,v+1). If household sizes larger than 3 or 4 are
to be used then it is advisable to do the numerical calculations using a computer
package.

(a) With a perfect vaccine, a within-household outbreak in a household in state
(n,v)will have size 0 with probability v/n and will have size n−vwith probabil-
ity (n− v)/n. Thus µnv = (n− v)2/n ·λGµI and then G′

nv = (2(n− v)−1)λGµI .
(One can also derive the formula for µnv from equation (2.4.3), taking ε = 1.)
Using the given parameter values this yields the following scaled gain matrix
G′.

n v= 0 1 2
2 6 2
3 10 6 2

From this we see that vaccinating a single individual in households of size 3
is the highest priority. Such households are then effectively households of size
2, so vaccinating a second individual in a household of size 3 has the same
effect (on Rv) as vaccinating one individual in a household of size 2 (i.e. G′

31 =
G′
20), and doing either of these is the next priority. Similar reasoning applies to

vaccinating the last susceptible in each household.
(b) With an all-or-nothing vaccine we could calculate µnv using equation (2.4.3),

but again direct reasoning is simpler. If the contacted individual is unvaccinated
(which happens with probability (n− v)/n) then the mean size of the local epi-
demic is n− v+ v(1− ε) and if it is vaccinated (which occurs with probability
v/n) then the mean size is (1−ε)(1+n−v+(v−1)(1−ε)). We then find that

µnv =
λGµI
n

(n2− (2n−1)εv+ ε2v(v−1)),

from which it follows that G′
nv = ε[2(n− εv)−1].

The given numerical parameter values thus yield the following scaled gain ma-
trix.

n v= 0 1 2
2 3 2
3 5 4 3

In this situation the first priority is to vaccinate a first individual in households
of size 3, followed by a second individual in those households. Then vaccinat-
ing the last individual in 3-households and the first individual in 2-households
have equal priority (though perhaps in practice with limited vaccine we might
prioritise vaccinating in the 3-households since we will already be visiting them
to vaccinate the first two individuals there); and if we still have vaccine avail-
able then the lowest priority individuals are the remaining lone unvaccinated
individuals in households of size 2.

(c) Again we rely on the fact that within-household epidemic completely infects the
household (as the local infection rate is very large) to simplify the calculations.
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It is clear that µn(n,v),A,V = v and µn(n,v),A,U = n− v for both A=U,V . (This can
also be derived from Proposition 1.9.1.) Making these substitutions into equa-
tion (2.4.4) and simplifying yields µnv = λGµI(n− (1− a)v)(n− (1− b)v)/n,
from which it follows that G′

nv = λGµI [(2−a−b)n− (1−a)(1−b)(2v+1)].
The scaled gain matrix that results from the parameter values a= b= 1/

√
2 is

as follows (to 2 decimal places).

n v= 0 1 2
2 2.17 1.83
3 3.34 3 2.66

Here we see that the optimal course of action is to first vaccinate one individ-
ual in each household of size 3, then a second and third individual in those
households. Only after households of size 3 are completely vaccinated do we
vaccinate a first then a second individual in households of size 2. Note that this
is not an equalising strategy.

(d) With a leaky vaccine we are in the framework of (c) above, but with b= 1. The
formula for G′

nv from (c) simplifies to G′
nv = λGµI(1−a)n. This is independent

of v and also (so long as a ∈ (0,1)) decreasing in n; thus the optimal vaccine
allocation scheme involves vaccinating all individuals in the largest households,
then in the next largest households, and so on. If there is insufficient vaccine to
cover everyone in households of a given size, then there is no preference (in
terms of Rv) of how to allocate the vaccine.

2.6.4

(a) Consider a globally infected individual in a household of size n. With proba-
bility δ she self-isolates and infects no-one else, so the local epidemic causes
no subsequent global infections. With the complementary probability the initial
case does not self-isolate and the within-household epidemic proceeds as nor-
mal, with an average of µn(λL) individuals becoming infected in the household
and each of them making an average of λGµI global contacts. Thus

R∗ = E[R] =
nmax

∑
n=1

α̃n[δ ·0+(1−δ )µn(λL)λGµI ]

= (1−δ )
nmax

∑
n=1

α̃nµn(λL)λGµI .

(b) Since self-isolation effectively means zero severity for the within-household
epidemic (although the initial case is infected, the self-isolation means that she
is guaranteed to not infect anyone else in the population), one can condition on
whether or not the initial case self-isolates to find that

E[sRn ] = δ +(1−δ )φn−1,1(1,λG(1− s)),

so that

f δ
R (s) = δ +(1−δ )

nmax

∑
n=1

α̃nφn−1,1(1,λG(1− s)).
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Letting σδ = f δ
R (σδ ) be the probability of a minor outbreak, it follows that

f δ
R (σ0) = δ +(1−δ )σ0 ≥ σ0 and thus that σδ = f δ

R (σδ )≥ σ0 (draw a diagram
of the probability generating functions to help see this last inequality). This
implies that the major outbreak probabilities satisfy 1−σδ ≤ 1−σ0.

Problems of Chapter 3

3.5.1 Note that the local susceptibility set of an individual, i say, comprises just that
individual, so χN

i (t) = 1{Li≤t}. Thus, using (3.4.16), r(t) = P(L1 ≤ t) = 1−e−λ t and
a(t) = µI(1−e−λ t), both for t ≥ 0. Hence, using (3.4.27), τ̂ solves τ = µI(1−e−λτ).
Recalling that R0 = λµI , it follows that ẑ= µ−1

I τ̂ is the unique solution in (0,1] of
z = 1− e−λR0z, so ẑ = z∗ where z∗ is defined in Theorem 3.3.1 of Part I in this
volume. Note that r(τ̂) = 1− ẑ.

Further, since L1,L2, . . . ,LN , I1, I2, . . . , IN are independent,

σ2
R(τ̂) = Var(χN

1 (τ̂)) = e−λ τ̂(1− e−λ τ̂) = ẑ(1− ẑ), (3.5.31)

σRA(τ̂) = cov(χN
1 (τ̂), I1χN

1 (τ̂)) = µIVar(χN
1 (τ̂)) = µI ẑ(1− ẑ) (3.5.32)

and

σ2
R(τ̂) = Var(I1χN

1 (τ̂)) = (σ2
I +µ2

I )(1− e−λ τ̂)−µ2
I (1− e−λ τ̂)2

= µ2
I ẑ(1− ẑ)+σ2

I ẑ. (3.5.33)

Substituting (3.5.31)–(3.5.33) into σ2
R , given by (3.4.26) with τ = τ̂ , and rearranging

yields the asymptotic variance in Theorem 3.3.2 of Part I in this volume.

3.5.2 Consider the approximating branching process BR, defined on page 174 in
Section 3.3.5, for the special case of the Markovian SEIR model. A typical indi-
vidual has offspring at the points of a Poisson process having rate λ during the age
interval [L,L+ I), where L ∼ Exp(ν) and I ∼ Exp(γ) are independent, so in the
notation of Section 3.3.5,

µY (t) = P(L≤ t < L+ I)
= [P(L≤ t)−P(L+ I ≤ t)] (t > 0).

(A local infectious clump consists of a single infective, who is infective at infectious
age t if and only if t ∈ [L,L+ I).) Thus, using (3.3.16) on page 175 with λG = λ , the
exponential growth rate r is given by the unique solution in (−∞,∞) of

∫ ∞

0
λe−rt [P(L≤ t)−P(L+ I ≤ t)]dt = 1. (3.5.34)
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Now
∫ ∞

0
e−rtP(L≤ t)dt =

∫ ∞

0
e−rt(1− e−νt)dt =

ν
(ν + r)r

(r >−ν)

and, using the formula for the Laplace transform of a convolution of two functions,
∫ ∞

0
e−rtP(L+ I ≤ t)dt =

∫ ∞

t=0
e−rt

∫ t

u=0
νe−νuP(I ≤ t−u)dudt

=
ν

ν + r
γ

(γ + r)r
(r >−min(ν ,γ)),

so

λ
∫ ∞

0
e−rtP(L≤ t < L+ I)dt =

ν
(ν + r)(γ + r)

(r >−min(ν ,γ)). (3.5.35)

Substituting (3.5.35) into (3.5.34) and rearranging shows that r satisfies the
quadratic equation

r2+(γ +ν)r+(γ −λ )ν = 0, (3.5.36)

whence
r =

1
2

[√
(γ −ν)2+4λν − (γ +ν)

]
.

(The other solution of (3.5.36) can be excluded as it is ≤−min(ν ,γ).)

3.5.3 For the epidemic En−1,1(λH , I), let Yn,k be the number of individuals in house-
hold generation k (k = 0,1, . . . ,n−1), so µH

k = E[Yn,k]. Note that household gener-
ation 0 always consists of the initial infective, so µH

k = 1 for all n.

(a) As the infectious period is constant, the initial infective infects the other two
household members independently with probability pH , so Y3,1 ∼ Bin(2, pH) and
µH
1 = 2pH . (A binomial distribution with n trials and success probability p is de-

noted by ∼ Bin(n, p).) The only way an individual can be in household generation
2 is if the initial infective infects precisely one of the two initial susceptibles, who
then infects the other initial susceptible (i.e., in the notation of Section 3.1 of Part
I of this volume, the chain 1 → 1 → 1 occurs), which happens with probability
2pH(1− pH)pH , so µH

2 = 2p2H(1− pH).

(b) If I is not constant then Y3,1|I ∼ Bin(2,1− e−λHI), so letting I0 denote the
length of the initial infective’s infectious period,

µH
1 = E[Y3,1] = E[E[Y3,1|I0]] = E[2(1− e−λHI0)] = 2(1−φI(λH)).

The probability that the initial infective infects precisely one of the two initial sus-
ceptibles is

E[2(1− e−λHI0)e−λHI0 ] = 2(φI(λH)−φI(2λH))

and, letting I1 denote the length of the infected susceptible’s infectious period, the
probability it infects the other susceptible is E[1− e−λHI1 ] = 1−φI(λH), so since I0
and I1 are independent,
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µH
2 = 2(φI(λH)−φI(2λH))(1−φI(λH)).

(c) Suppose n= 4 and I is constant. Then Y4,1 ∼ Bin(3, pH), so µH
1 = 3pH . Note

that

E[Y4,2] = E[E[Y4,2|Y4,1]] (3.5.37)
= P(Y4,1 = 1)E[Y4,2|Y4,1 = 1]+P(Y4,1 = 2)E[Y4,2|Y4,1 = 2],

since the possible values of Y4,1 are 0,1,2,3 and Y4,2 = 0 if Y4,1 is 0 or 3. Now
Y4,2|Y4,1 = 1∼ Bin(2, pH), since at that stage there are two remaining susceptibles,
so E[Y4,2|Y4,1 = 1] = 2pH . If Y4,1 = 2 then there is one remaining susceptible, who
avoids infection from the two generation-1 infectives with probability (1− pH)2, so
E[Y4,2|Y4,1 = 2] = 1− (1− pH)2. Thus, since Y4,1 ∼ Bin(3, pH), (3.5.37) yields

µH
2 =

(
3pH(1− pH)2

)
2pH +

(
3p2H(1− pH)

)(
1− (1− pH)2

)

= 3p2H(1− pH)(2− p2H).

The only way an individual can be in household generation 3 is if the chain 1 →
1→ 1→ 1 occurs. Thus,

µH
3 =

(
3pH(1− pH)2

)
(2pH(1− pH))(pH) = 6p3H(1− pH)3.

If I is not constant, then Y4,1|I0 ∼ Bin(3,1−e−λHI0), where I0 is the length of the
initial infective’s infectious period, so

µH
1 = E[Y4,1] = E[E[Y4,1|I0]] = E[3(1− e−λHI0)] = 3(1−φI(λH)). (3.5.38)

To determine µH
2 , note that

P(Y4,1 = 1) = E[3(1− e−λHI0)e−2λHI0 ] = 3(φI(2λH)−φI(3λH))

and

P(Y4,1 = 2) = E[3(1− e−λHI0)2e−λHI0 ] = 3(φI(λH)−2φI(2λH)+φI(3λH)) .

Further, if Y4,1 = 1, let I1 be the infectious period of the generation-1 infective. Then

E[Y4,2|Y4,1 = 1] = E[E[Y4,2|Y4,1 = 1, I1]] = E[2(1− e−λHI1)] = 2(1−φI(λH)).

Conditional on Y4,1 = 2, the remaining susceptible avoids infection from the two
generation-1 infectives independently, each with probability φ(λH), so

E[Y4,2|Y4,1 = 2] = 1−φI(λH)
2.

Thus (3.5.37) now yields

µH
2 =(3[φI(2λH)−φI(3λH)])2(1−φI(λH))

+3[φI(λH)−2φI(2λH)+φI(3λH)]
(
1−φI(λH)

2) .
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Finally, as the infectives in the chain 1 → 1 → 1 → 1 have independent infectious
periods, arguing as in the derivation of (3.5.38) yields

µH
3 = 6(φI(2λH)−φI(3λH))(φI(λH)−φI(2λH))(1−φI(λH)) .

3.5.4 (a) Label the two individuals in a household 0 and 1, where 0 is the initial
infective. For t ≥ 0,

Y (t) = χ0(t)+χ1(t), (3.5.39)

where, for i= 0,1,

χi(t) =

{
1 if i is infective at time t,
0 otherwise .

For simplicity we assume that the distribution of the infectious period I is absolutely
continuous with density fI(t) (t ≥ 0). Denote the infectious periods of individuals 0
and 1 (if it is infected) by I0 and I1, respectively. Then,

∫ ∞

0
e−θ tE[χ0(t)]dt =

∫ ∞

0
e−θ tP(I0 > t)dt

=
∫ ∞

t=0
e−θ t

∫ ∞

u=t
fI(u)dudt

=
∫ ∞

u=0
fI(u)

∫ u

t=0
e−θ t dt du

=
∫ ∞

u=0
fI(u)

1
θ

(
1− e−θu

)
du

=
1
θ
[1−φI(θ)]

= ψI(θ). (3.5.40)

Let T1 denote the time when individual 0 infects individual 1, where T1 = ∞ if
individual 0 fails to infect individual 1. For t > 0, T1 = t if and only if the first
contact of individual 1 by individual 0 occurs at time t (which happens with density
λHe−λHt ) and I0 > t. Hence, T1 has density fT1(t) = λHe−λHtP(I0 > t) (t > 0), since
the Poisson process which governs the times when individual 0 contacts individual
1, is independent of I0. Further, χ1(t) = 1 if and only if T1 ≤ t and T1+ I1 > t. Thus,

E[χ1(t)] =
∫ t

0
fT1(u)P(I1 > t−u)du,

so, using the formula for the Laplace transform of a convolution of two functions,
∫ ∞

0
e−θ tE[χ1(t)]dt =

∫ ∞

0
e−θ tλHe−λ tP(I0 > t)dtψI(θ)

= λHψI(λH +θ)ψI(θ). (3.5.41)
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Note that using a Stieltjes integral shows that (3.5.40) and (3.5.41) also hold when
I is not absolutely continuous. The expression (3.5.3) for LµY (θ) now follows us-
ing (3.5.39).

(b) Suppose I ∼ Exp(γ). Then fI(t) = γe−γt (t ≥ 0), so φI(θ) = γ/(γ + θ) and
ψI(θ) = 1/(γ +θ) (θ > −γ). It follows from (3.3.16) on page 175 that r satisfies
λGLµY (r) = 1. Thus, using part (a),

λG

γ + r

[
1+

λH

γ +λH + r

]
= 1,

which on rearranging yields

r2+(2γ +λH −λG)r+(γ −λG)(γ +λH)−λHλG = 0, (3.5.42)

so
r =

1
2

[
λH −λG−2γ +

√
λ 2
H +6λHλG+λ 2

G

]
.

(The other solution of (3.5.36) is less than

1
2
[λH −λG−2γ − (λH +λG)] =−(γ +λG)<−γ,

so it can be excluded.)

3.5.5 Setting j = 1 in (3.5.5) yields

fS(s) =
n

∑
k=1

(n−1)[k−1]skqn−k
k Gk−1(1 |U ′),

whereU ′ (= EU) is given by u′k = qk+1 (k= 0,1, . . .). Let µ̃n(λH , I,π) be the mean
total size of Ẽn,0(λH , I,π). Then Corollary 1.8.2 on page 139 yields

µ̃n(λH , I,π) = n−
n

∑
i=1

n[i]qn−i
i π iGi−1(1 |U ′),

so
µ̃n(λH , I,π)

n
= 1−

n

∑
i=1

(n−1)[i−1]qn−i
i π iGi−1(1 |U ′).

Thus,

1− fS(e−λGµI z) =
µ̃n(λH , I,e−λGµI z)

n
and the two equations governing ẑ are the same.

3.5.6 A simple way of showing that |XH |
D
= S̃ is to show that the factorial mo-

ments of the two distributions are the same. It follows using Lemma 1.3.1 on
page 129, (3.4.10) on page 184 and (3.5.5) that, for j = 0,1, . . . ,n,
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E
[
|XH |[ j]

]
= n[ j] f jn(π̂)

= n[ j]
n

∑
k= j

(n− j)[k− j]π̂kqn−k
k Gk− j(1 | E jU), (3.5.43)

whereU is given by uk = qk (k= 0,1, . . .). Setting a= 0,π = π̂ and x= 1 in (1.8.3)
on page 140 yields, for j = 0,1, . . . ,n, that

E
[
S̃[ j]
]
=

n

∑
k= j

n[k]qn−k
k π̂kG( j)

k (1 |U). (3.5.44)

Noting that n[ j](n− j)[k− j] = n[k] and G( j)
k (1 | U) = Gk− j(1 | E jU) (using Prop-

erty 1.4.5 on page 131), it follows from (3.5.43) and (3.5.44) that E
[
|XH |[ j]

]
=

E
[
S̃[ j]
]
( j = 0,1, . . . ,n), so |XH |

D
= S̃ as both |XH | and S̃ have support {0,1, . . . ,n}.

Alternatively, one can show directly that P(S̃ = k) is given by (3.5.7). Let fS̃(x)
denote the probability-generating function of S̃. Then setting θ = 0 in Theorem 1.8.1
on page 138 yields

fS̃(x) =
n

∑
l=0

n[l]qn−l
l π̂ lGl(x |U) (x ∈ R),

so, for k = 0,1, . . . ,n,

P(S̃= k) =
1
k!

f (k)S̃ (0) =
1
k!

n

∑
l=k

n[l]qn−l
l π̂ lG(k)

l (0 |U),

since Gl(x |U) is a polynomial of degree l. Further, G(k)
l (x |U) is a polynomial of

degree l− k, so its Taylor expansion about x= 1 yields

G(k)
l (0 |U) =

l−k

∑
j=0

(−1) j

j!
G(k+ j)
l (1 |U)

=
l

∑
j=k

(−1) j

( j− k)!
Gl− j(1 | EJU),

where we have used Property 1.4.5 on page 131. Thus, for k = 0,1, . . . ,n,

P(S̃= k) =
1
k!

n

∑
l=k

n[l]qn−l
l π̂ l

l

∑
j=k

(−1) j

( j− k)!
Gl− j(1 | EJU)

=

(
n
k

) n

∑
j=k

(−1) j
(
n− k
j− k

) n

∑
l= j

(n− j)[l− j]qn−l
l π̂ lGl− j(1 | EJU)

=

(
n
k

) n

∑
j=k

(−1) j
(
n− k
j− k

)
f jn(π̂),

using (3.5.5).
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3.5.7 Recall that, for i ∈N , the sets of individuals in i’s household and workplace
are denoted by Hi andWi, respectively. Fix i ∈N and consider the following iter-
ative process, which is analogous to the construction of i’s local susceptibility set
Si in Section 3.5.3.1 but assumes that at each stage all household (or workplace)
members join a household (or workplace) local susceptibility set. Let

P̂0 = Hi,

and, for k = 1,2, . . . , let

P̂k =






(⋃
j∈P̂k−1

Wj

)
\
(⋃k−1

l=0 P̂l

)
if k is odd,

(⋃
j∈P̂k−1

Hj

)
\
(⋃k−1

l=0 P̂l

)
if k is even.

Note that forming P̂1 involves determining the workplaces of nH individu-
als (i.e. of the nH members of i’s household), forming P̂2 then involves deter-
mining the households of nH(nW − 1) individuals (the members of i’s household
are already known), forming P̂3 then involves determining the workplaces of
nH(nW −1)(nH −1) individuals, and so on. Thus, for k = 1,2, . . . , in forming P̂2k
the total number of individuals whose workplace has been determined is

NW (k) =
k−1

∑
l=0

nH [(nW −1)(nH −1)]l

= nH
[
[(nW −1)(nH −1)]k−1

nWnH −nW −nH

]

and the total number of individuals whose household has been determined is

NH(k) =
k−1

∑
l=0

nH(nW −1)[(nW −1)(nH −1)]l

= nH(nW −1)
[
[(nW −1)(nH −1)]k−1

nWnH −nW −nH

]
.

Let MW (k) be the event that at least two of the workplaces of the above NW (k)
individuals are the same. For i 1= j,

P(σ(i) and σ( j) belong to the same workplace) =
nW −1
N−1

,

so, for fixed k,

P(MW (k))≤
(
NW (k)

2

)
nW −1
N−1

→ 0 as N → ∞. (3.5.45)

Let MH(k) be the event that at least two of the households of individual i and the
above NH(k) individuals are the same. A similar argument shows that, for fixed k,
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P(MH(k))≤
(
NH(k)+1

2

)
nW −1
N−1

→ 0 as N → ∞. (3.5.46)

Similar to the proof of Theorem 3.3.6 on page 177, the approximating branch-
ing process B̂ and the local susceptibility set Si can be constructed on a common
probability space so that, for k = 1,2, . . . ,

|P(SN ≤ k)−P(Ẑ ≤ k)|≤ P(MW (k)∪MH(k)),

cf. (3.3.24). Now (3.5.45) and (3.5.46) imply that P(MW (k)∪MH(k))→ 0 as N→∞
(k = 1,2, . . .), so SN D−→ Ẑ as N → ∞.

3.5.8 Let H be an initially fully susceptible household. For i ∈ H, let S̄ N
i be the

local susceptibility set of i among N \H and S̄Ni = |S̄ N
i |. Then S̄Ni

D−→ ẐH as
N → ∞. In the event of a global outbreak, the members of H avoid external in-
fection (i.e. from a global or a workplace contact) independently with probability
π̄ = fZH(e−λGµI ẑ). It follows that ZH is distributed as the total size of the epidemic
ẼnH ,0(λH , I, π̄) defined in Section 1.8 on page 138.

Let µ̃nH (λH , I, π̄) be the mean total size of ẼnH ,0(λH , I, π̄). Then, as in Section 2.3
(cf. (2.3.2) on page 147), ẑ satisfies

ẑ=
1
nH

µ̃nH (λH , I, π̄). (3.5.47)

For fixed nH ,λH and distribution of I, the right-hand side of (3.5.47) is strictly de-
creasing in π̄ , so fixing ẑ also fixes π̄ and hence also the distribution of ZH . Thus
any choice of (nW ,λW ,λG) consistent with ẑ yields the same distribution of ZH .

3.5.9 The characteristic polynomial of the matrix V (λ ) is f (x) = det(xI−V (λ )),
where I is the 3× 3 identity matrix. Expanding the determinant det(xI −V (λ ))
yields that f (x) is given by the expression in the exercise. Let A= vG(λ ),B= vH(λ )
andC = vW (λ ). Then,

f (x) = 0 ⇐⇒ x3−Ax2− (AB+AC+BC)x−ABC = 0

⇐⇒ ABC
x3

+
AB+AC+BC

x2
+

A
x
= 1. (3.5.48)

The left-hand side of (3.5.48) is decreasing in x∈ (0,∞), tends to ∞ as x→ 0− and to
0 as x→ ∞. Thus f (x) = 0 has a unique solution in (0,∞). The dominant eigenvalue
v∗(λ ) of V (λ ) satisfies f (v∗(λ )) = 0. Moreover, by the Perron–Frobenius theorem
(see, for example, Haccou et al. [37, page 293]), v∗(λ ) ∈ (0,∞), so v∗(λ ) = 1 if and
only if f (1) = 0, i.e. if and only if

ABC+AB+AC+BC+A−1= 0 ⇐⇒ A(B+1)(C+1)+BC−1= 0.

The equation (3.5.9) then follows.

3.5.10 Note that (AR|AR > 0) D
= A′, where A′ = I+AR. Recall that I is the infectious

period of individual i. Conditioning on I,
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A′ =

{
I if i does not infect i+1 locally,
I+A′′ otherwise,

(3.5.49)

where A′′ is an independent copy of A′. Let φA′(θ) = E[e−θA′ ] (θ ≥ 0). Now

P(i does not infect i+1 locally|I) = e−λLI ,

so, using (3.5.49),

E[e−θA′ |I] = e−λLIe−θ I +(1− e−λLI)e−θ IφA′(θ).

Thus,

φA′(θ) = E[E[e−θA′ |I]]
= φI(λL+θ)+ [φI(θ)−φI(λL+θ)]φA′(θ),

which on rearranging yields (3.5.16).
Given I, the events {AR > 0} and {AL > 0} occur independently, each with prob-

ability 1− e−λLI . Now A= I+AL+AR, so

φA(θ) = E
[
E
[
e−θ(I+AL+AR)|I

]]

= E
[
e−θ I

{
e−2λLI +2e−λLI(1− e−λLI)φA′(θ)+(1− e−λLI)2(φA′(θ))2

}]

= φI(θ +2λL)+2[φI(θ +λL)−φI(θ +2λL)]φA′(θ)
+ [φI(θ)−2φI(θ +λL)+φI(θ +2λL)](φA′(θ))2. (3.5.50)

Equation (3.5.17) follows by substituting (3.5.16) into (3.5.50).

3.5.12 The clump Ci has one index case, individual i, so µC
0 = 1. For k = 1,2 . . . ,

the only two possible clump generation-k individuals are individuals i+ k and i− k,
who by (3.5.14) each belong to the clump with probability pkL. Thus µC

k = 2pkL
(k = 1,2, . . .).

Let µG = λGµI . Substituting the above µC
k s into (3.3.8) on page 170 yields

g0(λ ) = 1−µG

[
1
λ
+2

∞

∑
k=1

pkL
λ k+1

]

= 1− µG(λ + pL)
λ (λ − pL)

(λ ∈ (pL,∞)). (3.5.51)

It follows that g0(λ ) = 0 if and only if f (λ ) = 0, where

f (λ ) = λ 2− (µG+ pL)λ −µGpL = 0,

so R0 is given by the positive solution of this quadratic. It is easily verified that f (λ )
is the characteristic polynomial of the matrix M̃ defined at (3.5.18), so R0 is given
by (3.5.19).
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3.5.14 Let Ci(v) be the post-vaccination local infectious clump of individual i; see
the proof of Theorem 3.3.3 in Section 3.3.4. Partition Ci(v) = CL(v)∪ {i}∪CR(v)
analogously to Ci at (3.5.12). For k = 1,2, . . . ,

i+ k ∈ CR(v) ⇐⇒ i+ k ∈ CR and i+1, i+2, . . . , i+ k are unvaccinated.

Thus, similarly to (3.5.14),

P(i+ k ∈ CR(v)) = pkL(1− v)k (k = 1,2, . . .),

whence µC(v) = 1+2pL(1−v)/[1− pL(1−v)]. Hence, using (3.3.12) on page 172,

R∗(v) = µG(1− v)
[
1+(1− v)pL
1− (1− v)pL

]
. (3.5.52)

Let u= (1− vc)−1, where vc solves R∗(v) = 1. Then (3.5.52) implies that

µG(u+ pL)
u(u− pL)

= 1,

so, recalling (3.5.51), g0(u) = 0. Thus u= R0, whence vc = 1−R−1
0 .

3.5.15 As suggested in the hint, we consider the finite N problem and let

R̃∗(v) = µG(1− v)E[C̃(v)],

where C̃(v) = |C̃ (v)| and C̃ (v) is the post-vaccination local infectious clump of an
individual, i0 say, chosen uniformly at random from the unvaccinated individuals in
the population N . Note that µG(1− v) is unaffected by the vaccine allocation, so
the problem is to find the distribution of LS which minimises µC̃(v) =E[C̃(v)] subject
to the constraint that a fraction v of the population is vaccinated. Partitioning C̃ (v)
analogously to Ci at (3.5.12) yields, in an obvious notation, that

µC̃(v) = 1+µC̃L(v) +µC̃R(v) = 1+2µC̃R(v). (3.5.53)

Suppose that the nearest vaccinated individual to i0’s right is at i0+VR+ 1. For
j = 1,2, . . . ,VR, the probability i0+ j belongs to C̃R(v) is p

j
L, so

E[C̃R(v)|VR] =
VR

∑
j=1

p j
L =

pL(1− pVRL )

1− pL
.

Now consider a given run,Uk say, of k unvaccinated individuals between two vacci-
nated individuals. Given i0 ∈Uk, it is equally likely to be any of the k individuals in
Uk, so
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E[C̃R(v)|i0 ∈Uk] =
1
k

k−1

∑
j=0

pL(1− p j
L)

1− pL

=
pL

k(1− pL)2
(k−1− pL+ pkL).

Further, P(i0 ∈Uk) = ck for some constant c that is independent of k, so the contri-
bution ofUk to µC̃R(v) is

a(k) =
cpL

(1− pL)2
(k−1− pL+ pkL).

Thus, by (3.5.53), the contribution ofUk to µC̃(v) is

b(k) = kc+2a(k). (3.5.54)

For k ≥ 1 and l ≥ 2, compare the combined contributions to µC̃(v) of (i) Uk and
Uk+l and (ii)Uk+1 andUk+l−1, i.e.

b1 = b(k)+b(k+ l) and b2 = b(k+1)+b(k+ l−1).

Now

b1−b2 =
2cpL

(1− pL)2
(pkL+ pk+l

L − pk+1
L − pk+l−1

L )

=
2cpk+1

L
1− pL

(
1− pl−1

L

)
> 0.

Thus, if the vaccinated population contains two runs of unvaccinated individuals
whose lengths differ by at least 2, then R̃∗(v) is made smaller by replacing them by
two runs of more equal lengths but having the same total of lengths.

Also, for k ≥ 2, compare the contributions to µC̃R(v) of (iii) a runUk preceded by
two neighbouring vaccinated individuals and (iv) U1 and Uk−1, i.e. b3 = b(k) and
b4 = b(1)+b(k−1). Using (3.5.54) and noting that a(1) = 0,

b3−b4 = 2[a(k)−a(k−1)] =
2cpL

(1− pL)2
[
1− pk−1

L (1− pL)
]
> 0.

Thus, if the vaccinated population contains two consecutive vaccinated individu-
als next to a run of k ≥ 2 unvaccinated individuals, then R̃∗(v) is made smaller by
replacing the k+2 individuals by a run of length 1 and a run of length k−1.

The above two observations concerning reduction of R̃∗(v) imply that if v is
held fixed then R̃∗(v) is minimised by making the lengths of runs of unvaccinated
individuals as equal as possible. See Ball et al. [14, Section 5.2.4] for an alternative,
more sophisticated proof.

3.5.16 The characteristic polynomial of the matrixLΛ (r) defined at (3.5.20) is

f (x) = x2− [λGψI(r)+λLψI(r+λL)]−λGλLψI(r)ψI(r+λL).
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Now f (0)< 0 and it is easily shown that f (x) = 0 has one positive and one negative
solution, so LΛ (r) has one positive and one negative eigenvalue. It follows that the
dominant eigenvalue ofLΛ (r) is one if and only if f (1) = 0, i.e. if and only if

λGψI(r)+λLψI(r+λL)+λGλLψI(r)ψI(r+λL) = 1. (3.5.55)

Recall that ψI(r) =
∫ ∞
0 e−rtP(I > t)dt. Thus ψI(r) is decreasing in r and there exists

r0 ≤ 0 (may be −∞) such that ψI(r) ↑ ∞ as r ↓ r0. Further, limr→∞ ψI(r) = 0. It
follows that the left-hand side of (3.5.55) is decreasing in r, converges to 0 as r ↑ ∞
and to ∞ as r ↓ r0. Thus (3.5.55) has a unique solution in (r0,∞), which gives the
exponential growth rate of the epidemic.

3.5.17 (a) We calculate P(TS > k|TS > k− 1) (k = 1,2, . . .). Without loss of gen-
erality suppose that a run of susceptible individuals starts at individual 1. Fix
k ∈ N, so TS > k− 1 if and only if individuals 1,2, . . . ,k are all susceptible. Let
X =min{l > 0 : individual k+ l is contacted globally}, so P(X = l) = π̂ l−1(1− π̂)
(l = 1,2, . . .). Further, given X = l, the probability that this global contact does not
lead to individuals k being infected locally is 1− plL; the corresponding probability
for individual k+1 is 1− pl−1

L Thus,

P(X = l|TS > k−1) =
π̂ l−1(1− π̂)(1− plL)

∑∞
i=1 π̂ i−1(1− π̂)(1− piL)

(l = 1,2, . . .)

and

P(TS > k|TS > k−1) =
∞

∑
l=2

P(TS > k|TS > k−1,X = l)P(X = l|TS > k−1)

=
∑∞
l=2 π̂ l−1(1− π̂)(1− pl−1

L )

∑∞
i=1 π̂ i−1(1− π̂)(1− piL)

= π̂.

It follows that P(TS > k) = π̂k (k = 1,2, . . .), which yields (3.5.22).
(b) Since the runs of infectives form an alternating renewal process, the probabil-

ity ẑ that a typical initial susceptible is ultimately infected is given by E[TR]
E[TS]+E[TR]

(see, for example, Grimmett and Stirzaker [36, page 404]). Thus, noting that
E[TS] = (1− π̂)−1,

E[TR] =
ẑ

(1− π̂)(1− ẑ)
. (3.5.56)

Substituting π̂ = e−λGµI ẑ into (3.5.21) yields

1− ẑ=
π̂(1− pL)2

1− pLπ̂)2
. (3.5.57)

The expression (3.5.23) for E[TR] follows from (3.5.56) and (3.5.57).

3.5.21 As in Section 3.5.4.2, R0 is given by the dominant eigenvalue of the mean
offspring matrix M̃ of B̃. As at (3.5.18) on page 204, M̃ takes the form
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M̃ =

[
mGG mGL
mLG mLL

]
.

It is shown in Section 3.5.5.3 that mGL = µDpL and mLL = µD̃−1pL. As at (3.5.18),
mGG =mLG = λGµI . A simple calculation shows that the dominant eigenvalue of M̃
is given by (3.5.25).

3.5.22 (a) Arguing as in the derivation of (3.5.20) on page 206 shows that the
exponential growth rate of the network model with casual contacts is given by the
unique r ∈ (−∞,∞) such the dominant eigenvalue ofLΛ (r) is one, where

LΛ (r) =
[

λGψI(r) 2λLµDψI(r+λL)
λGψI(r) λLµD̃−1ψI(θ +λL)

]
. (3.5.58)

(The difference here between the current model and the great circle model is that
in the branching process approximation, the mean number of neighbours a glob-
ally contacted individual may infect is µD, instead of 2, and the mean number of
neighbours a locally contacted individual may infect is µD̃−1, instead of 1.)

The characteristic polynomial ofLΛ (r) is

f (x) = x2− [λGψI(r)+λLµDψI(r+λL)]+λGλL(µD̃−1−µD)ψI(r)ψI(r+λL).
(3.5.59)

It follows that one is an eigenvalue ofLΛ (r) if and only if

λGψI(r)+λLµD̃−1ψI(r+λL)+λGλL(µD−µD̃−1)ψI(r)ψI(r+λL) = 1. (3.5.60)

If µD̃−1 < µD, then LΛ (r) has one positive and one negative eigenvalue and
arguing as in the solution of Exercise 3.5.16 shows that (3.5.60) has a unique real
solution, which gives the required exponential growth rate.

If µD̃−1 = µD (as happens if the degree distribution D is Poisson), then one of the
eigenvalues ofLΛ (r) is zero and it is easily shown that again the required exponen-
tial growth rate r is given by the unique real solution of (3.5.16).

Finally, if µD̃−1 > µD then, for any r for which LΛ (r) is finite, the eigenvalues
of LΛ (r) are both positive. The elements of LΛ (r) each decrease with r and tend
to 0 as r → ∞, hence so does the dominant eigenvalue, λmax(r) say. It follows that
the value of r for which λmax(r) = 1 is given by the largest real solution of (3.5.60).

(b) When I ∼ Exp(γ), P(I > t) = e−γt (t ≥ 0), so ψ(θ) =
∫ ∞
0 e−θ tP(I > t)dt =

1
γ+r (θ >−γ). Substituting ψ(θ) = 1

γ+θ into (3.5.60) and rearranging shows that r
satisfies a quadratic equation, which is readily solved.

3.5.23 First note that

g(s) =− 1
log(1− p)

∞

∑
k=1

pksk

k
=

log(1− ps)
log(1− p)

(|s|< p−1). (3.5.61)

Hence,
µD = g′(1) =− p

(1− p) log(1− p)

and
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µ−1
D g′(s) =

1− p
1− ps

(|s|< p−1). (3.5.62)

Noting that E[sD̃−1] = µ−1
D g′(s), we have

µD̃−1 = µ−1
D g′′(1) =

p
1− p

.

Thus, in the notation of Section 3.5.5.3, mGL = − ppL
(1−p) log(1−p) and mLL =

ppL
1−p , so

mLL < 1 if an only if pL < p−1−1. Substitution into (3.5.24) then yields

R∗ =

{
λGµI

(
1− ppL

(1−p−ppL) log(1−p)

)
if pL < p−1−1,

∞ otherwise.

Turning to ẑ, it follows from (3.5.29) on page 213 and (3.5.62) that, for s ∈ [0,1],
ψ̃(s) is the unique solution in (0,1] of

ψ̃(s) =
s(1− p)

1− p+ ppL− ppLψ̃(s)
. (3.5.63)

Thus,
ppL(ψ̃(s))2− (1− p+ ppL)ψ̃(s)+ s(1− p) = 0, (3.5.64)

whence

ψ̃(s) =
1− p+ ppL−

√
(1− p+ ppL)2−4s(1− p)ppL

2ppL
. (3.5.65)

(The other solution, ψ̂(s) say, of (3.5.64) does not belong to (0,1], since ψ̂(s) is
decreasing in s for s ∈ [0,1] and ψ̂(1)> ψ̃(1) = 1.)

Further, (3.5.63) implies that

1− p(1− pL+ pLψ̃(s) =
s(1− p)

ψ̃(s)
,

so substituting (3.5.61) into (3.5.28) on page 213 yields

ψ(s) =
s

log(1− p)
[logs+ log(1− p)− log ψ̃(s)] .

An equation governing ẑ follows using (3.5.30) on page 213 and (3.5.65).
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Introduction

Recently, network concepts have received much attention in infectious disease mod-
elling, essentially for modeling purposes, and the reader is also referred to earlier
references of Durrett [49], Newman [88], House [61] or Kiss et al. [70]. In the com-
partmental models presented in Part I of this volume, any infected individual can
contaminate any susceptible individuals. In many public health problems, hetero-
geneity issues have to be taken into account, in particular some diseases such as
AIDS or HCV (Hepatitis C Virus) may spread only along a social network: the net-
work of people having sexual intercourse or of injecting drug partners. The need to
take into account the network along which an epidemic spreads has been underlined
by numerous papers, starting for example from [43, 50], and more recently [18, 61].

After introducing random networks and describing how the spread of disease can
be modelled on such structures, we explain how to approximate the dynamics by de-
terministic differential equations when the graphs are large. Mathematical models
for epidemics on large networks are obtained by mean-field approximation (e.g.
[49, 71, 91]) or through large population approximations (e.g. [13, 44, 58, 19, 65]).
They generally stipulate simple structures for the network: small worlds (e.g.
[71, 81]), configuration models (e.g. [69, 75, 93, 110, 111]), random intersection
graphs and graphs with overlapping communities (e.g. [27, 16, 40])...

In the last section, real data from the AIDS epidemic in Cuba is studied (data
from [35] and that can be found in supplementary materials of this book). We show
how to conduct descriptive statistical procedures. By performing clustering and sim-
plification of the graph, we decompose it into smaller clusters where the probabilis-
tic models of the previous sections can be used.

Notation 0.0.1. In this part, we denote by N the set of strictly positive integers and
by Z+ the set N∪{0}.
For any real bounded function f on Z+, let ‖ f‖∞ denote the supremum of f on Z+.
For all such f and y ∈ Z+, we denote by τy f the function x 3→ f (x− y). For all
n ∈ Z+, χn is the function x 3→ xn, and in particular, χ ≡ χ1 is the identity function,
and 1≡ χ0 is the function constant equal to 1.

241
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We denote byMF(Z+) the set of finite measures on Z+, equipped with the topology
of weak convergence. For all µ ∈MF(Z+) and real bounded function f on Z+, we
write

〈µ, f 〉= ∑
k∈Z+

f (k)µ(k), (0.0.66)

where we use the notation µ(k) = µ({k}).
For k∈Z+, we write δk for the Dirac measure at k. In particular, for any test function
f from Z+ to R, 〈δk, f 〉= f (k).
For a sequence D1, . . .Dn ∈ Z+, if µ = ∑n

k=1 δDk , then

〈µ, f 〉=
n

∑
k=1

f (Dk),

implying in particular that 〈µ,1〉= n and 〈µ,χ〉= ∑n
k=1Dk.



Chapter 1
Random Graphs

1.1 Definitions

Usually, social networks on which disease spread are very complex. It is thus conve-
nient to model them by random networks. We start with some definitions, and then
present some common families of random networks. There is a growing literature
on random networks to which we refer the reader for further developments (e.g.
[25, 109]).

Definition 1.1.1. A random graph G = (V,E) is a set of verticesV and a set of edges
E ⊂V ×V . If u, v ∈V are connected in the random graph, then (u,v) ∈ E.

The set of vertices of G is V , but when we will need to make precise that it is the
set of vertices of G , we will use the notation V (G ). The population size is |V |= N.
In the sequel, we will label the vertices with integers, so that V = {1, . . .N}.

Definition 1.1.2. The adjacency matrix of the graph G is a matrix G ∈ MV×V (R)
such that ∀u,v ∈V,

Guv = 1 if (u,v) ∈ E,
Guv = 0 if (u,v) /∈ E.

If the matrix is symmetric, the graph in undirected: to any edge from u to v cor-
responds an edge from v to u. Else, if (u,v) ∈ E and (v,u) /∈ E, the graph is oriented
with only the directed edge from u to v belonging to E. We say that u is the ego and
v the alter of the edge.
If we consider weighted graphs, we can generalize the entries of G to real non-
negative numbers.

In this chapter, we will focus on undirected non-weighted graphs.
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Definition 1.1.3. The degree of a vertex u ∈V in the graph G is

Du = ∑
v∈V

Guv.

Du hence corresponds to the number of neighbours of the vertex u, i.e. the number
of the vertices of G that can be reached in one step starting from u.
If the graph is oriented, the above notion corresponds to the out-degree, and simi-
larly we can define as in-degree the number of vertices of G that lead to u in one
step:

Dinu = ∑
v∈V

Gvu.

For undirected graphs, the out and in-degrees coincide.

Definition 1.1.4. The degree distribution of a finite graph G is:

1
N ∑

u∈V
δDu = ∑

d∈Z+

Card{u ∈V : Du = d}
N

δd .

For d ∈ Z+, Card{u ∈V : Du = d}/N is the proportion of vertices with degree d.

We see that the notion of degree distribution can be generalized to graphs with
infinitely many vertices: the degree distribution is a probability measure on Z+,
∑d∈Z+

pdδd , where the weight pd of the atom d ∈ Z+ is the proportion of vertices
with degree d.

Let us consider the product of the matrix G with itself: G2 = G×G. Notice that

G2
uv = ∑

w∈V
GuwGwv,

and thus, G2
uv > 0 if there is a path consisting of two edges of G that links u and

v. More precisely, G2
uv counts the number of paths of length exactly 2 that link u

and v. Generalizing this definition, and with the convention that G0 = Id the identity
matrix of RN , we obtain that:

Definition 1.1.5. Two vertices u and v of the graph G are connected if there is a path
in G going from u to v, i.e. if there exists some integer n≥ 1 such that Gn

uv > 0. We
can then define the graph distance between u and v by:

dG(u,v) = inf{n≥ 0, Gn
uv > 0}. (1.1.1)

By convention, inf /0=+∞.
For r ≥ 0, we define by BG(u,r) the ball of G with center u and radius r for the
graph distance:

BG(u,r) =
{
v ∈V : dG(u,v)≤ r

}
.

Several important descriptors of the graph depend on this graph distance. We
remark for instance that Du = Card(BG(u,1))− 1. Also, we can define a shortest
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path (for the graph distance) between two vertices u and v. The diameter of the
graph is:

diam(G ) = sup{dG(u,v) : u,v ∈V}.

Definition 1.1.6. For a vertex u in a graph G , we denote by C (u) the connected
component of u, i.e. the set of vertices v ∈V that are connected to u:

C (u) =
{
v ∈V : dG(u,v)<+∞

}
.

1.2 Classical Examples of Random Graphs

Random graphs, especially those arising from applications, can have very complex
distributions and topologies. There are some simple families of random graphs.
We now present the complete graph, the Erdös–Rényi graphs, the stochastic block
model, the configuration model and the household model.

Definition 1.2.1 (Complete graph). The complete graph KN is the graph where all
the pairs of vertices are linked by an edge, i.e. E =V ×V .

The complete graph is in fact a deterministic graph, and ∀u,v∈V (KN), dG(u,v)=
1 if u 1= v.

Definition 1.2.2 (Erdös–Rényi random graph (ER)). Erdös–Rényi random graphs
are undirected graphs where each pair of vertices (u,v) ∈ V 2 is linked by an edge
with probability p ∈ [0,1] independently from the other pairs.
The distribution ER(N, p) of Erdös–Rényi random graphs is completely defined by
the family (Guv; u,v ∈ V, u < v) of i.i.d. random variables with Bernoulli distribu-
tion Ber(p), p ∈ [0,1].

Notice that for p= 1, the Erdös–Rényi graph corresponds to the complete graph
KN .

These graphs can be generalized if we introduce a partition of the population ac-
cording to a discrete type, taking K values, say {1, . . . ,K}: to each vertex u ∈ V is
associated a type ku ∈ {1, . . .K}. This corresponds to cases where a community con-
tains different types of individuals that display specific roles in contact behaviour.
Types might be related to age-groups, social behaviour or occupation.

Definition 1.2.3 (Stochastic blockmodel graph (SBM)).A stochastic block model
graph is a undirected graph, where each vertex is given a type independently from
the others, all with the same probability, and where each pair of vertices is linked
independently of the other pairs with a probability depending on the types of the
vertices. If there are K types, say {1, . . .K}, we will denote by (ρi)i∈{1,...K} the prob-
ability distribution of the types, and by πi j the probability of linking a vertex of type
i with a vertex of type j.
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If there is just one type of vertex (K = 1), the SBM resumes to ER graphs. For
K = 2 where vertices of the same type cannot be connected (π11 = π22 = 0), we
obtain bipartite graphs. For instance, sexual networks in heterosexual populations
are bipartite networks. The interested reader is referred to the review of Abbe [1].

Proposition 1.2.4. The degree distribution of a vertex u in an ER(N, p) random
graph with N vertices and connection probability p is a binomial distribution
Bin(N, p). When the connection probability is λ/N, with λ > 0, then for any in-
teger d ≥ 0,

lim
N→+∞

PN(Du = d) =
λ d

d!
e−λ ,

showing that the probability distribution converges to a Poisson distribution with
expectation λ .

The proof of this result is easy and let to the reader.

A detailed presentation and study of Erdös–Rényi graphs and their limits when
N → +∞ can be found in [109] for example. In particular, the case where the con-
nection probability is λ/N, is carefully discussed. The case λ > 1 is termed the
supercritical case, while the case λ < 1 is the subcritical case.

Proposition 1.2.4 emphasizes the importance of graphs defined from their degree
distributions. The next class of graphs has been introduced by Bollobas [25] and
Molloy and Reed [79]. The reader is referred to Durrett [49] and van der Hofstad
[109] for more details.

Definition 1.2.5 (Configuration model graph (CM)). Let p = (pk, k ∈ Z+) be
a probability distribution on Z+. The Bollobás–Molloy–Reed or Configuration
model random graph with vertices V is constructed as follows. We associate with
each vertex u ∈ V an independent random variable Xu drawn from the distribution
p, that corresponds to the number of half edges attached to u. Conditionally on
{∑u∈V Xu even}, the Configuration model random graph is a multigraph (a graph
with possibly self-loops and multiple edges) obtained by pairing the half-edges uni-
formly at random.

A possible algorithm for pairing the half edges (also called stubs) is the follow-
ing:

• Associate with each half edge an independent uniform random variable on [0,1]
and sort the half-edges by decreasing values.

• Pair each odd stub with the following even stub. Note that if the number of stubs
∑u∈V Xu is odd, it is possible to add or remove one stub arbitrarily.

Note that this linkage procedure does not exclude self-loops or multiple edges.
When the size of the graph N → +∞ with a fixed degree distribution, self-loops
and multiple edges become less and less apparent in the global picture (see e.g.
[49, Theorem 3.1.2]).



1.2 Classical Examples of Random Graphs 247

In [109], it is carefully studied how one can turn a multigraph into a simple graph
(without self-loop nor multi-edge), either by erasing self-loops and merging multi-
edges, or by conditioning on obtaining a simple graph. Note that in this respect, a
Configuration model with a Binomial distribution B(N, p/N) looks like an Erdös–
Rényi graph with multiple-edges and self-loops.

Because of this construction, we see that in such a network, given an edge of ego
u, the alter v is chosen proportionally to his/her number of half-edges (i.e. his/her
degree). Thus, the following degree distribution q= (qk,k∈Z+) defined as the size-
biased degree distribution of p will play a major role in the understanding of disease
dynamics on CM graphs:

qk =
kpk

∑!∈Z+
!p!

. (1.2.1)

Example 1.2.6. Particular graphs of this family include the regular graphs, where
all the vertices have the same degree d (that is pd = 1 and ∀k 1= d, pk = 0) and the
graphs whose degree distribution is a power law: for some α > 1,

pk
k→+∞∼ k−α .

A key quantity when dealing with configuration models is the generating function
of its degree distribution, defined as:

g(z) = ∑
k≥0

zk pk = Ep
(
zD
)
, (1.2.2)

where the notation in the right-hand side recalls that the random variable D has
distribution p.
In case it exists, the moment of order q of the degree distribution can be written by
means of the generating function:

∀q≥ 0, Ep
(
Dq)= g(q)(1).

Example 1.2.7. Let us recall the probability generating function of some usual para-
metric distributions:

(i) For a Poisson distribution with parameter α: g(z) = eα(z−1).
(ii) For a Geometric distribution with parameter ρ: g(z) = ρz

1−z(1−ρ) .
(iii) For a Binomial with parameters (n,ρ): g(z) = (zρ +1−ρ)n.

Assumption 1.2.8. Let us assume that p = (pk,k ∈ Z+) admits a second order mo-
ment:

m= g′(1) = ∑
k∈Z+

kpk, σ2 = g′′(1)+g′(1)− (g′(1))2 = ∑
k∈Z+

(k−m)2pk.

Notice that under Assumptions 1.2.8, the size-biased degree distribution q de-
fined in (1.2.1) admits a moment of order 1, which is referred to as the mean excess
degree:



248 Part III. Chapter 1. Random Graphs

κ = ∑
k≥0

k(k−1)pk
m

=
σ2

m
+m−1=

g′′(1)
g′(1)

. (1.2.3)

The household models (see Part II of the present volume) can be built on the
previous graph models. They were first analysed in detail in [12] and we also refer
to Chapter 2 in Part II of this volume. They account for several levels of mixing, for
instance local and global in case of 2 levels. In the latter case, the population is par-
titioned into clusters or households. A first possible approach is to consider a graph
model on the entire population (for example a CM in [12, 13, 16]) on which the
household structure is superposed independently. The links are considered stronger
between individuals of the same household (for example they can transmit diseases
at higher rates). Another possibility is to define the graph between individuals by
taking into account the household structure, which results into clustering effects.

Definition 1.2.9 (Household models). A graph belong to the family of Household
model if it is an SBM where the types are the households.

Each household can be viewed as a vertex in a graph describing the global con-
nections, while the intra-group connections between individuals of the same group
are described by a local graph model.
How clustering affects epidemics using household models has for example been
studied by [9, 39].

Let us also mention other families of random graphs: for example, the exponen-
tial random graphs, which are defined by their Radon–Nikodym densities. We refer
to [31] for developments.

Definition 1.2.10 (Exponential random graph model (ERGM)). A random graph
belongs to the family of exponential random graphs if its distribution is of the fol-
lowing form. For a positive integer K, for a vector of parameters θ = (θ1, . . .θK) ∈
RK and for a vector of statistics (T1, . . .TK) of the graph, we have for any determin-
istic graph g:

Pθ
(
G= g

)
= exp

( K

∑
k=1

θkTk(g)− c(θ)
)
.

The renormalizing constant c(θ) is also called partition function in statistical me-
chanics.

Examples of statistics Tk are the number of edges, the degrees of vertices, the
number of triangles or other patterns. In Rolls et al. [100], ERGMs are for example
used to estimate parameters describing the social networks of people who inject
drugs in Australia. This has inspired a similar study for the French case, see [41].
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1.3 Sequences of Graphs

Let us consider a sequence of graphs (GN)N≥1, such that for allN≥ 1, Card(V (GN))=
N.

For a given graph G and for an integer j ≥ 1, let us denote by C( j)(G ) the jth
largest connected component of G .

Definition 1.3.1 (Giant component). Consider a sequence of graphs (GN)N≥1 such
that for all N ≥ 1, Card(V (GN)) = N. If

liminf
N→+∞

Card
(
V (C(1)(GN))

)

N
> 0,

then we say that the sequence (GN)N≥1 is highly connected and that the graph GN
admits a giant component, C(1)(GN).

For ER(N, p) in the supercritical regime (with Np> 1), there exists a giant com-
ponent [109, Theorem 4.8]. So does it for the CM, as shown by Molloy and Reed
[79, 80]. The condition for the existence with positive probability of a giant compo-
nent in CM graphs is that the expectation of the size biased distribution minus 1, κ ,
is larger than 1:

κ := ∑
k∈Z+

(k−1)
kpk

∑!∈Z+
!p!

= Eq(D−1)> 1.

This is connected with results on the super-criticality of Galton–Watson trees (see
[49, Section 3.2 p. 75] for example). Heuristically, a CM graph looks like a tree
locally, and a vertex of degree k of the graph corresponds in the tree to a node with
1 parent and k− 1 offspring. From the construction of the CM graphs given after
Definition 1.2.5, the degrees of the vertices encountered along the CM graph are
given by the size-biased distribution.

If Card
(
V (C(2)(GN))

)
= o(N), then the giant component C(1)(GN) is said to be

unique. In many models such as ER, it is shown that the second largest component
is of order logN (see [109, Corollary 4.13]).

The notion of being ‘highly connected’, as introduced in Definition 1.3.1, can
also be extended.

Definition 1.3.2 (Sequence of dense graphs). We say that the graph sequence
(GN)N≥1 is a sequence of dense graphs if:

liminf
N→+∞

Card
(
E(GN)

)

N2 > 0.

Of course, the next important notion is the notion of convergence of a sequence
of graphs (GN)N≥1. The topologies and notions of convergence depend on the order
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of the edge numbers. For graphs that are not dense, such as tree-like graphs, a large
literature around the Hausdorff-Gromov topology has developed and we refer for
instance to Addario-Berry et al. [2, 3]. When the graph is dense, the topology is
inspired by ideas coming from the topologies of measure spaces (see Borgs et al.
[26] or Lovasz and Szegedy [73]).

1.4 Definition of the SIR Model on a Random Graph

We now describe the spread of infectious diseases on graphs. We consider a popula-
tion of size N whose individuals are the vertices of a random graph GN . As in com-
partmental models, the population is partitioned into three classes that can change
in time: susceptible individuals who can contract the disease (individuals of type
S), infectious individuals who transmit the disease (type I) and removed individuals
who were previously infectious and can not transmit the disease any more (type R).
The corresponding sets of vertices, at time t, are respectively denoted by St , It and
Rt , and the corresponding sizes by St , It and Rt .

On the graph GN , the dynamics is as follows. To each I individual is associated an
exponential random clock with rate γ to determine its removal. To each edge with
an infectious ego and a susceptible alter, we associate a random exponential clock
with rate λ . When it rings, the edge transmits the disease and the susceptible alter
becomes infectious.

Example 1.4.1 (Compartmental models). When the graph GN = KN is the complete
graph, we recover the compartmental model of Part I of this volume.

Example 1.4.2 (Household models). The above mechanisms can of course be gen-
eralized. For household models [13, 16], for example, the infection probability λ
depends on whether ego and alter belong or not to the same household. See Part II
of this volume.

Notice also that for modelling real data, several studies require to take into ac-
count the dynamics of the social network itself (e.g. [51, 111]). For sexual network,
for instance, accounting for the changes of sexual partners (contacts) is important
(e.g. [72, 82, 103]). Also, the epidemics itself can act on the structure of the network
(see [68]), such as the changes of sexual behaviour due to the spread of the AIDS
epidemic (e.g. [74]). These aspects are however not treated here.



Chapter 2
The Reproduction Number R0

We consider the early stage of the epidemics. Let us consider a single first infective
of degree d1 in a population of large size N.

For this, we proceed as in Section 1.2 of Part I of this volume and couple the pro-
cess (It)t≥0 with a branching process. As for the mixing case, it is more precisely
a stochastic domination. The coupling remains exact as long as no infected or re-
moved individual is contaminated for the second time, in which case the branching
process creates an extra individual, who is named ‘ghost’.

Definition 2.0.1 (R0). The basic reproduction number of the epidemic, denoted by
R0, is the mean offspring number of the branching process approximating the infec-
tious population in early stages.
If we denote by β (t) the birth rate at time t > 0 in this branching process, then:

R0 =
∫ ∞

0
β (t)dt. (2.0.1)

Notice that in the above definition, the measure β (t)dt represents the intensity
measure of the point process describing the occurrence of new infections due to a
chosen infective (e.g. [64]).

A large literature is devoted to this indicator R0 and extensions. Recall indeed that
the nature and importance of the disease is usually classified according to whether
R0 > 1 or R0 ≤ 1.
When R0 > 1, the branching process is super-critical and with positive probability
its size is infinite, in which case we say that there is a major outbreak of the disease.
The probability for this to happen can be computed [47, Eq. 3.10] and is less than 1.
When the branching process does not get extinct, its size grows roughly proportional
to eαt , where α is termed the (initial) epidemic growth rate (see [64]). In this case,
the positive constant α depends on the parameters of the model through the equation

1=
∫ ∞

0
e−αtβ (t)dt. (2.0.2)
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When R0 ≤ 1, the branching process is critical or subcritical and its size is almost
surely finite. Then, the total number of individuals who have been infected when the
epidemic stops (at the time t when It = 0) is upper bounded by an almost surely finite
random variable with distribution independent of the total population size N, and we
talk of a small epidemic. We refer to [7, 107] for reviews.

2.1 Homogeneous Mixing

In the case where GN = KN is the complete graph, as stated in Part I of this volume,
many results for epidemics in large homogeneous mixing populations can be ob-
tained since the initial phase of the epidemic is well approximated by a branching
process (see e.g. [11]).

Proposition 2.1.1 (R0 for homogeneous mixing). The reproduction number is
given by:

R0 =
λ
γ
.

In the case where λ > γ , then α = λ − γ and

R0 =
λ
γ
= 1+

α
γ
.

Notice that the second expression of R0 does not depend on λ , which is some-
times complicated to estimate, especially at the beginning of an epidemic, but only
on the removal rate γ , that is usually documented, and on the Malthusian parameter
α , that can be estimated from the dynamics of the emerging epidemics.

Proof. The reproduction number R0 for the homogeneous mixing case has already
been studied in Part I of this volume, but let us give here another proof of the propo-
sition using (2.0.1). In this case, β (t) = λe−γt . This can be understood by observing
that λ is the rate at which an infected individual makes contacts if he or she is still
infectious, while e−γt is the probability that the individual is still infectious t time
units after he or she became infected. Then, (2.0.2) and (2.0.1) translate to

1=
λ

γ +α
and R0 =

λ
γ
= 1+

α
γ
. (2.1.1)

This completes the proof. '(

2.2 Configuration Model

Assume that GN is a configuration model graph whose degree distribution p admits
a mean µ and a variance σ2. Recall also the definition of the size-biased distribution
q in (1.2.1), and of the mean excess degree κ in (1.2.3). The mean excess degree
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κ , is in the context of SIR epidemics spreading on graphs, the mean number of
susceptibles that are contaminated by a typical infective (other than his or her own
infector).

Let us consider the following continuous time birth-death process (Xt)t≥0. In-
dividuals live during exponential independent times with expectation 1/γ . To each
individual is associated a maximal number of offspring k−1, where k (the ‘degree’
of the individual) is drawn in the size-biased distribution q. We associate to such an
individual k− 1 independent exponential random variables with expectations 1/λ .
The ages at which the individual gives birth are the exponential random variables
that are smaller than the lifetime of the individual. There is an intuitive coupling
between (Xt)t≥0 and (It)t≥0 such as Xt ≥ It for every t, with the equality as long as
no ‘ghost’ has appeared.
We can associate with the process (Xt)t≥0 its discrete-time skeleton (time counting
the generations) that is a Galton–Watson process (Zn)n≥0 (Z0 = 1). Conditionally
on the degree k and the fact that the chosen individual remains infectious for a du-
ration y, the number of contacts contaminated by this individual follows a binomial
distribution with parameters k− 1 and 1− e−λy. Summing over k and integrating
with respect to y, we can write the probability that in this Galton–Watson process
an individual of generation n≥ 1 has ν = ! offspring:

P(ν = !) =
+∞

∑
k=!+1

kpk
m

(
k−1
!

)( λ
λ + γ

)!( γ
λ + γ

)k−1−!
.

Proposition 2.2.1 (R0 for CM). Recall the definition of the mean excess degree κ
in (1.2.3). We have:

R0 =
κλ

λ + γ
. (2.2.1)

In the super-critical case, R0 can also be rewritten as

R0 =
γ +α

γ +α/κ
= 1+

α
λ + γ

.

Proof. With the description of the process (Zn)n≥1:

R0 = ∑
k≥0

kpk
m

∫ +∞

0
(k−1)(1− e−λy) γe−γydy

= ∑
k≥0

(k−1)
kpk
µ

λ
λ + γ

=
(g′′(1)
g′(1)

−1
) λ

λ + γ

=
κλ

λ + γ
.
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We obtain
β (t) = κλe−(λ+γ)t .

This can be seen by noting that κ is the expected number of susceptible acquain-
tances a typical newly infected individual has in the early stages of the epidemic,
while e−λ t is the probability that a given susceptible individual is not contacted by
the infective over a period of t time units, and e−γt is the probability that the infec-
tious individual is still infectious t time units after he or she became infected. From
(2.0.2), we obtain that

α = κλ −λ − γ,

from which we conclude the proof. '(

Example 2.2.2. Let us compute R0 for particular choices of degree distribution p:
(i) For a Poisson distribution with parameter a> 0,

R0 =
aλ

λ + γ
.

Thus, R0 > 1 if and only if a> 1+ γ/λ .
(ii) For a Geometric distribution with parameter a ∈ (0,1), R0 =

λ
λ+γ

2(1−a)
a . Thus,

R0 > 1 if and only if a< 2λ/(3λ + γ). "

We can now connect the considerations on the skeleton with the epidemic in
continuous time.

Proposition 2.2.3. Let us consider the continuous time birth-death process (Xt)t≥0.

(i) If R0 ≤ 1, the process (Xt)t≥0 dies out almost surely.

(ii) If R0 > 1, the process (Xt)t≥0 dies with a probability z ∈ (0,1) that is the small-
est solution of

z=
γ

g′(1)

∫

R+

g′
(
z+ e−λy(1− z)

)
e−γydy. (2.2.2)

(iii) Let us define the times τ0 = inf{t ≥ 0 | Xt = 0} and τεn = inf{t ≥ 0 | Xt ≥ εn}.
If R0 > 1, then for all sequence (tn)n∈Z+ such that limn→+∞ tn/ log(n) = +∞,

lim
n→+∞

P(τ0 ≤ tn∧ τεn) = z (2.2.3)

lim
n→+∞

P(τεn ≤ tn∧ τ0) = 1− z. (2.2.4)

Proof. Points (i) and (ii) are consequences of Proposition 2.2.1 and the connections
between the discrete time Galton–Watson tree and the continuous time birth-death
process (Xt)t≥0 that is coupled with (It)t≥0 as long as no ghost has appeared.

The proof of (iii) is an adaptation of Lemma A.1 in Méléard and Tran [77] (see
also [29, 106]). Heuristically, (iii) says that at the beginning of the epidemics, the
population either gets extinct with probability z or, with probability 1− z, reaches
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the size εn before time tn and before extinction. The time tn should be thought of
as of order log(n), since the supercritical process has an exponential growth when it
does not go to extinction.
For the birth-death process (Xt)t≥0 there is no accumulation of birth and death events
and almost surely,

lim
n→+∞

tn∧ τεn =+∞.

So, we have by dominated convergence that limn→+∞P(τ0 ≤ tn ∧ τεn) = P(τ0 <
+∞). This last probability is the extinction probability of the process (Xt)t≥0 which
solves (2.2.2). For the second limit, we have:

P(τεn ≤ tn ≤ τ0) = P(τεn ≤ tn and τ0 =+∞)+P(τεn ≤ tn ≤ τ0 <+∞). (2.2.5)

The second term of (2.2.5) is upper bounded by P(tn ≤ τ0 <+∞) which converges
to 0 by dominated convergence when n→ +∞. For the second term, we can prove
that with martingale techniques (e.g. [64]) that:

lim
t→+∞

logXt
t

= α, (2.2.6)

where α is the initial epidemic growth rate defined in (2.0.2) and that is positive
when R0 > 1.

Let us consider n > 1/ε , so that log(εn) > 0. Since limn→+∞ τεn = +∞ almost
surely, we have on {τ0 =+∞} that:

lim
n→+∞

log(εn)
τεn

≥ lim
n→+∞

log(Xτεn−)

τεn
= α > 0.

We deduce that:

lim
n→+∞

P(τεn ≤ tn, τ0 =+∞) = lim
n→+∞

P
( τεn
log(εn)

≤ tn
log(εn)

, τ0 =+∞
)

=P(τ0 =+∞) = 1− z,

since by our choice of tn, limn→+∞ tn/ log(εn) = +∞. '(

Using similar results and fine couplings with branching properties, Barbour and
Reinert [19] approximate the epidemic curve from the initial stages to the extinction
of the disease.

2.3 Stochastic Block Models

We assume that there are K types of individuals, labeled {1,2, · · · ,K} and that for
k = 1, · · · ,K a fraction ηk of the N individuals in the population is of type k. We
assume that the infection rate from an ego of type i to an alter of type j is λi j/N.
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Proposition 2.3.1 (R0 for SBM). Consider a SBM as in Definition 1.2.3. Denote by
ρ be the largest eigenvalue of the matrix with elements λi jρ j . Then:

R0 =
ρ
γ
= 1+

α
γ
.

Proof. We can hence couple here the infection process with a multi-type branch-
ing process. The rate at which a given i individual gives birth to a j individual
corresponds to the rate, in the epidemic process, at which an i individual infects
j individuals at time t since infection: it is ai j(t) = λi jρ je−γt . Here, λi j/N is the
rate at which the i individual contacts a given j individual, Nρ j is the number of j
individuals and e−γt is the probability that the i individual is still infectious t time
units after being infected. For multi-type branching processes, it is well known (e.g.
[10, 46, 47]) that the basic reproduction number R0 = ρM is the largest eigenvalue
of the matrix M with elements mi j =

∫ +∞
0 ai j(t)dt, and the epidemic growth rate α

is such that 1 =
∫ ∞
0 e−αtρA(t)dt, where ρA(t) is the largest eigenvalue of the matrix

A(t) with elements ai j(t). Note that ρA(t) = ρe−γt . Therefore,

R0 = ρ
∫ ∞

0
e−γtdt =

ρ
γ

and
1= ρ

∫ +∞

0
e−(α+γ)tdt leading to ρ = α + γ.

These equalities imply that
R0 = 1+

α
γ
,

which shows that the relation between R0 and α for a multi-type Markov SIR epi-
demic is the same as for such an epidemic in a homogeneous mixing population (cf.
equation (2.1.1)). '(

2.4 Household Structure

It is possible to define several different measures for the reproduction numbers for
household models [14, 15, 23, 57]. For this model it is hard to find explicit expres-
sions for R0. We refer to Part II of this volume, for discussion on the early stages of
the an epidemic spreading on a household graph or on a two-level mixing graph.

2.5 Statistical Estimation of R0 for SIR on Graphs

Since we often have observations on symptom onset dates of cases for a new, emerg-
ing epidemic, as was the case for the Ebola epidemic in West Africa, it is often pos-
sible to estimate α from observations. In addition, we often have observations on
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the typical duration between time of infection of a case and infection of its infector,
which allow us to estimate, assuming a Markov SIR model, the average duration of
the infectious period, 1/γ [112].

In [107], it is shown that estimates of R0 obtained by assuming homogeneous
mixing are always larger than the corresponding estimates if the contact structure
follows the configuration network model. For virtually all standard models studied
in the literature, assuming homogeneous mixing leads to conservative estimates.

2.6 Control Effort

Definition 2.6.1. The control effort vc is defined as the proportion of infected indi-
viduals that we should prevent from spreading the disease and immunize to stop the
outbreak (have R0 < 1), the immunized people being chosen uniformly at random.

For the homogeneous mixing contact structure, the required control effort for
epidemics on the network structures under consideration, is known to depend solely
on R0 through equation [28, p. 69]

Proposition 2.6.2. On the complete graph KN, we have that:

vc = 1− 1
R0

=
α

α + γ
. (2.6.1)

Proof. Consider a given infectious non-immunized individual whose infectious pe-
riod is of length y > 0. In case we immunize a fraction vc of the infected indi-
viduals, the number of new infectious and non-immunized individuals contami-
nated by this individual is not a Poisson random variable with parameter λy, but
a thinned Poisson random variable of parameter λ (1− vc)y. The condition that the
new R0 = λ (1− vc)/γ is less than 1 provides the expression of vc announced in the
proposition. '(

Notice that if we estimate the initial epidemic growth rate α and the mean dura-
tion of the infectious period 1/γ from the data, (2.6.1) allows us to propose a natural
estimator of vc.

For CM graphs, we can establish a similar formula for vc that depends also on
the mean excess degree κ:

Proposition 2.6.3 (vc for CM graphs). For a CM graph with degree distribution p
and mean excess degree κ:

vc =
κ −1

κ
α

α + γ
.

The results obtained for Markov SIR epidemics in the complete graph model,
CM and SBM are summarized in Table 2.6.1. The results from household models
are not in the table, since the expressions are hardly insightful. These results are
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taken from [107].

Quantity of Quantity of interest as function of Ratio with
Model interest λ , γ and κ α , γ and κ complete graph
Complete graph α λ − γ - -

R0
λ
γ 1+ α

γ -
vc λ−γ

λ
α

α+γ -
CM α (κ −1)λ − γ - -

R0
κλ

λ+γ
γ+α

γ+α/κ 1+ α
γκ

vc 1− λ+γ
κλ

κ−1
κ

α
α+γ 1+ 1

κ−1
SBM α γ(ρM −1) - -

R0 ρM 1+ α
γ 1

vc 1− 1
ρM

α
α+γ 1

Table 2.6.1 The epidemic growth rate α , the basic reproduction number R0 and required control
effort vc for a Markov SIR epidemic model as function of model parameters in the complete graph
KN, in the CM and in the SBM. In the fourth column, the ratio has been made between the R0 in
the CM and SBM cases (numerators) and the R0 obtained in mixing populations (complete graphs)
given the estimations of α , γ and κ .

Let us comment on these results. First, we find that the estimator of R0 obtained
assuming homogeneous mixing (complete graph) overestimates by a factor 1+ 1

κ−1
the R0 in configuration models. This factor is always strictly greater than 1, since
the mean excess degree κ is strictly greater than 1. Thus, vc obtained by assuming
homogeneous mixing is always larger than that of the configuration model. Conse-
quently, if the actual infectious contact structure is made up of a CM and a perfect
vaccine is available, we need to vaccinate a smaller proportion of the population
than predicted assuming homogeneous mixing.
The overestimation of R0 is small whenever R0 is not much larger than 1 or when κ
is large. The same conclusion applies to the required control effort vc. The observa-
tion that the R0 and vc for the homogeneous mixing model exceed the corresponding
values for the network model extends to the full epidemic model allowing for an ar-
bitrarily distributed latent period followed by an arbitrarily distributed independent
infectious period, during which the infectivity profile (the rate of close contacts) may
vary over time but depends only on the time since the start of the infectious period.
Figure 2.6.1(a) shows that for SIR epidemics with Gamma distributed infectious
periods, the factor by which the homogeneous mixing estimator overestimates the
actual R0 increases with increasing epidemic growth rate α , and suggests that this
factor increases with increasing standard deviation of the infectious period. Figure
2.6.1(b) shows that the factors by which the homogeneous mixing estimator over-
estimates the actual vc, decreases with increasing α and increases with increasing
standard deviation of the infectious period. When the standard deviation of the in-
fectious period is low, which is a realistic assumption for most emerging infectious
diseases (see e.g. [38]), and R0 is not much larger than 1, then ignoring the contact
structure in the network model and using the simpler estimators for the homoge-
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neous mixing results in a slight overestimation of R0 and vc.
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Fig. 2.6.1 The factor by which estimators based on homogeneous mixing will overestimate (a) the
basic reproduction number R0 and (b) the required control effort vc for the network case. Here
the epidemic growth rate α is measured in multiples of the mean infectious period 1/γ . The mean
excess degree κ = 20. The infectious periods are assumed to follow a gamma distribution with
mean 1 and standard deviation σ =1.5, σ =1, σ =1/2 and σ =0, as displayed from top to bottom.
Note that the estimate of R0 based on homogeneous mixing is 1+α . Furthermore, note that σ =1,
corresponds to the special case of an exponentially distributed infectious period, while if σ = 0,
the duration of the infectious period is not random.

When considering epidemics spreading on SBM graphs (see [107, Supplemen-
tary materials]), we can derive that estimators for R0 and (if control measures are
independent of the types of individuals) vc are exactly the same as for homogeneous
mixing in a broad class of SEIR epidemic models. This class includes the full epi-
demic model allowing for arbitrarily distributed latent and infectious periods and
models in which the rates of contacts between different types keep the same propor-
tion all of the time, although the rates themselves may vary over time (cf. [48]).
We illustrate our findings on multitype structures through simulations of SEIR epi-
demics in an age stratified population with known contact structure as described in
[113]. We use values of the average infectious period 1/γ and the average latent
period 1/δ close to the estimates for the 2014 Ebola epidemic in West Africa [115].
Two estimators for R0 are computed. The first of these estimators is based on the
average number of infections among the people who were infected early in the epi-
demic. This procedure leads to a very good estimate of R0 if the spread of the disease
is observed completely. The second estimator for R0 is based on α̂ , an estimate of
the epidemic growth rate α , and known expected infectious period 1/γ and expected
latent period 1/δ . This estimator of R0 is (1+ α̂/δ )(1+ α̂/γ). We calculate esti-
mates of R0 using these two estimators for 250 simulation runs. As predicted by the
theory, the simulation results show that for each run the estimates are close to the
actual value (Figure 2.6.2(a)), without a systematic bias (Figure 2.6.2(b)).

Let us now consider an epidemic spreading on a household structure. It is also
argued that the required control effort satisfies vc ≥ 1−1/R0 for this model, which
implies that if we know R0 and we base our control effort on this knowledge, we
might fail to stop an outbreak. However, we usually do not have direct estimates
for R0 and even though it is not true in general that using R0 leads to conservative
estimates for vc [17], numerical computations suggest that the approximation of vc
using α and the homogeneous mixing assumption is often conservative.
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R0 estimates based on who infected whom
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 factor 
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Fig. 2.6.2 The estimated basic reproduction number, R0, for a Markov SEIR model in a multi-type
population as described in [113], based on the real infection process (who infected whom) plotted
against the computed R0, assuming homogeneous mixing, based on the estimated epidemic growth
rate, α , and given expected infectious period (5 days) and expected latent period (10 days). The
infectivity is chosen at random, such that the theoretical R0 is uniform between 1.5 and 3. The
estimate of α is based on the times when individuals become infectious. In the right plot, a boxplot
of the ratios is given.

To illustrate this last point, we consider in Figure 2.6.3 a household structure
with within and global infectivities. The within household infection rate is λH . In
the simulations, we show estimates for R0 and vc over a range of values for the
relative contribution of the within-household spread. For each epidemic growth rate
α , the estimated values remain below the value obtained for homogeneous mixing
(neglecting the partition into households).
We use two types of epidemics: in (a) and (b) the Markov SIR epidemic is used,
while in (c) the so-called Reed–Frost model is used, which can be interpreted as an
epidemic in which infectious individuals have a long latent period of non-random
length, after which they are infectious for a very short period of time. We note that
for the Reed–Frost model the relationship between α and R0 does not depend on
the household structure (cf. [17]) and therefore, for this model, only the dependence
of vc on the relative contribution of the within household spread is shown in Figure
2.6.3.
The household size distribution is taken from a 2003 health survey in Nigeria [45].
For Markov SIR epidemics, as the within-household infection rate λH is varied, the
global infection rate is varied in such a way that the computed epidemic growth rate
α is kept fixed. For this model, α is calculated using the matrix method described
in Section 4.1 of [94].
For the Reed–Frost epidemic model, the probability that an infectious individual
infects a given susceptible household member during its infectious period, pH is
varied, while the corresponding probability for individuals in the general population
varies with pH so that α is kept constant. For this model, R0 coincides with the
initial geometric rate of growth of infection, so α = log(R0). From Figure 2.6.3, we
see that estimates of vc assuming homogeneous mixing are reliable for Reed–Frost
type epidemics, although as opposed to all other analysed models and structures,
the estimates are not conservative. We see also that for the Markov SIR epidemic,
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estimating R0 and vc based on the homogeneously mixing assumption might lead to
conservative estimates which are up to 40% higher than the real R0 and vc.
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Fig. 2.6.3 Estimation of key epidemiological variables in a population structured by households
(see Part II of this volume). The basic reproduction number R0 for Markov SIR epidemics (a), criti-
cal vaccination coverage vc for Markov SIR epidemics (b) and vc for Reed–Frost epidemics (c), as a
function of the relative influence of within household transmission, in a population partitioned into
households. The household size distribution is given by m1 = 0.117,m2 = 0.120,m3 = 0.141,m4 =
0.132,m5 = 0.121,m6 = 0.108,m7 = 0.084,m8 = 0.051,m9 = 0.126, for i = 1,2, · · · ,9, mi is the
fraction of the households with size i. The global infectivity is chosen so that the epidemic growth
rate α is kept constant while the within household transmission varies. Homogeneous mixing cor-
responds to λH = pH = 0.



Chapter 3
SIR Epidemics on Configuration Model Graphs

We now turn to establishing limit theorems for approximating the dynamics of the
disease in large populations, when N →+∞, similarly to Chapter 2 in Part I of this
book. We focus here on the case where GN is a Configuration model graph, and we
will let N → +∞. Several strategies have been developed for epidemics spreading
on such random graphs (see e.g. Newman [86, 88], Durrett [49], Barthélemy et al.
[20], Kiss et al. [70]).

Contrarily to the classical mixing compartmental SIR epidemic models (e.g.
[67, 21] see also Part I of this book for a presentation), heterogeneity in the number
of contacts makes it difficult to describe the dynamical behaviour of the epidemic.
An important literature, starting from Andersson [7], deals with moment closure,
mean field approximations (e.g. [91, 20, 49, 70]) or large population approxima-
tions (e.g. [13], see also Eq. (3) of [6] in discrete time). In 2008, Ball and Neal [13]
proposed to describe the dynamics with an infinite system of ordinary differential
equations, by obtaining an equation for each subpopulation of individuals with same
degree k, k ∈ Z+. The same year, Volz [110] proposed a large population approx-
imation with only 5 ordinary differential equations and without moment closure,
which was a major advance for prediction and tractability. The key concept behind
his work was to focus not only on node-based quantities, but rather of edge-based
ones (see also [78]). Rigorous proofs have then been proposed by [44, 19, 65]).

Recall that we have denoted the sets of S, I and R vertices at time t by St , It
and Rt (see Section 1.4). The sizes of these sub-populations are St , It and Rt . We
will say that an edge linking an infectious ego and susceptible alter is of type I− S
(accordingly R− S, I− I or I− R).

3.1 Moment Closure in Large Populations

For the presentation in this section, we follow the work of [7]. Let us introduce some
notation. For u ∈V , denote

263© Springer Nature Switzerland AG 2019 
T. Britton, E. Pardoux (eds.), Stochastic Epidemic Models with Inference,  
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Su(t) = 1u∈St and Iu(t) = 1u∈It .

Then, St = ∑u∈V Su(t) and It = ∑u∈V Iu(t). Because the size N of the graph GN con-
verges to infinity, we will be lead to study the proportions of susceptible, infectious
and removed individuals, that are denoted by:

SNt =
St
N
, INt =

It
N
, RN

t =
Rt

N
. (3.1.1)

Notice that SNt + INt +RN
t = 1 since our population is closed. Hence, knowing the

evolution of SN. and IN. is sufficient for describing the size and evolution of the
outbreak.
For A, B,C being S or I, we denote by

[a] = lim
N→+∞

1
N ∑

u∈V
Au = a, [ab] = lim

N→+∞

1
N ∑

u,v∈V
AuGuvBv,

[abc] = lim
N→+∞

1
N ∑

u,v,w∈V
AuGuvBvGvwCw,

where we recall that G is the adjacency matrix of the graph (see Definition 1.1.2).

In the sequel, we will work under the following assumption.

Assumption 3.1.1. We assume that limN→+∞(SN0 , I
N
0 ) = (s0, i0) ∈ (R+ \ {0})2 and

that for all N, RN
0 = 0.

The idea is that in the large population limit, the initial fraction of infectious in-
dividuals should be positive to allow the observation of an outbreak. That is why we
assume that it is of order i0N with i0 > 0 but possibly small with respect to 1.

Let us present a system of limiting deterministic equations. The limit theorems
allowing to obtain the following equations from the finite stochastic system are not
shown here. In fact, we will later detail how Volz’ equations are obtained.

Andersson [7] proposes the following ODEs for the sizes of the S and I classes.

dst
dt

=−λ [st it ],
dit
dt

= λ [st it ]− γit . (3.1.2)

Let us comment on these equations. In a closed population, susceptible individuals
disappear when they are contaminated, i.e. when an edge with susceptible ego and
infectious alter transmits the disease. Thus, the rate at which the number of suscep-
tible individuals decreases due to infection (which equals to the rate at which the
number of infectious individuals increases) should be proportional to the proportion
of edges with susceptible ego and infectious alter, [st it ]. The rate at which infectious
individuals disappear is−γit as in the compartmental case, since removals are node-
related events and not edge-related events like infections.
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Equations 3.1.2 are not closed, and this leads Andersson to propose the following
assumption.

Assumption 3.1.2. Let A, B,C be S or I. If {u,w} /∈ E, we assume that

P(Au = 1 | BvCw = 1) = P(Au = 1 | Bv = 1) =
P(Au = 1, Bv = 1)

P(Bv = 1)
.

Let us comment on this assumption. As the Bayes formula says that:

P(AuBvCw = 1) = P(Au = 1 | BvCw = 1)P(BvCw = 1),

Assumption (3.1.2) implies that

P(AuCw = 1 | Bv = 1) = P(Au = 1 | Bv = 1)P(Cw = 1 | Bv = 1).

Thus, Assumption 3.1.2 amounts to assuming that conditionally on having a B
friend, having an A and a C friends are independent events, and is heuristically true
when

[abc]≈ [ab][bc]
[b]

.

This assumption fails when we are in graphs with strong correlations between edges
so that ‘the friend of my friend is also my friend’.

Let us define the selection pressure by

ĩt =
[st it ]
st

. (3.1.3)

It is the mean number of edges toward It for individuals in St . This quantity allows
Andersson [7] to close the system of ODEs (3.1.2) under Assumption 3.1.2.

Theorem 3.1.3. Under Assumption 3.1.2, the epidemic on the network can be de-
scribed by the following equations:

dst
dt

=−λ st ĩt , (3.1.4)

dit
dt

= λ st ĩt − γit (3.1.5)

dĩt
dt

=
(
Cλ st −λ − γ

)
ĩt . (3.1.6)

Proof. The equations proposed in Theorem 3.1.3 are derived in several steps. Recall
Equations (3.1.2). To close them, it is needed to describe how the quantities of edges
[stst ] and [st it ] evolve. An edge S− S disappears when one of its vertices is infected.
For each motif S− S− I, the edge S− I transmits the disease independently with rate
λ . Thus, the rate of disappearance of S− S edges is proportional to the λ [stst it ].
Similarly, S− I edges appear when edges S− S become S− I, and disappear when
becoming I− I (which happens when the susceptible vertex is infected by its in-
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fectious alter, or by another infectious contact) or when becoming S− R (when the
infectious individual is removed). Then:

d[stst ]
dt

=−2λ [stst it ],

d[st it ]
dt

= λ
(
[stst it ]− [it st it ]− [st it ]

)
− γ[st it ]. (3.1.7)

These equations are still not closed, as they depend on the numbers of motifs S−
S− I and I− S− I renormalized by N. The equations that we might write for these
quantities depend on motifs with four vertices etc. To close the equations, we use
Assumption 3.1.2. Then, the equations (3.1.7) become:

d[stst ]
dt

=−2λ [stst ][st it ]
st

,

d[st it ]
dt

= λ
( [stst ][st it ]

st
− [st it ]2

st
− [st it ]

)
− γ[st it ].

Notice that
d(s2t )
dt

= 2st
dst
dt

=−2λ st [st it ] =−2λ [st it ]
st

s2t .

Thus, (s2t ) and [stst ] satisfy the same ODE and we deduce that there exists a C > 0
such that [stst ] =Cs2t .

Using the definition of the selection pressure ĩt ,

dĩt
dt

=
d[st it ]
dt

1
st
− [st it ]

s2t

dst
dt

=
1
st

(
λ
(
Cs2t × ĩt st ×

1
st
− ĩ2t s

2
t ×

1
st
− ĩt st

)
− γ ĩt st

)
+

ĩt st
s2t

×λ ĩt st

=
(
Cλ st −λ − γ

)
ĩt .

The system can then be reformulated as the announced system with three ODEs in
st , it and ĩt . '(

When the infection rate is low and the number of S− S edges is very high, we
recover the Kermack–McKendrick ODEs describing the dynamics of an epidemic
in a homogeneous case:

Proposition 3.1.4. If C→+∞ and λ → 0 with λ ′ =Cλ constant, we recover in the
limit the Kermack–McKendrick system of ODE:

dst
dt

=−λ ′st it

dit
dt

= λ ′st it − γit .

Proof. IfC→+∞ and λ → 0 with λ ′ =Cλ constant, then ‘in the limit’:



3.2 Volz and Miller Approach 267

dĩt
dt

= λ ′ st ĩt − γ ĩt .

Consider f (t) = ĩt −Cit . This quantity satisfies

d f
dt

(t) =−γ ft .

Applying Gronwall’s inequality, this yields that ĩt =Cit . We recover as announced,
the Kermack–McKendrick ODEs with infection rate λ ′. '(

From Equation (3.1.6), we can for example predict the total size of the epidemics,
i.e. the number of removed individuals when the infective population vanishes and
the epidemics stops.

Proposition 3.1.5. Based on the equations (3.1.6), we can compute the final size of
the epidemics:

z := s0− s∞ = s0
(
1− exp

(
− λ

λ + γ
(Cz+ ĩ0)

))
.

Proof. Because t 3→ st is a continuous non-negative decreasing function, it con-
verges to a limit s∞ when t →+∞. From (3.1.6):

dĩt
dt

=−λ st ĩt
(
−C+

1
st
+

γ
λ st
)
=

dst
dt
(
−C+

1+ γ
λ

st

)

from which we obtain by integration:

ĩt − ĩ0 =−C(st − s0)+
(
1+

γ
λ
)
log

st
s0
.

Since ĩ∞ = 0:
−ĩ0+C(s∞ − s0) =

(
1+

γ
λ
)
log

s∞
s0

.

Computing z := s0− s∞, we recover the announced result. '(

For further and recent developments on moment closures, we refer the reader to
e.g. [92] or [70].

3.2 Volz and Miller Approach

In 2008, Volz [110] proposed a system of only 5 ODEs to describe the spread of an
epidemic on a random CM graph. Volz approximation is based on an edge-centered
point of view, in an ‘infinite’ CM graph setting, without any assumption of mo-
ment closure. We present Volz equations and then explain how to recover them
with Miller’s approach [78]. The derivation of these equations as limit of epidemics
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spreading on finite graphs is detailed following the approach of Decreusefond et
al. [44].

The spread of diseases on random graphs involves two sources of randomness:
one for the random graph, the other for describing the way the epidemic propagates
on this random environment. An idea coming from statistical mechanics is to build
the random graph progressively as the epidemic spreads over it, instead of first con-
structing the random graph, conditioning on it and studying the epidemic on the
frozen environment. We detail the process that we will consider in the rest of the
section.
Assume that only the edges joining the I and R individuals are observed. This means
that the cluster of infectious and removed individuals is built, while the network of
susceptible individuals is still not defined. We further assume that the degree of each
individual is known. To each I individual is associated an exponential random clock
with rate γ to determine its removal. To each open edge (directed to S), we associate
a random exponential clock with rate λ . When it rings, an infection occurs. The
infectious ego chooses the edge of a susceptible alter at random. Hence the latter
individual is chosen proportionally to her/his degree, in the size biased distribution,
as explained in (1.2.1). When this susceptible individual becomes infected, she/he is
connected and uncovers the edges to neighbours that were already in the subgraph:
we determine whether her/his remaining edges are linked with I, R-type individuals
(already in the observed cluster) or to S, in which case the edges remains ‘open’ (the
alter is not chosen yet).

Let us consider the limit when the size of the graph converges to infinity, and
let us denote as before by st and it the proportion of susceptible and infectious
individuals in the population at time t. A key quantity in the approach of Volz [110]
and Miller [78] is the probability θ(t) that an directed edge picked uniformly at
random at t has not transmitted the disease. Let u ∈ V be a vertex of degree k.
The vertex u is still susceptible at time t if none of its k edges has transmitted the
disease. By the construction of the stochastic process, where the random graph is
built simultaneously to the spread of the disease on it, any infectious individual that
transmits the disease pairs one of her/his half-edge with a half-edge of a susceptible
individual chosen uniformly at random. Thus, the probability that none of the k
edges of a susceptible has transmitted the disease up to time t is θ k(t). Hence,

st =
+∞

∑
k=0

θ(t)k pk = g(θ(t)), (3.2.1)

where g is the generating function of the probability distribution (pk)k≥0 (see
(1.2.2)). Notice that in Equation (3.2.1), the proportion st of susceptibles is assumed
to coincide with the expectation of the proportion of the number of susceptible in-
dividuals at t. We recall that a rigorous derivation of Volz’ equations is given in
Section 3.3.7 below.
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3.2.1 Dynamics of θ(t)

To deduce an equation for st from (3.2.1), an equation for θ(t) is needed.

Proposition 3.2.1. We have that:

dθ
dt

=−λθ(t)+ γ(1−θ(t))+λ g′(θ(t))
g′(1)

.

Proof. Denote by h(t) the probability that the alter is still susceptible at time t.
Define φ(t) as the probability that a random edge has not transmitted the disease
and that its alter is infectious. Notice that

dθ
dt

=−λφ(t). (3.2.2)

Given an edge satisfying the definition of φ(t) (an edge that has not transmitted the
disease yet and whose alter is infectious), the probability that the alter is of degree
k is given by (1.2.1) and given its degree, the probability that it is still susceptible at
time t is θ k−1(t), because the considered edge did not transmit the disease before t.
Then:

h(t) =
+∞

∑
k=0

kpk
m

θ k−1(t) =
g′(θ(t))
g′(1)

,

from which we deduce that

dh
dt

=
g′′(θ(t))
g′(1)

dθ
dt

=−λφ(t)g
′′(θ(t))
g′(1)

.

An equation for the evolution of φ(t) can be written by noticing that:

• An edge stops satisfying the definition of φ if it transmits the disease or if the
alter is removed.

• An edge starts satisfying the definition of φ if its alter becomes infectious.

Thus

dφ
dt

=− (λ + γ)φ(t)− dh
dt

=− (λ + γ)φ(t)+λφ(t)g
′′(θ(t))
g′(1)

=
λ + γ

λ
dθ
dt

− g′′(θ(t))
g′(1)

dθ
dt

, (3.2.3)

which gives for a constantC:

φ(t) = λ + γ
λ

θ(t)− g′(θ(t))
g′(1)

+C.

Using that φ(0) = 0 and θ(0) = 1, we deduce thatC =−γ/λ and hence
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φ(t) = θ(t)− γ
λ
(1−θ(t))− g′(θ(t))

g′(1)
. (3.2.4)

We deduce the announced result from (3.2.2) and (3.2.4). '(

3.2.2 Miller’s Equations

We can now deduce the equations for the proportions st , it and rt of susceptible,
infectious and recovered individuals proposed by Miller [78].

Proposition 3.2.2 (Miller’s equations [78]).We have:

st = g(θ(t))
drt
dt

= γit

dit
dt

=−g′(θ(t))
(
−λθ(t)+ γ(1−θ(t))+λ g′(θ(t))

g′(1)
)
− γit .

dθ
dt

=−λθ(t)+ γ(1−θ(t))+λ g′(θ(t))
g′(1)

.

Proof. By (3.2.1), we have that st = g(θ(t)). From the node-centered removal dy-
namics of infectious nodes, we have that drt

dt = γit . Using it = 1− st − rt and Propo-
sition 3.2.1, we obtain the two last equations. '(

We can now recover the equations proposed by Volz [110] by introducing the
proportion of edges I− S that have not transmitted the disease yet

pI(t) =
φ(t)
θ(t)

(3.2.5)

and the proportion of edges S− S that have not transmitted the disease

pS(t) =
g′(θ(t))

θ(t)g′(1)
. (3.2.6)

From Miller’s equations, we obtain by straightforward computation:

Proposition 3.2.3 (Volz’ equations [110]).We have:

θ(t) = exp
(
−λ

∫ t

0
pI(s) ds

)
, st = g(θ(t)),

dit
dt

= λ pI(t)θ(t)g′(θ(t))− γit

dpI
dt

= λ pI(t)pS(t)θ(t)
g′′(θ(t))
g′(θ(t))

−λ pI(t)(1− pI(t))− γ pT (t).

dpS
dt

= λ pI(t)pS(t)
(
1−θ(t)g

′′(θ(t))
g′(θ(t))

)
.
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Let us compare Volz’ equations with the Kermack–McKendrick equations:

ds
dt

=−λ st it ,
di
dt

= λ st it − γit .

In Volz’ equations, denoting by N̄S
t = pI(t)θ(t)g′(θ(t)) the ‘quantity’ of edges from

I to S:

dst
dt

=g′(θ(t))dθ
dt

=−λg′(θ(t))θ(t)pI(t) =−λ N̄S
t pI(t) =−λ N̄ IS

t

dit
dt

=λ × N̄ IS
t − γit .

These equations account for the fact that not all the I and S vertices are connected,
which modifies the infection pressure compared with the mixing models (Part I of
this volume).

3.3 Measure-valued Processes

Decreusefond et al. [44] proved the convergence that was left open by Volz [110].
The proof that we now present underlines the key objects that lie at the core of the
phenomenon: because degree distributions are central in CMs, these objets are not
surprisingly measures representing some particular degree distributions. Three de-
gree distributions are sufficient to describe the epidemic dynamics which evolve in
the space of measures on the set of nonnegative integers, and of which Volz’ equa-
tions are a by-product.
A rigorous individual-based description of the epidemic on a random graph is pro-
vided. Starting with a node-centered description, we show that the individual dimen-
sion is lost in the large graph limit. Our construction heavily relies on the choice of
a CM for the graph underlying the epidemic, which was also made in [110].

3.3.1 Stochastic Model for a Finite Graph with N Vertices

Recall the notation of Section 1.4. The idea of Volz is to use network-centric quan-
tities (such as the number of edges from I to S) rather than node-centric quantities.
For a vertex u ∈ S, Du corresponds to the degree of u. For u ∈ I (respectively R),
Du(S) represents the number of edges with u as infectious (resp. removed) ego and
susceptible alter. The numbers of edges with susceptible ego (resp. of edges of types
I− S and R− S) are denoted by NS

t (resp. N IS
t and NRS

t ). All these quantities are in
fact encoded into three degree distributions, that we now introduce and on which
we will work to establish Volz’ equations. Notice that with the notations of Section
3.1, 1

NN
IS
t = [SI]t and 1

NN
RS
t = [SR]t . However, we drop this notation with brackets

for simplification of later formula and because we will not need motifs other than
edges.
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Definition 3.3.1. We consider here the following three degree distributions of
MF(Z+), given for t ≥ 0 as:

µ S
t = ∑

u∈St

δDu , µ IS
t = ∑

u∈It

δDu(St ), µRS
t = ∑

u∈Rt

δDu(St ), (3.3.1)

where we recall that δD is the Dirac mass at D ∈ Z+ (see Notation 0.0.1).

Notice that the measures µ S
t /St , µ IS

t /It and µRS
t /Rt are probability measures that

correspond to usual (probability) degree distributions. The degree distribution µ S
t of

susceptible individuals is needed to describe the degrees of the new infected indi-
viduals. The measure µ IS

t provides information on the number of edges from It to
St , through which the disease can propagate. Similarly, the measure µRS

t is used to
describe the evolution of the set of edges linking St to Rt .
Using Notation 0.0.1, we can see that

It = 〈µ IS
t ,1〉, N IS

t = 〈µ IS
t ,χ〉= ∑

u∈It

Du(St),

and accordingly for NS
t , NRS, St and Rt .

Definition 3.3.2 (Labelling the nodes). For an integer-valued measure
µ ∈MF(Z+), we can rank its atoms by increasing degrees and label them with this
order. A way of deducing this labelling from µ by using its cumulative distribution
function is proposed in [44]. We omit it here for the sake of simplicity.

Example 3.3.3. Consider for instance the measure µ = 2δ1 + 3δ5 + δ7. If µ is a
degree distribution, this means that 2 individuals have degree 1, 3 individuals have
degree 5 and 1 individual has degree 7. Ranking the atoms by increasing degrees,
we can label them from 1 to 6 such that D1 =D2 = 1, D3 =D4 =D5 = 5, D6 = 7."

3.3.2 Dynamics and Measure-valued SDEs

Suppose that at initial time, we are given a set of S and I nodes together with their
degrees. The graph of relationships between the I individuals is in fact irrelevant for
studying the propagation of the disease. The minimal information consists in the
sizes of the classes S, I, R and the number of edges to the class S for every infectious
or removed node. Each node of class S comes with a given number of half-edges of
undetermined types ; each node of class I (resp. R) comes with a number of I− S
(resp. R− S) edges. The numbers of I− R, I− I and R− R edges need not to be re-
tained. The three descriptors in (3.3.1) are hence sufficient to describe the evolution
of the SIR epidemic.

Recall the graph construction of Section 3.2 explaining how to handle simultane-
ously the two sources of randomness of the problem. The random network of social
relationships is explored while the disease spreads on it: only the clusters of I and R
individuals are observed and constructed, with I− S and R− S edges having their S
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alter still unaffected. Susceptible individuals remain unattached until they become
infected, in which case their connections to the cluster of I’s and R’s are revealed.
We assume that the degree distribution of S0 and the size N of the total population
are known.

We now explain the dynamics, that is summarized in Figure 3.3.1. Recall that to
each half-edge of type I− S, an independent exponential clock with parameter λ is
associated, and to each I vertex, an independent exponential clock with parameter γ
is associated. The first of all these clocks that rings determines the next event.

Case 1 If the clock that rings is associated to an I individual, the latter is removed.
Change her status from I to R and the type of her emanating half-edges accord-
ingly: I− S half-edges become R− S half-edges for example.

Case 2 If the clock that rings is associated with a half I− S-edge (with unaffected
susceptible alter), an infection occurs.

Step 1 Match randomly the I−S-half-edge whose clock has rung to a half-edge
of a susceptible: this determines the susceptible becoming infected.

Step 2 Let k be the degree of the newly infected individual. Choose uniformly
k−1 half edges among the open half-edges of the cluster of I and R individuals
(I− S or R− S edges of this cluster, with susceptible alter still unaffected)
and among the half edges of susceptible individuals. Let j, ! and m be the
respective number of I− S, R− S and S− S edges chosen among the k− 1
picks.

Step 3 The chosen half-edges of type I− S and R− S determine the infectious
or removed neighbours of the newly infected individual who become the new
(infectious) alter of these edges. The remaining m edges of type S− S remain
open in the sense that the susceptible neighbour is not fixed.
Change the status of the newly infected from S to I. Change the status of the
m (resp. j, !) S− S-type (resp. I− S-type, R− S-type) edges considered to
I− S-type (resp. I− I-type, R− I-type). "

We then wait for another clock to ring and repeat the procedure.
From the dynamics described above, we can read that the global force of infection

at time t is
λN IS

t− .

When an infection occurs, a half-edge of a susceptible individual is chosen and de-
termines who is the contaminated person. Therefore, a given susceptible of degree k
has a probability k/NS

t− to be the next infected individual. So that the rate of infection
of a given susceptible of degree k at time t is:

Λt−(k) = λk
N IS
t−

NS
t−

= λkpI(t−), (3.3.2)

where pI(t) is defined by

pI(t) =
N IS
t

NS
t
,
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(a) (b) (c)

I
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I
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I

Fig. 3.3.1 Infection process. Arrows provide the infection tree. Susceptible, infectious and removed
individuals are colored in white, grey and dark grey respectively. (a) The degree of each individual
is known, and for each infectious (resp. removed) individual, we know his/her number of edges of
type IS (resp. RS). (b) A contaminating half edge is chosen and a susceptible of degree k is infected
at time t with the rate Λt(k) defined in (3.3.13). The contaminating edge is drawn in bold line. The
number N IS

t− of edges from I to S momentarily becomes N IS
t− −1+(k−1). (c) Once the susceptible

individual has been infected, we determine how many of its remaining arrows are linked to the
classes I and R. If we denote by j and ! these numbers, then N IS

t = N IS
t− − 1+(k− 1)− j− ! and

NRS
t = NRS

t− − !.

is the proportion of edges linked to susceptible individuals that can transmit the dis-
ease. It is the discrete stochastic quantity that we expect will converge to (3.2.5).

Starting from t, and because of the properties of exponential distributions, the
next event will take place after an exponentially distributed time with parameter
λN IS

t + γIt . Let T denote the time of this event after t.

Case 1 The next event corresponds to a removal, i.e., a node goes from status I
to status R. Choose uniformly u ∈ IT− (with probability 1/IT− , then update the
measures µ IS

T− and µRS
T− :

µ IS
T = µ IS

T− −δDu(ST− ) and µRS
T = µRS

T− +δDu(ST− ).

Case 2 The next event corresponds to a new infection. We choose uniformly a
half-edge with susceptible alter, and this alter becomes infectious. The new in-
fective has degree k with probability kµ S

T−(k)/N
S
T− . When the new individual is

‘discovered’ by the disease, she/he reveals her/his links with other infectious or
removed individuals. The probability, given that the degree of the individual is k
and that j (resp. !) out of her k−1 other half-edges (all but the contaminating IS
edge) are chosen to be of type II (resp. IR), according to Step 2’, is given by the
following multivariate hypergeometric distribution:

pT−( j,! |k−1) =

(N IS
T−−1
j

)(NRS
T−
!

)(NS
T−−N IS

T−−NRS
T−

k−1− j−!

)

(NS
T−−1
k−1

) · (3.3.3)

Finally, to update the values of µ IS
T and µRS

T given k, j and !, we have to choose
the infectious and removed individuals to which the newly infectious is linked:
some of their edges, which were IS or RS, now become II or RI. We draw two se-
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quences of integers n = (n1, . . . ,nIT− ) and m = (m1, . . . ,mRT− ) that will indicate
how many links each infectious or removed individual has to the newly contami-
nated individual. There exist constraints on these sequences: the number of edges
recorded for each individual by the vectors n and m can not exceed the number
of existing edges. Let us define the set

L =
+∞⋃

m=1
Zm
+, (3.3.4)

and for all finite integer-valued measure µ on Z+, corresponding to a degree
distribution as in Section 3.3.1, and whose atoms are labelled say, according to
Definition (3.3.2) and for all integer ! ∈ Z+, we define the subset

L (!,µ) =
{
n= (n1, ...,n〈µ ,1〉) ∈ Z〈µ,1〉

+ such that

∀u ∈ {1, . . . ,〈µ,1〉}, nu ≤ Du(µ) and
〈µ,1〉

∑
u=1

nu = !
}
, (3.3.5)

where Du(µ) stands for the degree of the vertex u, read from the measure µ (see
Example 3.3.3). Each sequence n ∈L (!,µ) provides a possible configuration of
how the ! connections of a given individual can be shared between neighbours
whose degrees are summed up by µ . The component nu, for 1≤ u≤ 〈µ,1〉, pro-
vides the number of edges that this individual shares with the individual u. This
number is necessarily smaller than the degree Du(µ) of individual u. Moreover,
the components of the vector n sum to !. The probabilities of the draws of n
and m that provide respectively the number of edges I− S which become I− I
per infectious individual and the number of edges R− S which become R− I per
removed individual are given by:

ρ(n| j+1,µ IS
T−) =

∏u∈IT−

(Du(ST− )
nu

)

(N IS
T−
j+1

) 1n∈L ( j+1,µ IS
T− )

ρ(m|!,µRS
T−) =

∏v∈RT−

(Dv(ST− )
mv

)

(NRS
T−
!

) 1m∈L (!,µRS
T− ). (3.3.6)

Note that IT− = 〈µ IS
T− ,1〉 is the total mass of the measure µ IS

T− and that Du(ST−)
corresponds to the degree of the individual u encoded by µ IS

T− with the labelling
of Definition 3.3.2, i.e. to the number of edges from u to S before time T .

Then, we update the measures as follows:

µ S
T = µ S

T− −δk
µ IS
T = µ IS

T− +δk−1− j−!+ ∑
u∈IT−

(
δDu(ST− )−nu −δDu(ST− )

)
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µRS
T = µRS

T− + ∑
v∈RT−

(
δDv(ST− )−mv −δDv(ST− )

)
. (3.3.7)

Here, we propose stochastic differential equations (SDEs) driven by Poisson
point measures (PPMs) to describe the evolution of the degree distributions (3.3.1)
as in [44].

We consider two Poisson point measures Q1 and Q2 on E1 := Z+×R+×Z+×
Z+×R+×L ×R+×L ×R+ and R+×Z+ with intensity measures the product of
Lebesgue measures on R+ and the of counting measures on each discrete set. The
atoms of the point measure Q1 are of the form (s,k,θ1, j,!,θ2,n,θ3,m,θ4). They
provide possible times s at which an infection may occur, and gives an integer k
corresponding to the degree of the susceptible being possibly infected, the numbers
j+ 1 and ! of edges that this individual has to the sets Is− and Rs− . The marks n
and m ∈ L are as in the previous section. The marks θ1, θ2 and θ3 are auxiliary
variables used for the construction (see (3.3.9)–(3.3.10)) below.
The atoms of the point measure Q2 are of the form (s,u) and give possible removal
times s associated with the label u of the individual that may be removed.

The following SDEs describe the evolution of the epidemic: for all t ≥ 0,

µ S
t = µ S

0 −
∫ t

0

∫

E1
δk1θ1≤Λs− (k)µS

s− (k) (3.3.8)

1θ2≤ps− ( j,!|k−1)1θ3≤ρ(n| j+1,µ IS
s− )1θ4≤ρ(m|!,µRS

s− ) dQ1

µ IS
t = µ IS

0 +
∫ t

0

∫

E1

(
δk−( j+1+!) + ∑

u∈Is−

(
δDu(µ IS

s− )−nu −δDu(µ IS
s− )

))
(3.3.9)

×1θ1≤Λs− (k)µS
s− (k)1θ2≤ps− ( j,!|k−1)1θ3≤ρ(n| j+1,µ IS

s− )1θ4≤ρ(m|!,µRS
s− ) dQ1

−
∫ t

0

∫

Z+

δDu(µ IS
s− )1u∈Is− dQ2

µRS
t = µRS

0 +
∫ t

0

∫

E1

(
∑

v∈Rs−

(
δDv(µRS

s− )−mv −δDv(µRS
s− )

))
(3.3.10)

×1θ1≤Λs− (k)µS
s− (k)1θ2≤ps− ( j,!|k−1)1θ3≤ρ(n| j+1,µ IS

s− )1θ4≤ρ(m|!,µRS
s− ) dQ1

+
∫ t

0

∫

Z+

δDu(µ IS
s− )1u∈Is− dQ2,

where we write dQ1 and dQ2 instead of dQ1(s,k,θ1, j,!,θ2,n,θ3,m,θ4) and
dQ2(s,u) to simplify the notation.

Proposition 3.3.4. For any given initial conditions µ S
0 , µ SI

0 and µRS
0 that are integer-

valued measures on Z+ and for PPMs Q1 and Q2, there exists a unique strong solu-
tion to the SDEs (3.3.8)–(3.3.10) in the space D

(
R+,(MF(Z+))3

)
, the Skorokhod

space of càdlàg functions with values in (MF(Z+))3.

Proof. For the proof, we notice that for every t ∈ R+, the measure µ S
t is dominated

by µ S
0 and the measures µ IS

t and µRS
t have a mass bounded by 〈µ S

0 +µ IS
0 +µRS

0 ,1〉 and
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a support included in
[[
0,max{max(supp(µ S

0 )),max(supp(µ IS
0 )),max(supp(µRS

0 ))}
]]
.

The result then follows the steps of [55] and [105] (Proposition 2.2.6) where a path-
wise construction of the solution on the positive real line is given using the Poisson
point processes Q1 and Q2. '(

The course of the epidemic can be deduced from (3.3.8), (3.3.9) and (3.3.10). For
the sizes (St , It ,Rt)t∈R+ of the different classes, for instance, we have with the choice
of f ≡ 1 that for all t ≥ 0, St = 〈µ S

t ,1〉, It = 〈µ IS
t ,1〉 and Rt = 〈µRS

t ,1〉 (see Nota-
tion 0.0.1). Writing the semi-martingale decomposition that results from standard
stochastic calculus for jump processes and SDE driven by PPMs (e.g. [55, 62, 63]),
we obtain for example:

It =〈µ IS
t ,1〉= I0+

∫ t

0

(
∑

k∈Z+

µ S
s (k)Λs(k)− γ Is

)
ds+MI

t , (3.3.11)

where MI is a square-integrable martingale that can be written explicitly as a
stochastic integral with respect to the compensated PPMs of Q1 and Q2, and with
predictable quadratic variation given for all t ≥ 0 by

〈MI〉t =
∫ t

0
∑

k∈Z+

(
µ S
s (k)Λs(k)+ γIs

)
ds.

Other quantities of interest are the numbers of edges of the different types NSt , N IS
t ,

NRS
t . The latter appear as the first moments of the measures µ S

t , µ IS
t and µRS

t :

NSt = 〈µ S
t ,χ〉, N IS

t = 〈µ IS
t ,χ〉 and NRS

t = 〈µRS
t ,χ〉.

3.3.3 Rescaling

We consider a sequence of larger and larger graphs (GN)N≥1 with N → +∞. The
degree distribution p underlying these CM graphs remains unchanged with N.
The sequences of measures (µN,S)N∈N, (µN,IS)N∈N and (µN,RS)n∈N are defined as

µN,S
t =

1
N
µ S
t , µN,IS

t =
1
N
µ IS
t , µN,RS

t =
1
N
µRS
t (3.3.12)

where the measures non-rescaled µ S, µ IS and µRS are defined as in (3.3.1) and im-
plicitly depend on N:

〈µN,S
t ,1〉+ 〈µN,IS,1〉+ 〈µN,RS,1〉= N

N
= 1.

The proportions SN
t , INt and RN

t defined in (3.1.1) can then be rewritten as SN
t =

〈µN,S,1〉, INt = 〈µN,IS,1〉 and RN
t = 〈µN,RS,1〉. Also, we have NN,S

t = 〈µN,S,χ〉,
NN,IS
t = 〈µN,IS,χ〉 and NN,RS

t = 〈µN,RS,χ〉, the numbers, renormalized by N, of edges
with susceptible ego, infectious ego and susceptible alter, removed ego and suscep-
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tible alter.

We assume that the initial conditions satisfy:

Assumption 3.3.5. The sequences (µN,S
0 )n∈N, (µN,IS

0 )n∈N and (µN,RS
0 )n∈N converge

to measures µ̄ S
0 , µ̄ IS

0 and µ̄RS
0 in MF(Z+) equipped with the topology of weak con-

vergence.

Remark 3.3.6. 1. Assumption 3.3.5 entails that the initial (susceptible and infec-
tious) population size is of order N if µ̄ S

0 and µ̄ IS
0 are nontrivial.

2. If the distributions underlying the measures µN,S
0 , µN,IS

0 and µN,RS
0 do not depend

on the total number of vertices (e.g. Poisson, power-laws or geometric distributions),
Assumption 3.3.5 can be viewed as a law of large numbers. When the distributions
depend on the total number of vertices N (as in Erdös-Renyi graphs), there may be
scalings under which Assumption 3.3.5 holds. For Erdös-Renyi graphs for instance,
if the probability pN of connecting two vertices satisfies limN→+∞NpN = λ , then
we obtain in the limit a Poisson distribution with parameter λ .
3. Notice the appearance in Equation (3.3.2) of the size biased degree distribution.
The latter reflects the fact that, in the CM, individuals having large degrees have
higher probability to connect than individuals having small degrees. Thus, there is
no reason why the degree distributions of the susceptible individuals µ̄ S

0/S̄0 and the
distribution ∑k∈Z+

pkδk underlying the CM should coincide. This is developed in
Section 3.3.6. "

It is possible to write rescaled SDEs which are the same as the SDEs (3.3.8)–
(3.3.10) parameterized by N (see [44] for details). Several semi-martingale decom-
positions will be useful in the sequel. We focus on µN,IS but similar decompositions
hold for µN,S and µN,RS, which we do not detail since they can be deduced by direct
adaptation of the computation which follows.

Proposition 3.3.7. Define:

ΛN
s (k) = λkN

N,IS
s

NN,S
s

, and pNs ( j,! | k−1) =

(NN,IS
s −1

j
)(NN,RS

s
!

)(NN,S
s −NN,IS

s −NN,RS
s

k−1− j−!

)

(NN,S
s −1
k−1

) .

(3.3.13)
For all f ∈Bb(Z+), for all t ≥ 0,

〈µN,IS
t , f 〉= ∑

k∈Z+

f (k)µN,IS
0 (k)+AN,IS, f

t +MN,IS, f
t , (3.3.14)

where the finite variation part AN,IS, f
t of 〈µN,IS

t , f 〉 reads

AN,IS, f
t =

∫ t

0
∑

k∈Z+

ΛN
s (k)µN,S

s (k) ∑
j+!+1≤k

pNs ( j,!|k−1) ∑
n∈L

ρ(n| j+1,µN,IS
s )

×
(
f (k− ( j+1+ !))+ ∑

u∈INs

(
f (Du(Ss)−nu)− f (Du(Ss))

))
ds

−
∫ t

0
γ〈µN,IS

s , f 〉 ds, (3.3.15)
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and where the martingale part MN,IS, f
t of 〈µN,IS

t , f 〉 is a square integrable martingale
starting from 0 with quadratic variation

〈MN,IS, f 〉t =
1
N

∫ t

0
γ〈µN,IS

s , f 2〉 ds

+
1
N

∫ t

0
∑

k∈Z+

ΛN
s (k)µN,S

s (k) ∑
j+!+1≤k

pNs ( j,!|k−1) ∑
n∈L

ρ(n| j+1,µN,IS
s )

×
(
f (k− ( j+1+ !))+ ∑

u∈INs

(
f
(
Du(µN,IS

s )−nu
)
− f

(
Du(µN,IS

s )
)))2

ds.

Proof. The proof proceeds from standard stochastic calculus for jump processes,
using the SDEs driven by Poisson point processes (see the appendices of Part I of
this volume or [44, 62]). '(

3.3.4 Large Graph Limit

We prove that the rescaled degree distributions mentioned above can then be ap-
proximated for large N, by the solution (µ̄ S

t , µ̄ IS
t , µ̄RS

t )t≥0 of a system of determinis-
tic measure-valued equations, with initial conditions µ̄ S

0 , µ̄ IS
0 and µ̄RS

0 .

We denote by S̄t (resp. Īt and R̄t ) the mass of the measure µ̄ S
t (resp. µ̄ IS

t and µ̄RS
t ).

As for the finite graph, µ̄ S
t /S̄t (resp. µ̄ IS

t /Īt and µ̄RS
t /R̄t ) is the probability degree

distribution of the susceptible individuals (resp. the probability distribution of the
degrees of the infectious and removed individuals towards the susceptible ones).
For all t ≥ 0, we denote by N̄S

t = 〈µ̄ S
t ,χ〉 (resp. N̄ IS

t = 〈µ̄ IS
t ,χ〉 and N̄RS

t = 〈µ̄RS
t ,χ〉)

the continuous number of edges with ego in S (resp. I− S edges, R− S edges).
Following Volz [110], pertinent quantities are the proportions p̄I

t = N̄ IS
t /N̄S

t (resp.
p̄R
t = N̄RS

t /N̄S
t and p̄S

t = (N̄S
t − N̄ IS

t − N̄RS
t )/N̄S

t ) of edges with infectious (respectively
removed, susceptible) alter among those having susceptible ego. We also introduce

θt = exp
(
−λ

∫ t

0
p̄I
s ds
)

(3.3.16)

the probability that a degree one node remains susceptible until time t. The limiting
measure-valued equation expresses for any bounded real function f on Z+ as:

〈µ̄ S
t , f 〉= ∑

k∈Z+

µ̄ S
0 (k)θ k

t f (k), (3.3.17)

〈µ̄ IS
t , f 〉=〈µ̄ IS

0 , f 〉−
∫ t

0
γ〈µ̄ IS

s , f 〉 ds (3.3.18)

+
∫ t

0
∑

k∈Z+

λkp̄I
s ∑

j,!,m∈Z+
j+!+m=k−1

(
k−1
j,!,m

)
( p̄I

s)
j(p̄R

s )
!( p̄S

s )
m f (m)µ̄ S

s (k) ds
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+
∫ t

0
∑

k∈Z+

λkp̄I
s(1+(k−1)p̄I

s) ∑
k′∈N

(
f (k′ −1)− f (k′)

)k′µ̄ IS
s (k′)
N̄ IS
s

µ̄ S
s (k) ds,

〈µ̄RS
t , f 〉=〈µ̄RS

0 , f 〉+
∫ t

0
γ〈µ̄ IS

s , f 〉 ds (3.3.19)

+
∫ t

0
∑

k∈Z+

λkp̄I
s(k−1)p̄R

s ∑
k′∈N

(
f (k′ −1)− f (k′)

)k′µ̄RS
s (k′)
N̄RS
s

µ̄ S
s (k) ds.

Let us give a heuristic explanation of Equations (3.3.17)–(3.3.19). Notice that
the limiting graph is infinite. The probability that an individual of degree k has been
infected by none of her k edges is θ k

t and Equation (3.3.17) follows. In Equation
(3.3.18), the first integral corresponds to infectious individuals being removed. In
the second integral, λkp̄I

s is the rate of infection of a given susceptible individual
of degree k. Once she gets infected, the multinomial term determines the number
of edges connected to susceptible, infectious and removed neighbours. Multi-edges
are not encountered in the limiting graph. Each infectious neighbour has a degree
chosen according to the size-biased distribution k′µ̄ IS(k′)/N̄ IS and the number of
edges to S is reduced by 1. This explains the third integral. Similar arguments ex-
plain Equation (3.3.19).

Before stating the theorem, let us introduce the following state space. For any
ε ≥ 0 and A> 0, we define the following closed set ofMF(Z+) as

Mε,A = {ν ∈MF(Z+) ; 〈ν ,1+χ5〉 ≤ A and 〈ν , χ〉 ≥ ε} (3.3.20)

andM0+,A = ∪ε>0Mε ,A.

Theorem 3.3.8. Suppose that Assumption 3.3.5 holds and that there exists an A> 0
such that

(
µN,S
0 , µN,IS

0 , µN,RS
0

)
in (M0,A)

3 for any N, with 〈µ̄ IS
0 ,χ〉> 0. (3.3.21)

Then, as N converges to infinity, the sequence (µN,S,µN,IS,µN,RS)N∈N converges in
distribution in D(R+,M 3

0,A) to (µ̄ S, µ̄ IS, µ̄RS) which is the unique solution of the
deterministic system equations (3.3.17)–(3.3.19) in C (R+,M0,A×M0+,A×M0,A).

The proof is detailed in Section 3.3.7 and follows standard arguments. First,
tightness of the process is proved using the Roelly and Aldous–Rebolledo crite-
ria [99, 66]. Then, the convergence of the generators is studied, which allows us
to identify the limit, provided the number of edges S− I remains of order at least
εN. For proving uniqueness of the limiting value, we show using Gronwall’s lemma
that any two solutions of the limiting equation have the same mass and the same
moments of order 1 and 2. This allows us to show the uniqueness of the generating
function of µ̄ IS which solves a transport equation.

The assumption of moments of order 5 are needed for the convergence of the
generators and discussed in Section 3.3.6.
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3.3.5 Ball–Neal and Volz’ Equations

Choosing f (k) = 1i(k), we obtain the following countable system of ordinary dif-
ferential equations (ODEs).

µ̄ S
t (i) =µ̄ S

0 (i)θ i
t ,

µ̄ IS
t (i) =µ̄ IS

0 (i)−
∫ t

0
γ µ̄ IS

s (i) ds

+
∫ t

0
λ p̄I

s ∑
j,!≥0

(i+ j+ !+1)µ̄ S
s (i+ j+ !+1)

(
i+ j+ !

i, j,!

)
(p̄S

s )
i(p̄I

s)
j( p̄R

s )
! ds

+
∫ t

0

(
λ (p̄I

s)
2〈µ̄ S

s ,χ2−χ〉+λ p̄I
s〈µ̄ S

s ,χ〉
)
(i+1)µ̄ IS

s (i+1)− iµ̄ IS
s (i)

〈µ̄ IS
s ,χ〉 ds,

µ̄RS
t (i) =µ̄RS

0 (i)

+
∫ t

0

{
β µ̄ IS

s (i)+λ p̄I
s〈µ̄ S

s ,χ2−χ〉p̄R
s
(i+1)µ̄RS

s (i+1)− iµ̄RS
s (i)

〈µ̄RS
s ,χ〉

}
ds,

(3.3.22)

It is noteworthy to say that this system corresponds to that in Ball and Neal [13].

The system (3.3.17)–(3.3.19) allows us to recover the equations proposed by Volz
[110, Table 3, p. 297] (see also Proposition 3.2.3). The latter are obtained directly
from (3.3.17)–(3.3.19) and the definitions of S̄t , Īt , p̄I

t and p̄S
t which relate these

quantities to the measures µ̄ S
t and µ̄ IS

t . Let

h(z) = ∑
k∈Z+

µ̄ S
0 (k)z

k (3.3.23)

be the generating function for the initial degree distribution of the susceptible indi-
viduals µ̄ S

0 . This generating function is a priori different from the generating func-
tion of the degree distribution of the total CM graph: g(z) = ∑k∈Z+

pkzk. Let also
θt = exp(−λ

∫ t
0 p̄

I
s ds). Then:

S̄t =〈µ̄ S
t ,1〉= h(θt), (3.3.24)

Īt =〈µ̄ IS
t ,1〉= Ī0+

∫ t

0

(
λ p̄I

sθsh′(θs)− γ Īs
)
ds, (3.3.25)

p̄I
t =p̄I

0+
∫ t

0

(
λ p̄I

s p̄
S
sθs

h′′(θs)
h′(θs)

−λ p̄I
s(1− p̄I

s)− γ p̄I
s

)
ds, (3.3.26)

p̄S
t =p̄S

0+
∫ t

0
λ p̄I

s p̄
S
s

(
1−θs

h′′(θs)
h′(θs)

)
ds. (3.3.27)

Here, the graph structure appears through the generating function g. In (3.3.25), we
see that the classical contamination terms λ S̄t Īt (mass action) or λ S̄t Īt/(S̄t+ Īt) (fre-
quency dependence) of mixing SIR models (e.g. Part I of this volume or [5, 37]) are
replaced by λ p̄I

tθth′(θt) = λ N̄ IS
t . The fact that new infectious individuals are chosen



282 Part III. Chapter 3. SIR Epidemics on Configuration Model Graphs

in the size-biased distribution is hidden in the term h′′(θt)/h′(θt).

Proposition 3.3.9. The system (3.3.17)–(3.3.19) implies Volz’ equations (3.3.24)–
(3.3.27).

Before proving Proposition 3.3.9, we begin with a corollary of Theorem 3.3.8.

Corollary 3.3.10. For all t ∈ R+

N̄S
t =θth′(θt)

N̄ IS
t =N̄ IS

0 +
∫ t

0
λ p̄I

sθsh′(θs)
(
( p̄S

s − p̄I
s)θs

h′′(θs)
h′(θs)

−1
)
− γN̄ IS

s ds

N̄RS
t =

∫ t

0

(
γN̄ IS

s −λ p̄R
s p̄

I
sθ 2

s h
′′(θs)

)
ds. (3.3.28)

Proof. In the proof of Proposition 3.3.12, we will show below that when N →+∞,
(NN,IS

t )N∈N converges uniformly, as N → +∞ and on compact intervals [0,T ], and
in probability to the deterministic and continuous solution N̄ IS such that for all t,
N̄ IS
t = 〈µ̄ IS

t ,χ〉. (3.3.17) with f = χ reads

N̄S
t = ∑

k∈Z+

µ̄ S
0 (k)kθ k

t = θt
+∞

∑
k=1

µ̄ S
0 (k)kθ k−1

t = θth′(θt), (3.3.29)

i.e. the first assertion of (3.3.28).

Choosing f = χ in (3.3.18), we obtain

N̄ IS
t = N̄ IS

0 −
∫ t

0
γN̄ IS

s ds+
∫ t

0
∑

k∈Z+

Λs(k) ∑
j+!≤k−1

(
k−2 j−2− !

)

×
[ (k−1)!
j!(k−1− j− !)!!!

(p̄I
s)

j(p̄R
s )

!( p̄S
s )

k−1− j−!
]
µ̄ S
s (k) ds.

Notice that the term in the square brackets is the probability of obtaining
( j,!,k − 1− j − !) from a draw in the multinomial distribution of parameters
(k−1,( p̄I

s, p̄R
s , p̄S

s )). Hence,

∑
j+!≤k−1

j×
( (k−1)!
j!(k−1− j− !)!!!

( p̄I
s)

j(p̄R
s )

!( p̄S
s )

k−1− j−!
)
= (k−1)p̄I

s

as we recognize the mean number of edges to Is of an individual of degree k. Other
terms are treated similarly. Hence, with the definition of Λs(k), (3.3.2),

N̄ IS
t = N̄ IS

0 +
∫ t

0
λ p̄I

s

(
〈µ̄ S

s ,χ2−2χ〉− (2 p̄I
s+ p̄R

s )〈µ̄ S
s ,χ(χ −1)〉

)
ds

−
∫ t

0
γN̄ IS

s ds.
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But since

〈µ̄ S
t ,χ(χ −1)〉= ∑

k∈Z+

µ̄ S
0 (k)k(k−1)θ k

t = θ 2
t h

′′(θt)

〈µ̄ S
t ,χ2−2χ〉= 〈µ̄ S

t ,χ(χ −1)〉−〈µ̄ S
t ,χ〉= θ 2

t h
′′(θt)−θth′(θt),

we obtain by noticing that 1−2 p̄I
s− p̄R

s = p̄S
s − p̄I

s,

N̄ IS
t =N̄ IS

0 +
∫ t

0
λ p̄I

s

(
(p̄S

s − p̄I
s)θ 2

s h
′′(θs)−θsh′(θs)

)
ds−

∫ t

0
γN̄ IS

s ds, (3.3.30)

which is the second assertion of (3.3.28). The third equation is obtained similarly.
'(

We are now ready to prove Volz’ equations:

Proof of Proposition 3.3.9. We begin with the proof of (3.3.24) and (3.3.25). Fix
again t ≥ 0. For the size of the susceptible population, taking f = 1 in (3.3.17) gives
(3.3.24). For the size of the infective population, setting f = 1 in (3.3.18) entails

Īt =Ī0+
∫ t

0

(
∑

k∈Z+

λkp̄I
sµ̄ S

s (k)− γ Īs
)
ds

=Ī0+
∫ t

0

(
λ p̄I

s ∑
k∈Z+

µ̄ S
0 (k)kθ k

s − γ Īs
)
ds

=Ī0+
∫ t

0

(
λ p̄I

sθsh′(θs)− γ Īs
)
ds

by using (3.3.17) with f = χ for the second equality.

Let us now consider the probability that an edge with a susceptible ego has an
infectious alter. Both equations (3.3.24) and (3.3.25) depend on p̄I

t = N̄ IS
t /N̄S

t . It is
thus important to obtain an equation for this quantity. In Volz [110], this equation
also leads to introduce the quantity p̄S

t .
From Corollary 3.3.10, we see that N̄S and N̄ IS are differentiable and:

dp̄I
t

dt
=

d
dt

( N̄ IS
t

N̄S
t

)
=

1
N̄S
t

d
dt
(N̄ IS

t )− N̄ IS
t

(N̄S
t )2

d
dt
(N̄S

t )

=
(

λ p̄I
t( p̄

S
t − p̄I

t)θt
h′′(θt)
h′(θt)

−λ p̄I
t − γ p̄I

t

)

−
( p̄I

t
θth′(θt)

(
−λ p̄I

tθth′(θt)+θth′′(θt)(−λ p̄I
tθt)
))

=λ p̄I
t p̄

S
t θt

h′′(θt)
h′(θt)

−λ p̄I
t(1− p̄I

t)− γ p̄I
t ,

by using (3.3.28) for the derivatives of N̄S and N̄ IS in the second line. This achieves
the proof of (3.3.26).
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For (3.3.27), we notice that p̄S
t = 1− p̄I

t − p̄R
t and achieve the proof by showing

that

p̄R
t =

∫ t

0

(
γ p̄I

s−λ p̄I
s p̄

R
s

)
ds (3.3.31)

by using arguments similar as for p̄I
t . '(

3.3.6 Degree Distribution of the “Initial Condition”

The assumption of moments of order 5 in the Theorem 3.3.8 may seem restric-
tive. Janson et al. [65] showed that this assumption was not necessary if Volz’ equa-
tions are established by considering the process (SN

t , INt ,RN
t ,N

N,S
t ,NN,I

t ,NN,R
t )t∈R+

where NN,S
t = 〈µN,S

t ,k〉, NN,I
t and NN,R

t are respectively the numbers of half-edges of
the susceptible, infectious and removed individuals that are not attached to the clus-
ter. This process contains less information than the process (µN,S

t ,µN,IS
t ,µN,RS

t )t∈R+ ,
and an assumption on the existence of moments of order 2 uniformly bounded in
N is sufficient. Janson and coauthors emphasize that if we allow the CM graph to
have self-loops and multiple edges, then only the uniform integrability of the degree
distribution of an individual chosen at random is needed, which seems to be the
minimal assumption...

However, when considering the beginning of the epidemics, it appears that the
assumption corresponding to Equation (3.3.21) is not so restrictive. Indeed, we em-
phasize that it should be distinguished between the degree distribution of the graph
p, associated with the generating function g, and the degree distribution of the S indi-
viduals when the proportion of infectious individuals has reached a non-negligible
value, and which we associate with the generating function h. If we consider the
degree distribution of the susceptible individuals, we see that the individuals with
highest degrees will be infected first, since individuals are chosen in the size-biased
distribution (1.2.1) when pairing the half-edges at random. After the [εN] first in-
fections, with ε > 0, when the Theorem 3.3.8 starts to apply, all the susceptible
individuals of highest degree have disappeared from µN,S. Then, µN,S will even
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admit exponential moments.

For a population of size N, whose individuals have degrees D1, . . .DN , let us
define, for all k ∈ Z+, the number of vertices with degree k among them by

NN
k = Card{u ∈ {1, . . . ,N}, Du = k}.

To each of the Du half-edges of individual u, we associate an independent uniform
random variable on [0,1]. The vertex u is infected before the vertex v if the mini-
mal value Zu of the random variables attached to its half-edges is smaller than the
minimal value Zv of the random variables attached to the half-edges of v. This con-
struction has been used by Riordan [97] and is related to size-biased orderings.

Proposition 3.3.11. (i) The degree distribution ( p̂ε ,N
k )k≥1 of the remaining suscep-

tible individuals after the [ε N] first infections is:

p̂ε,N
k =

1
N− [ε N]

N

∑
u=1

1Du=k1Zu>Z([ε N]) (3.3.32)

where (Z(1), . . . ,Z(N)) are the order statistics of (Z1, . . . ,ZN), and where

P(Zu ≤ z |Du) = 1− (1− z)Du .

(ii) For z ∈ (0,1), let M(z) be the survival function of the distribution of the Zi and
let MN(z) be the empirical survival function of (Z1, . . . ,ZN):

MN(z) =
1
N

N

∑
u=1

1Zu>z, and M(z) = ∑
k≥0

pk(1− z)k = g(1− z),

where g(z) = ∑k≥0 pkzk is the generating function of the degree distribution p of the
CM graph. Let ε defined by zε = inf{z ∈ (0,1), M(z)≥ ε} be the quantile of order
ε of the Zu. Then, provided M is continuous and strictly increasing at zε ,

lim
N→+∞

Z[εN] = zε almost surely.

(iii) For such an ε , the degree distribution of the remaining susceptible individuals
after the [εN] first infections converges weakly to:

lim
N→+∞ ∑

k≥0
p̂ε,N
k δk =

1
1− ε ∑

k≥0
pk(1− zε)k δk, (3.3.33)

where zε is solution of 1− ε = g(1− zε). Moreover, we have convergence of the
moments of order 5:

lim
N→+∞ ∑

k≥0
k5 p̂ε,N

k =
1

1− ε ∑
k≥0

k5pk(1− zε)k <+∞. (3.3.34)

In particular, the limiting distribution (3.3.33) admits moments of all orders.
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Proof. Let us prove (ii). Let z ∈ [0,1]. The proportion of vertices of degree k whose
minimal value of the Zu is smaller than z isMN

k (z) =
1
N ∑N

u=1 1Du=k1Zu>z. By the law
of large numbers, limN→+∞MN

k (z) = pk(1− z)k a.s., which implies that

lim
N→+∞

1
N

N

∑
u=1

1Zu>zδDu = ∑
k≥0

pk(1− z)kδk

for the weak convergence.

Assume that ε > 0 is such thatM is continuous and strictly increasing at zε . Then,
M(zε) = ε . Let δ > 0 and

η =min(|M(zε −δ )−M(zε)|, |M(zε +δ )−M(zε)|).

By the Kolmogorov–Smirnov theorem: limN→+∞ ‖MN −M‖∞ = 0. Then, there
exists P(dω)-a.s. an integer N0(ω) sufficiently large such that for all N ≥ N0,
‖MN −M‖∞ < η/2. Since M is non-decreasing and since Z[εN] is such that
MN(Z[εN]) =

[εN]
N , then,

∣∣M(Z([εN]))− ε
∣∣≤
∣∣M(Z([εN]))−MN(Z([εN]))

∣∣+
∣∣MN(Z([εN]))− ε

∣∣

≤η
2
+
∣∣ [εN]
N

− ε
∣∣.

Thus, for N ≥max(N0,2/η), |M(Z[εN])− ε|< η and hence Z[εN] ∈ (zε −δ ,zε +δ )
a.s. This implies that (Z[εN])N≥1 converges a.s. to zε .

If ( p̂ε,N
k )k∈Z+ is the degree distribution after the [εN] first infections, then

lim
N→+∞ ∑

k≥0
p̂ε,N
k δk =

1
1− ε ∑

k≥0
pk(1− zε)kδk. (3.3.35)

The convergence, for every k ∈ Z+, of p̂
ε ,N
k to pk(1− zε)k/(1− ε) implies the con-

vergence of (3.3.35) for the vague topology. Because (3.3.35) deals with probability
measures, the criterion of [76, Proposition 2] implies that the convergence also holds
for the weak topology.

Since

lim
N→+∞

E
( 1
N

N

∑
i=1

∣∣1Zi>Z[εN] −1Zi>zε
∣∣1di=k

)

= lim
N→+∞

P
(
Z1 ∈ [Z[εN]∧ zε ,Z[εN]∨ zε ], d1 = k

)
= 0, (3.3.36)

and since N/(N− [ε N]) converges to 1/(1− ε), we obtain (3.3.33).

For the convergence of the moments of order 5, we notice that for large K ∈ N,
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E
(∣∣∣∑

k≥0
k5MN

k (Z[εN])− ∑
k≥0

k5pk(1− zε)k
∣∣∣
)

≤E
(∣∣∣ ∑

k≤K
k5
(
MN

k (Z[εN])− pk(1− zε)k
)∣∣∣
)
+E

(
∑
k>K

k5MN
k (Z[εN])

)
+ ∑

k>K
k5pk(1− zε)k.

The first term converges to 0 with the preceding arguments. The third term is con-
trolled for K sufficiently large. For the second term, we use that for all z ∈ (0,1),

E
(

∑
k>K

k5MN
k (z)

)
= ∑

k>K
k5pk(1− z)k

and that Z[εN] converges a.s. to zε . '(

3.3.7 Proof of the Limit Theorem

We now prove Theorem 3.3.8.
In the proof, we will see that the epidemic remains large and described by a

deterministic equation provided the number of edges from I to S remains of the
order of N. Let us thus define, for all ε > 0, ε ′ > 0 and n ∈ N,

tε ′ := inf{t ≥ 0,〈µ̄ IS
t ,χ〉< ε ′} (3.3.37)

and:
τNε = inf{t ≥ 0, 〈µN,IS

t ,χ〉< ε}. (3.3.38)

In the sequel, we choose 0< ε < ε ′ < 〈µ̄ IS
0 ,χ〉.

Step 1 Let us prove that (µN,S,µN,IS,µN,RS)N∈N is tight. Let t ∈ R+ and N ∈ N. By
hypothesis, we have that

〈µN,S
t ,1+χ5〉+ 〈µN,IS

t ,1+χ5〉+ 〈µN,RS
t ,1+χ5〉

≤ 〈µN,S
0 ,1+χ5〉+ 〈µN,IS

0 ,1+χ5〉 ≤ 2A. (3.3.39)

Thus the sequences of marginals (µN,S
t )N∈N, (µN,IS

t )N∈N and (µN,RS
t )N∈N are tight

for each t ∈ R+. Now by the criterion of Roelly [99], it remains to prove that for
each bounded function f on Z+, the sequence (〈µN,S

. , f 〉,〈µN,IS
. , f 〉,〈µN,RS

. , f 〉)N∈N
is tight in D(R+,R3). Since we have the semi-martingale decompositions of these
processes, it is sufficient, by using the Rebolledo criterion, to prove that the finite
variation part and the bracket of the martingale satisfy the Aldous criterion (see e.g.
[66]). We only prove that 〈µN,IS

. , f 〉 is tight. The computations are similar for the
other components.

The Rebolledo–Aldous criterion is satisfied if for all α > 0 and η > 0 there exists
N0 ∈ Z+ and δ > 0 such that for all N > N0 and for all stopping times SN and TN
such that SN < TN < SN +δ ,

P
(
|AN,IS, f

TN −AN,IS, f
SN |> η

)
≤ α, and (3.3.40)
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P
(
|〈MN,IS, f 〉TN −〈MN,IS, f 〉SN |> η

)
≤ α.

For the finite variation part,

E
[
|AN,IS, f

TN −AN,IS, f
SN |

]
≤ E

[∫ TN

SN
γ‖ f‖∞〈µN,IS

s ,1〉 ds
]

+E
[∫ TN

SN
∑

k∈Z+

ΛN
s (k)µN,S

s (k) ∑
j+!≤k−1

pNs ( j,!|k−1)(2 j+3)‖ f‖∞ ds

]
.

The term ∑ j+!≤k−1 jpNs ( j,!|k−1) is the mean number of links to INs− that the newly
infected individual has, given that this individual is of degree k. It is bounded by k.
Then, with (3.3.13),

E
[
|AN,IS, f

TN −AN,IS, f
SN |

]
≤δE

[
β‖ f‖∞(SN

0 + IN0 )+λ‖ f‖∞〈µN,S
0 ,2χ2+3χ〉

]
,

by using that the number of infectives is bounded by the size of the population and
that µN,S

s (k) ≤ µN,S
0 (k) for all k and s ≥ 0. From (3.3.21), the r.h.s. is finite. Using

Markov’s inequality,

P
(
|AN,IS, f

TN −AN,IS, f
SN |> η

)
≤ (5λ +2γ)Aδ‖ f‖∞

η
,

which is smaller than α for δ small enough.

We use the same arguments for the bracket of the martingale:

E
[
|〈MN,IS, f 〉TN −〈MN,IS, f 〉SN |

]

≤ E
[δγ‖ f‖2∞(SN

0 + IN0 )
N

+
δλ‖ f‖2∞〈µ

N,S
0 ,χ(2χ +3)2〉
N

]

≤ (25λ +2γ)Aδ‖ f‖2∞
N

,

(3.3.41)

using Assumption 3.3.5 and (3.3.21). The r.h.s. can be made smaller than ηα for a
small enough δ , so the second inequality of (3.3.40) follows again from Markov’s
inequality. By [99], this provides the tightness in D(R+,M 3

0,A), with M0,A defined
in (3.3.20).

By Prohorov’s theorem (e.g. [52], p. 104) and Step 1, we obtain that the dis-
tributions of (µN,S,µN,IS,µN,RS), for N ∈ N, form a relatively compact family of
bounded measures on D(R+,M 3

0,A), and so do the laws of the stopped processes
(µN,S

.∧τNε
,µN,IS

.∧τNε
,µN,RS

.∧τNε
)N∈N (recall (3.3.38)). Because of the moment assumptions for

the degree distributions, the limiting process is continuous. Let µ̄ := (µ̄ S, µ̄ IS, µ̄RS)
be a limiting point in C (R+,M 3

0,A) of the sequence of stopped processes and let
us consider a subsequence again denoted by µN := (µN,S,µN,IS,µN,RS)N∈N, with an
abuse of notation, and that converges to µ̄ . Because the limiting values are continu-
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ous, the convergence of (µN)N∈N to µ̄ holds for the uniform convergence on every
compact subset of R+ (e.g. [24] p. 112).

Now, let us define for all t ∈R+ and for all bounded functions f on Z+, the map-
pings Ψ S, f

t , Ψ IS, f
t and Ψ RS, f

t from D
(
R+,M 3

0,A
)
into D

(
R+,R

)
such that (3.3.17)–

(3.3.19) read

(
〈µ̄ S

t , f 〉,〈µ̄ IS
t , f 〉,〈µ̄RS

t , f 〉
)

=
(

Ψ S, f
t
(
µ̄ S, µ̄ IS, µ̄RS

)
,Ψ IS, f

t
(
µ̄ S, µ̄ IS, µ̄RS

)
,Ψ RS, f

t
(
µ̄ S, µ̄ IS, µ̄RS

))
. (3.3.42)

Our purpose is to prove that the limiting values are the unique solution of (3.3.17)–
(3.3.19).
Before proceeding to the proof, a remark is in order. A natural way of reasoning
would be to prove that Ψ S, f ,Ψ IS, f and Ψ RS, f are Lipschitz continuous in some
spaces of measures. To avoid doing so by considering the set of measures with
moments of any order, which is a set too small for applications, we circumvent this
difficulty by first proving that the mass and the first two moments of any solutions
of the system are the same. Then, we prove that the generating functions of these
measures satisfy a partial differential equation known to have a unique solution.

Step 2 We now prove that the differential system (3.3.17)–(3.3.19) has at most one
solution in C (R+,M0,A×M0+,A×M0,A). Let T > 0. Let µ̄ i = (µ̄ S,i, µ̄ IS,i, µ̄RS,i),
i ∈ {1,2} be two solutions of (3.3.17)–(3.3.19), started with the same initial condi-
tions inM0,A×Mε,A×M0,A for some small ε > 0. Set

ϒt =
3

∑
j=0

|〈µ̄ S,1
t ,χ j〉−〈µ̄ S,2

t ,χ j〉|

+
2

∑
j=0

(
|〈µ̄ IS,1

t ,χ j〉−〈µ̄ IS,2
t ,χ j〉|+ |〈µ̄RS,1

t ,χ j〉−〈µ̄RS,2
t ,χ j〉|

)
.

Let us first remark that for all 0≤ t < T , N̄S
t ≥ N̄ IS

t > ε and then

| p̄I,1
t − p̄I,2

t |=
∣∣∣
N̄ IS,1
t

N̄S,1
t

− N̄ IS,2
t

N̄S,2
t

∣∣∣≤
A
ε2
∣∣∣N̄S,1

t − N̄S,2
t

∣∣∣+
1
ε

∣∣∣N̄ IS,1
t − N̄ IS,2

t

∣∣∣

=
A
ε2
∣∣∣〈µ̄ S,1

t , χ〉−〈µ̄ S,2
t , χ〉

∣∣∣+
1
ε

∣∣∣〈µ̄ IS,1
t , χ〉−〈µ̄ IS,2

t , χ〉
∣∣∣≤

A
ε2

ϒt . (3.3.43)

The same computations show a similar result for | p̄S,1
t − p̄S,2

t |.

Using that µ̄ i are solutions to (3.3.17)–(3.3.18) let us show that ϒ satisfies a
Gronwall inequality which implies that it is equal to 0 for all t ≤ T . For the degree
distributions of the susceptible individuals, we have for p ∈ {0,1,2,3} and f = χ p

in (3.3.17):
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|〈µ̄ S,1
t ,χ p〉−〈µ̄ S,2

t ,χ p〉|=
∣∣∣ ∑
k∈Z+

µ̄ S
0 (k)k

p(e−λ
∫ t
0 p̄

I,1
s ds− e−λ

∫ t
0 p̄

I,2
s ds)

∣∣∣

≤λ ∑
k∈Z+

kpµ̄ S
0 (k)

∫ t

0

∣∣p̄I,1
s − p̄I,2

s
∣∣ds≤ λ A2

ε2
∫ t

0
ϒsds,

by using (3.3.43) and the fact that µ̄ S
0 ∈M0,A.

For µ̄ IS and µ̄RS, we use (3.3.18) and (3.3.19) with the functions f = χ0 = 1, f = χ
and f = χ2. We proceed here with only one of the computations, others can be done
similarly. From (3.3.18):

〈µ̄ IS,1
t , 1〉−〈µ̄ IS,2

t , 1〉=

γ
∫ t

0
〈µ̄ IS,1

s − µ̄ IS,2
s , 1〉 ds+λ

∫ t

0
( p̄I,1

s 〈µ̄ S,1
s , χ〉− p̄I,2

s 〈µ̄ S,2
s , χ〉) ds.

Hence, with (3.3.43),
∣∣∣〈µ̄ IS,1

t − µ̄ IS,2
t , 1〉

∣∣∣≤C(λ ,γ,A,ε)
∫ t

0
ϒs ds.

By analogous computations for the other quantities, we show that

ϒt ≤C′(λ ,γ,A,ε)
∫ t

0
ϒs ds,

henceϒ ≡ 0. It follows that for all t < T , and for all j ∈ {0,1,2},

〈µ̄ S,1
t ,χ j〉= 〈µ̄ S,2

t ,χ j〉 and 〈µ̄ IS,1
t ,χ j〉= 〈µ̄ IS,2

t ,χ j〉, (3.3.44)

and in particular, N̄S,1
t = N̄S,2

t and N̄ IS,1
t = N̄ IS,2

t . This implies that p̄S,1
t = p̄S,2

t ,
p̄I,1
t = p̄I,2

t and p̄R,1
t = p̄R,2

t . From (3.3.17), we have that µ̄ S,1 = µ̄ S,2.

Our purpose is now to prove that µ̄ IS,1 = µ̄ IS,2. Let us introduce the following
generating functions: for any t ∈ R+, i ∈ {1,2} and η ∈ [0,1),

G i
t (η) = ∑

k≥0
ηk µ̄ IS,i

t (k).

Since we already know that these measures have the same total mass, it remains to
prove that G 1 ≡ G 2. Let us define

H(t,η) =
∫ t

0
∑

k∈Z+

λkp̄I
s ∑

j,!,m∈Z+
j+!+m=k−1

(
k−1
j,!,m

)
( p̄I

s)
j(p̄R

s )
!( p̄S

s )
mηmµ̄ S

s (k)ds,

Kt = ∑
k∈Z+

λkp̄I
t(k−1)p̄R

t
µ̄ S
t (k)
N̄ IS
t

. (3.3.45)
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The latter quantities are respectively of class C 1 and C 0 with respect to time t and
are well-defined and bounded on [0,T ]. Moreover, H and K do not depend on the
chosen solution because of (3.3.44). Applying (3.3.18) to f (k) = ηk yields

G i
t (η) =G i

0(η)+H(t,η)+
∫ t

0

(
Ks ∑

k′∈N

(
ηk′−1−ηk′)k′µ̄ IS,i

s (k′)− γG i
s (η)

)
ds

=G i
0(η)+H(t,η)+

∫ t

0

(
Ks(1−η)∂ηG

i
s (η)− γG i

s (η)
)
ds.

Then, the functions t 3→ G̃ i
t (η) defined by G̃ i

t (η) = eβ tG i
t (η), i ∈ {1,2}, are solu-

tions of the following transport equation (of unknown function g):

∂tg(t,η)− (1−η)Kt ∂ηg(t,η) = ∂tH(t,η)eβ t . (3.3.46)

In view of the regularity of H and K, it is known that this equation admits a unique
solution (see e.g. [53]). Hence G 1

t (η) = G 2
t (η) for all t ∈ R+ and η ∈ [0,1). The

same method applies to µ̄RS. Thus there is at most one solution to the differential
system (3.3.17)–(3.3.19).

Step 3 We now show that µN nearly satisfies (3.3.17)–(3.3.19) as N gets large.
Recall (3.3.14) for a bounded function f on Z+. To identify the limiting values, we
establish that for all N ∈ N and all t ≥ 0,

〈µN,IS
t∧τNε

, f 〉=Ψ IS, f
t∧τNε

(µN)+∆ N, f
t∧τNε

+MN,IS, f
t∧τNε

, (3.3.47)

whereMN,IS, f is defined in (3.3.14) and where ∆N, f
.∧τNε

converges to 0 when N →+∞,
in probability and uniformly in t on compact time intervals.

Let us fix t ∈ R+. Computation similar to (3.3.41) give:

E
(
(MN,IS, f

t )2
)
= E

(
〈MN,IS, f 〉t

)
≤ (25λ +2γ)At‖ f‖2∞

N
. (3.3.48)

Hence the sequence (MN,IS, f
t )N∈Z+ converges in L2 and in probability to zero.

We now consider the finite variation part of (3.3.14), given in (3.3.15). The sum
in (3.3.15) corresponds to the links to I that the new infected individual has. We
separate this sum into cases where the new infected individual only has simple edges
to other individuals of I, and cases where multiple edges exist. The latter term is
expected to vanish for large populations.

AN,IS, f
t =BN,IS, f

t +CN,IS, f
t , (3.3.49)
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where

BN,IS, f
t =−

∫ t

0
γ〈µN,IS

s , f 〉 ds

+
∫ t

0
∑

k∈Z+

ΛN
s (k)µN,S

s (k) ∑
j+!+1≤k

pNs ( j,!|k−1)

{
f (k− ( j+1+ !))

+ ∑
u∈L ( j+1,µN,IS

s );
∀u≤INs− ,nu≤1

ρ(n| j+1,µN,IS
s ) ∑

u∈INs−

(
f
(
Du(µN,IS

s− )−nu
)
− f

(
Du(µN,IS

s− )
))
}

ds

(3.3.50)

and

CN,IS, f
t =

∫ t

0
∑

k∈Z+

ΛN
s (k)µN,S

s (k) ∑
j+!+1≤k

pNs ( j,!|k−1)

× ∑
n∈L ( j+1,µN,IS

s );
∃u≤INs− ,nu>1

ρ(n| j+1,µN,IS
s ) ∑

u∈INs−

(
f
(
Du(µN,IS

s− )−nu
)
− f

(
Du(µN,IS

s− )
))

ds.

(3.3.51)

We first show that CN,SI, f
t is a negligible term. Let qNj,!,s denote the probability that

the newly infected individual at time s has a double (or of higher order) edge to
some alter in INs− , given j and !. The probability to have a multiple edge to a given
infectious i is less than the number of pairs of edges linking the newly infected to i,
times the probability that these two particular edges linking i to a susceptible alter
at time s− actually lead to the newly infected. Hence,

qNj,!,s = ∑
n∈L ( j+1,µN,IS

s );
∃u∈INs− ,nu>1

ρ(n| j+1,µN,IS
s )

≤
(
j
2

)
∑

u∈INs−

Du(SN
s−)(Du(SN

s−)−1)
NN,IS
s− (NN,IS

s− −1)
=

(
j
2

)
1
N
〈µN,IS

s− ,χ(χ −1)〉
NN,IS
s−
N
(NN,IS

s−
N − 1

N
)

≤
(
j
2

)
1
N

A
ε(ε −1/N)

if s< τNε and N > 1/ε. (3.3.52)

Then, since for all u ∈L ( j+1,µN,IS
s ),

∣∣∣ ∑
u∈INs−

(
f
(
Du(µN,IS

s− )−nu
)
− f

(
Du(µN,IS

s− )
))∣∣∣≤ 2( j+1)‖ f‖∞, (3.3.53)

we have by (3.3.52) and (3.3.53), for N > 1/ε ,
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|CN,IS, f
t∧τNε

| (3.3.54)

≤
∫ t∧τNε

0
∑

k∈Z+

λkµN,S
s (k) ∑

j+!+1≤k
pNs ( j,!|k−1)2( j+1)‖ f‖∞

j( j−1)A
2Nε(ε −1/N)

ds

≤ Aλ t‖ f‖∞
N ε(ε −1/N)

〈µN,S
0 ,χ4〉,

which tends to zero in view of (3.3.21) and thanks to the fact that µN,S
s is dominated

by µN,S
0 for all s≥ 0 and N ∈ N.

We now aim at proving that BN,IS, f
.∧τNε

is close toΨ IS, f
.∧τNε

(µN). First, notice that

∑
n∈L ( j+1,µN,IS

s );
∀u∈INs− ,nu≤1

ρ(u| j+1,µN,IS
s ) ∑

i∈INs−

(
f
(
Du
(
µN,IS
s−

)
−nu

)
− f

(
Du
(
µN,IS
s−

)))

= ∑
u0 1=··· 1=u j∈INs−

(
∏ j

k=0Duk(S
N
s )

NN,IS
s− . . .(NN,IS

s− − ( j+1))

)

×
j

∑
m=0

(
f
(
Dum(S

N
s−)−1

)
− f

(
Dum(S

N
s−)
))

=
j

∑
m=0

∑
u0 1=··· 1=u j∈INs−

(
∏ j

k=0Duk(S
N
s )

NN,IS
s− . . .(NN,IS

s− − ( j+1))

)

×
(
f
(
Dum(S

N
s−)−1

)
− f

(
Dum(S

N
s−)
))

(3.3.55)

=
j

∑
m=0



 ∑
x∈INs−

Dx(SN
s−)

NN,IS
s−

(
f
(
Dx(S

N
s−)−1

)
− f

(
Dx(S

N
s−)
))




×
(

∑
u0 1=··· 1=u j−1∈INs−\{x}

∏ j−1
k=0Duk(S

N
s )

(NN,IS
s− −1) . . .(NN,IS

s− − ( j+1))

)

= ( j+1)
〈µN,IS

s− ,χ (τ1 f − f )〉
NN,IS
s−

(
1−qNj−1,!,s

)
,

where we recall (see Notation 0.0.1) that τ1 f (k) = f (k− 1) for every function f
on Z+ and k ∈ Z+. In the third equality, we split the term um from the other terms
(um′)m′ 1=m. The last sum in the r.h.s. of this equality is the probability of drawing
j different infectious individuals that are not um and that are all different, hence
1−qNj−1,!,s.

Define for t > 0 and N ∈ Z+,

pN,I
t =

〈µN,IS
t ,χ〉−1

〈µN,S
t ,χ〉−1

,
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pN,R
t =

〈µN,RS
t ,χ〉

〈µN,S
t ,χ〉−1

,

pN,S
t =

〈µN,S
t ,χ〉−〈µN,IS

t ,χ〉−〈µN,RS
t ,χ〉

〈µN,S
t ,χ〉−1

,

the proportion of edges with infectious (resp. removed and susceptible) alters and
susceptible egos among all the edges with susceptible egos but the contaminating
edge. For all integers j and ! such that j+ !≤ k−1 and N ∈ N, denote by

p̃Nt ( j,! | k−1) =
(k−1)!

j!(k−1− j− !)!!!
(pN,I

t ) j(pN,R
t )!(pN,S

t )k−1− j−!,

the probability that the multinomial variable counting the number of edges with in-
fectious, removed and susceptible alters, among k − 1 given edges, equals
( j,!,k−1− j− !). We have that

|Ψ IS, f
t∧τNε

(µN)−BN,IS, f
t∧τNε

|≤|DN,IS, f
t∧τNε

|+ |EN,IS, f
t∧τNε

|, (3.3.56)

where

DN,IS, f
t =

∫ t

0
∑

k∈Z+

ΛN
s (k)µN,S

s (k) ∑
j+!+1≤k

(
pNs ( j,!|k−1)− p̃Ns ( j,!|k−1)

)

×
(
f (k− ( j+ !+1))+( j+1)

〈µN,IS
s− ,χ

(
τ1 f − f

)
〉

NN,IS
s−

)
ds,

EN,IS, f
t =

∫ t

0
∑

k∈Z+

ΛN
s (k)µN,S

s (k)

× ∑
j+!+1≤k

pNs ( j,!|k−1)( j+1)
〈µN,IS

s− ,χ
(
τ1 f − f

)
〉

NN,IS
s−

qNj−1,!,s ds.

First,

|DN,IS, f
t∧τNε

|≤
∫ t∧τNε

0
∑

k∈Z+

λkαN
s (k)‖ f‖∞

(
1+

2kA
ε

)
µN,S
s (k) ds, (3.3.57)

where for all k ∈ Z+

αN
t (k) = ∑

j+!+1≤k

∣∣∣∣p
N
t ( j,!|k−1)− p̃Nt ( j,!|k−1)

∣∣∣∣.

The multinomial probability p̃Ns ( j,!|k− 1) approximates the hypergeometric one,
pNs ( j,!|k−1,s), asN increases to infinity, in view of the fact that the total population
size, 〈µN,S

0 ,1〉+ 〈µN,IS
0 ,1〉, is of order n. Hence, the r.h.s. of (3.3.57) vanishes by

dominated convergence.

On the other hand, using (3.3.52),
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|EN,IS, f
t∧τNε

|≤
∫ t∧τNε

0
∑

k∈Z+

λk2µN,S
s (k)

2‖ f‖∞A
ε

k2A
2Nε(ε −1/N)

ds

≤ A3 λ t‖ f‖∞
Nε2(ε −1/N)

, (3.3.58)

in view of (3.3.21). Gathering (3.3.48), (3.3.49), (3.3.54), (3.3.56), (3.3.57) and
(3.3.58) concludes the proof that the rest of (3.3.47) vanishes in probability uni-
formly over compact intervals.

As a consequence, the sequence (Ψ IS, f
.∧τNε

(µN))N∈N is also tight in
D(R+,M0,A×Mε,A×M0,A).

Step 4 Recall that in this proof, µ̄ = (µ̄ S, µ̄ IS, µ̄RS) is the limit of the sequence
(µN

.∧τNε
)N∈N = (µN,S

.∧τNε
,µN,IS

.∧τNε
,µN,RS

.∧τNε
)N∈N, and recall that these processes take values

in the closed setM 3
0,A. Our purpose is now to prove that µ̄ satisfies (3.3.17)–(3.3.19).

Using Skorokhod’s representation theorem, there exists, on the same probability
space as µ̄ , a sequence, again denoted by (µN

.∧τNε
)N∈N with an abuse of notation,

with the same marginal distributions as the original sequence, and that converges
a.s. to µ̄ .

The maps ν. := (ν1
. ,ν2

. ,ν3
. ) 3→ 〈ν1

. ,1〉/(〈ν1
0 ,1〉+ 〈ν2

0 ,1〉+ 〈ν3
0 ,1〉) (respectively

〈ν2
. ,1〉/(〈ν1

0 ,1〉+ 〈ν2
0 ,1〉+ 〈ν3

0 ,1〉) and 〈ν3
. ,1〉/(〈ν1

0 ,1〉+ 〈ν2
0 ,1〉+ 〈ν3

0 ,1〉)) are
continuous from C (R+,M0,A×Mε,A×M0,A) into C (R+,R).
Using the moment assumption (3.3.21), the following mappings are also con-
tinuous for the same spaces: 〈ν1

. ,χ〉/〈ν2
. ,χ〉, ν. 3→ 1〈ν1

. ,χ〉>ε/〈ν2
. ,χ〉 and ν. 3→

〈ν2
. ,χ (τ1 f − f )〉, for bounded function f on Z+ and where we recall that τ1 f (k) =

f (k− 1) for every k ∈ Z+ (see Notation 0.0.1). Thus, using the continuity of the
mapping y ∈ D([0, t],R) 3→

∫ t
0 ys ds, we obtain the continuity of the mapping Ψ f

t
defined in (3.3.42) on D(R+,M0,A×Mε,A×M0,A).

By (3.3.21), the process (NN,IS
.∧τNε

)N∈N converges in distribution to N̄ IS
. = 〈µ̄ IS

. ,χ〉.
Since the latter process is continuous, the convergence holds in (D([0,T ],R+),‖ ·
‖∞) for any T > 0 (see [24, p. 112]). As y ∈ D(R+,R) 3→ inft∈[0,T ] y(t) ∈ R is con-
tinuous, we have a.s. that:

inf
t∈[0,T ]

N̄ IS
t = lim

N→+∞
inf

t∈[0,T ]
NN,IS
t∧τNε

(
≥ ε
)
.

Analogously to (3.3.37), we consider t̄ε ′ = inf{t ∈ R+, N̄ IS
t ≤ ε ′} for ε ′ > ε > 0. A

difficulty lies in the fact that we do not know yet whether this time is deterministic.
We have a.s.:

ε ′ ≤ inf
t∈[0,T ]

N̄ IS
t∧t̄ε ′

= lim
N→+∞

inf
t∈[0,T ]

NN,IS
t∧τNε ∧t̄ε ′

. (3.3.59)

Hence, using Fatou’s lemma:
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1=P
(

inf
t∈[0,t̄ε ′ ]

N̄ IS
t > ε

)

≤ lim
N→+∞

P
(

inf
t∈[0,T∧t̄ε ′ ]

NN,IS
t∧τNε

> ε
)
= lim

N→+∞
P
(

τNε > T ∧ t̄ε ′
)
. (3.3.60)

We have hence

Ψ IS, f
.∧τNε ∧t̄ε ′ ∧T

(µN) =Ψ IS, f
.∧τNε ∧T (µ

N)1τNε ≤t̄ε ′ ∧T
+Ψ IS, f

.∧t̄ε ′ ∧T
(µN

.∧τNε
)1τNε >t̄ε ′ ∧T

. (3.3.61)

From the estimates of the different terms in (3.3.47),Ψ IS, f
.∧τNε ∧T (µ

N) is upper bounded

by a moment of µN of order 4. In view of (3.3.21) and (3.3.60), the first term in the
r.h.s. of (3.3.61) converges in L1 and hence in probability to zero. Using the conti-
nuity ofΨ IS, f onD(R+,M0,A×Mε,A×M0,A),Ψ IS, f (µN

.∧τNε
) converges toΨ IS, f (µ̄)

and therefore,Ψ IS, f
.∧t̄ε ′ ∧T

(µN
.∧τNε

) converges toΨ IS, f
.∧t̄ε ′ ∧T

(µ̄). Thanks to this and (3.3.60),

the second term in the r.h.s. of (3.3.61) converges toΨ IS, f
.∧t̄ε ′ ∧T

(µ̄) in D(R+,R).
Then, the sequence (〈µN,IS

.∧τNε ∧t̄ε ′ ∧T
, f 〉−Ψ IS, f

.∧τNε ∧t̄ε ′ ∧T
(µN))N∈N converges in probabil-

ity to 〈µ̄ IS
.∧t̄ε ′ ∧T

, f 〉 −Ψ IS, f
.∧t̄ε ′ ∧T

(µ̄). From (3.3.47), this sequence also converges in
probability to zero.

By identification of these limits, µ̄ IS solves (3.3.18) on [0, t̄ε ′ ∧T ]. If 〈µ̄RS
0 ,χ〉> 0

then similar techniques can be used. Else, the result is obvious since for all t ∈
[0, tε ′ ∧T ], 〈µN,IS

t ,χ〉> ε and the term pNt ( j,!|k−1) is negligible when !> 0. Thus
µ̄ coincides a.s. with the only continuous deterministic solution of (3.3.17)–(3.3.19)
on [0, t̄ε ′ ∧T ]. This implies that t̄ε ′ ∧T = tε ′ ∧T and yields the convergence in prob-
ability of (µN

.∧τNε
)N∈N to µ̄ , uniformly on [0, tε ′ ∧T ] since µ̄ is continuous.

We finally prove that the non-localized sequence (µN)N∈N also converges uni-
formly and in probability to µ̄ in D([0, tε ′ ],M0,A×Mε,A×M0,A). For a small pos-
itive η ,

P
(

sup
t∈[0,tε ′ ]

∣∣∣〈µN,IS
t , f 〉−Ψ IS, f

t (µ̄)
∣∣∣> η

)

≤ P
(

sup
t∈[0,tε ′ ]

∣∣∣Ψ IS, f
t∧τNε

(µN)−Ψ IS, f
t (µ̄)

∣∣∣>
η
2
; τnε ≥ tε ′

)

+P
(

sup
t∈[0,tε ′ ]

∣∣∣∆ N, f
t∧τNε

+MN,IS, f
t∧τNε

∣∣∣>
η
2

)
+P
(

τNε < tε ′
)
. (3.3.62)

Using the continuity of Ψ f and the uniform convergence in probability proved
above, the first term in the r.h.s. of (3.3.62) converges to zero. We can show that
the second term converges to zero by using Doob’s inequality together with the es-
timates of the bracket of MN,IS, f (similar to (3.3.41)) and of ∆ N, f (Step 2). Finally,
the third term vanishes in view of (3.3.60).
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The convergence of the original sequence (µN)N∈N is then implied by the unique-
ness of the solution to (3.3.17)–(3.3.19) proved in Step 2.

Step 5 When N → +∞, by taking the limit in (3.3.12), (µN,S)N∈N converges in
D(R+,M0,A) to the solution of the following transport equation: for every bounded
function f : (k, t) 3→ ft(k)∈C 0,1

b (Z+×R+,R) of class C 1 with bounded derivative
with respect to t,

〈µ̄ S
t , ft〉=〈µ̄ S

0 , f0〉−
∫ t

0
〈µ̄ S

s ,λ χ p̄I
s fs−∂s fs〉 ds. (3.3.63)

Choosing f (k,s) = ϕ(k)exp
(
−λk

∫ t−s
0 p̄I(u)du

)
, we obtain that

〈µ̄ S
t ,ϕ〉= ∑

k∈Z+

ϕ(k)θ k
t µ̄ S

0 (k). (3.3.64)

where θt = exp
(
− λ

∫ t
0 p̄

I(u)du
)
is the probability that a given degree 1 node re-

mains susceptible at time t. This is the announced Equation (3.3.17).
The proof of Theorem 3.3.8 is now completed. "

Recall that the time tε ′ has been defined in (3.3.37). We end this section with
a lower bound of the time tε ′ until which we proved that the convergence to Volz’
equations holds.

Proposition 3.3.12. Under the assumptions of Theorem 3.3.8,

tε ′ > τ̄ε ′ :=
log
(
〈µ̄ S

0 ,χ2〉+ N̄ IS
0
)
− log

(
〈µ̄ S

0 ,χ2〉+ ε ′
)

max(γ,λ )
. (3.3.65)

Proof. Because of the moment Assumption 3.3.5 and (3.3.21), we can prove that
(3.3.47) also holds for f = χ . This is obtained by replacing in (3.3.48), (3.3.54),
(3.3.57) and (3.3.58) ‖ f‖∞ by k and using the Assumption of boundedness of the
moments of order 5 in (3.3.54) and (3.3.58). This shows that (NN,IS)N∈N converges,
uniformly on [0, tε ′ ] and in probability, to the deterministic and continuous solution
N̄ IS = 〈µ̄ IS,χ〉. We introduce the event A N

ξ = {| NN,IS
0 −NN̄ IS

0 |≤ ξ} where their
differences are bounded by ξ > 0. Recall the definition (3.3.38) and let us introduce
the number of edges ZN

t that were IS at time 0 and that have been removed before t.
For t ≥ τNε ′ , we have necessarily that ZN

t ≥ NN,IS
0 −Nε ′. Thus,

P
(
{τNε ′ ≤ t}∩A N

ξ
)
≤P
(
{ZN

t > NN,IS
0 −Nε ′}∩A N

ξ
)

≤P
({

ZN
t > N(N̄ IS

0 − ε ′)−ξ
}
∩A N

ξ

)
. (3.3.66)

When susceptible (resp. infectious) individuals of degree k are contaminated (resp.
removed), at most k I− S-edges are lost. Let XN,k

t be the number of edges that,
at time 0, are I− S with susceptible alter of degree k, and that have transmitted
the disease before time t. Let YN,k

t be the number of initially infectious individuals
x with dx(S0) = k and who have been removed before time t. XN,k

t and YN,k
t are
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bounded by kµN,S
0 (k) and µN,IS

0 (k). Thus:

ZN
t ≤ ∑

k∈Z+

k
(
XN,k
t +YN,k

t
)
. (3.3.67)

Let us stochastically bound ZN
t from above. Since each I− S-edge transmits the

disease independently at rate λ , XN,k
t is stochastically dominated by a binomial r.v.

of parameters kµN,S
0 (k) and 1− e−λ t . We proceed similarly for YN,k

t . Conditional
on the initial condition, XN,k

t +YN,k
t is thus stochastically dominated by a binomial

r.v. Z̃N,k
t of parameters (kµN,S

0 (k)+µN,IS
0 (k)) and 1− e−max(λ ,γ)t . Then (3.3.66) and

(3.3.67) give:

P
(
{τNε ′ ≤ t}∩A N

ξ
)
≤P
(

∑
k∈Z+

kZ̃N,k
t
N

> N̄ IS
0 − ε ′ − ξ

N

)
. (3.3.68)

Thanks to Assumption 3.3.5 and (3.3.21), the series ∑k∈Z+
kZ̃N,k

t /N converges in L1

and hence in probability to (〈µ̄ S
0 ,χ2〉+ N̄ IS

0 )(1− e−max(λ ,γ)t) when N →+∞. Thus,
for sufficiently large N,

P
(
{τNε ′ ≤ t}∩A N

ξ
)
=1 if t > τ̄ε ′ and 0 if t < τ̄ε ′ .

For all t < τ̄ε ′ , it follows from Assumption 3.3.5, (3.3.21) and Lemma A.0.4 that:

lim
N→+∞

P
(

τNε ′ ≤ t ≤ lim
N→+∞

P
({

τNε ′ ≤ t
}
∩A N

ξ
))

+P
(
(A N

ξ )c
)
= 0,

so that by Theorem 3.3.8

1= lim
N→+∞

P(τNε ′ ≥ τ̄ε ′) = lim
n→+∞

P
(

inf
t≤τ̄ε ′

NN,IS
t ≥ ε ′

)
= P

(
inf
t≤τ̄ε ′

N̄ IS
t ≥ ε ′

)
.

This shows that tε ′ ≥ τ̄ε ′ a.s., which concludes the proof. '(



Chapter 4

Statistical Description of Epidemics Spreading
on Networks: The Case of Cuban HIV

In this section, we turn our attention to epidemics spreading on networks. Probabil-
ity models have been described in Section 1.4. We now deal with the statistical treat-
ment of data obtained from diseases propagating on networks. The statistical meth-
ods described here are illustrated on the sexual network obtained from the Cuban
HIV contact-tracing system that we now describe. For a complete description of the
Cuban network, we refer to [35]. The Cuban graph is available as supplementary
material of this book.

Since 1986, a contact-tracing detection system has been set up in Cuba in order
to bring the spread of the HIV epidemic under control. It has also enabled the gath-
ering of a considerable amount of detailed epidemiological data at the individual
level. In the resulting database, any individual tested as HIV positive is indexed and
anonymized for confidentiality reasons. Information related to uninfected individu-
als is not recorded in the data, and of course infected individuals not diagnosed yet
are also absent. The network only consists of detected HIV+ individuals. However,
note that the network is age-structured and data related to the infectious population
of the first six years of the epidemic seems to show (e.g. [37]) that this population
has been discovered by now.
Individuals in the database are described through several attribute variables: gen-
der and sexual orientation, way of detection, age at detection, date of detection,
area of residence, etc. In the sequel, we will mainly focus on the gender/sexual
orientation, for which three modalities are identified: ‘woman’, ‘heterosexual man’,
‘MSM’ (Men who have Sex with Men; men who reported at least one sexual contact
with another man in the two years preceding HIV detection). Because Female-to-
female transmission is neglected, no sexual orientation is distinguished for women
(e.g. [30]). It is worth recalling that in Cuba HIV spreads essentially through sexual
transmission. Infection by blood transfusion or related to drug use are neglected.
We refer to [8] for a preliminary overview of the HIV/AIDS epidemics in Cuba, as
well as a description and the context of the construction of the database used in the
present study and the context in which it was constructed.
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Importantly, for each HIV+ individual that is detected, the list of indices corre-
sponding to the sexual partners appearing in the database she/he possibly named
for contact-tracing is also available. In [33, 34, 35] the graph of sexual partners that
have been diagnosed HIV positive on the Cuban data repository is reconstructed and
an exploratory statistical analysis of the resulting sexual contact network is carried.
The network is composed of 5,389 vertices, or nodes, that correspond to the individ-
uals diagnosed as HIV positive between 1986 and 2006 in Cuba, i.e. 1,109 women
(20.58%) and 4,280 men (79.42%); 566 (10.50%) of which are heterosexual and
3,714 (68.92%) are MSMs. Individuals declared as sexual contacts but who are not
HIV positive are not listed in the database: the only observed vertices correspond
to individuals who have been detected as HIV positive or AIDS. The vertices that
depict the fact that two individuals have been sexual partners during the two years
that preceded the detection of either one are linked by 4,073 edges. Only edges
between observed HIV cases are hence observed, but the degree (total number of
sexual partners) is known. Also, some information is documented on who infects
whom, giving access to a partial infection tree. Our data exhibit a “giant compo-
nent", counting 2,386 nodes. The second largest component has only 17 vertices
and there are about 2000 isolated individuals or couples. It is remarkable that in
the existing literature on sexually transmitted diseases graph networks are generally
smaller and/or do not exhibit such a large connected component and/or contain a
very small number of infected persons (e.g. [102, 116]).

In Section 4.2, using graph-mining techniques, the connectivity/communication
properties of the sexual contact network are described to understand the impact of
heterogeneity (with respect to the attributes observed) in the graph structure. Par-
ticular attention is paid to the graphical representation of the data, as conventional
methods cannot be used with databases of the size of the one used in this study. A
clustering of the population is performed so as to represent structural information
in an interpretable way. Beyond global graph visualization, the task of partitioning
the network into groups, with dense internal links and low external connectivity,
is known as clustering. In contrast to standard multivariate analysis, in which the
network structure of the data is ignored, our method has shed light on how different
mechanisms (e.g. social behaviour, detection system) have affected the epidemics of
HIV in the past, and provide a way of predicting the future evolution of this disease.
This study paves the way for building more realistic network models in the field of
mathematical modelling of infectious diseases.

4.1 Modularity and Assortative Mixing

Assortative mixing coefficients can be computed to highlight the possible existence
of selective linking in the network structure. Various measures have been proposed
in the literature for quantifying the tendency for individuals to have connections
with other individuals that are similar in regards to certain attributes, depending on
the nature of the latter (quantitative vs. qualitative). For a partition of J classes,P =
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C1, . . . , CJ , one may calculate the proportion mi, j of edges in the graph connecting
a node lying in group i to another one in group j, 1≤ i≤ j ≤ J and build the J× J
mixing matrixM = (mi, j) (notice it is symmetric since edges are not directed here).
We can then define the modularity coefficient QP (e.g. [84]) by:

QP = Tr(M )− ||M 2||= ∑
i




mi,i−
(

N

∑
j=1

mi, j

)2



 , (4.1.1)

where ||A||= ∑i ∑ j ai, j denotes the sum of all the entries of a matrix A= (ai, j) and
Tr(A) its trace when the latter is square.

We can define the assortative coefficient as

r = QP/(1− ||M 2||).

As pointed out in [87], large values of r indicate "selective linking": values around
0 correspond to randomly mixed network, whereas values close to 1 are associated
with perfectly assortative network. The assortative coefficient can also be negative.

Ego Alter is Alter is Alter is Total
is a a woman a heterosexual man an MSM

Woman 77 (1.9%) 157 (3.9%) 408 (10.0%) 642 (15.8%)
HT man 282 (6.9%) 4 (0.1%) 20 (0.5%) 306 (7.5%)
MSM 800 (19.6%) 25 (0.6%) 2300 (56.5%) 3125 (76.7%)
Total 1159 (28.5%) 186 (4.6%) 2728 (67.0%)

Table 4.1.1 Sexual orientation of egos and alters for the edges in the whole graph. The figures
presented here account for the direction of the edges: egos are detected first and alters are the
partners they refer to during the contact-tracing interviews. Frequencies are given together with
row and column proportions between brackets. The diagonal of the contingency table represents
58,46% of the whole edges. The assortative mixing coefficient is r = 0.0512. The independence
between the sexual orientation of egos and alters is rejected by a χ2-test with a p-value smaller than
2.210−16. In theory, there should be no sexual contact between two heterosexual men or between a
heterosexual man and an MSM. The semantic of the database also exclude sexual contact between
women. However, those events actually occur in the dataset.

A first class of partitions are constituted by nodes taking the same modalities
of qualitative variables: area of residence, sexual orientation, age, detection mode...
Let us comment on the partition defined by the gender/sexual orientation variable
(see Table 4.1.1). As edges correspond to sexual contacts in the present graph, the
gender/sexual orientation of adjacent vertices cannot be arbitrary of course. More
than a half of the edges (56.47%) link two MSM. Links between MSM and women
make 1,208 edges (29.66%) and there are 439 edges (10.78%) between women and
heterosexual men. Looking at the infection tree provided similar proportions: 1,202
edges (52.56%), 667 edges (29.16%) and 375 edges (16.40%) respectively. Figures
reveal an asymmetry in HIV infection: among (oriented) infection edges involv-
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ing women, the latter are more often alters than egos (66.13% of the edges shared
with heterosexual men and 74.21% of the edges shared with MSM). The declarative
degree shows a smaller mean degree for heterosexual men and comparable degree
distributions between women and MSM. MSM are expected to contribute most to
the connectivity of the graph, especially bisexual men who act as contact points be-
tween women and MSM who declare only contacts with men.

Of course, a natural question is to see whether we can define other partitions that
are more closely related to the modularity defined in (4.1.1). This is the topic of the
next section, which is related with visual-mining and modularity clustering.

4.2 Visual-mining

Graph visualization techniques are used routinely to gain insights about medium
size graph structures, but their practical relevance is questionable when the number
of vertices and the density of the graph are high both for computational issues (as
many graph drawing algorithms have high complexities) and for readability issues
[22, 59]. We illustrate the clustering and visualization on the Cuba HIV data where
the situation is borderline as the giant component of the graph contains 2,386 ver-
tices and 3,168 edges (respectively 44.28% and 77.78% of the global quantities). As
the graph is of medium size from a computational point of view and has a low den-
sity, it is a reasonable candidate for state-of-the-art global and detailed visualization
techniques. We use the optimised force directed placement algorithm proposed in
[108]. It recasts the classical force directed paradigm [56] into a nonlinear optimiza-
tion problem in which the following energy is minimised over the vertex positions
in the euclidean plane, (z1, . . . ,zn),

E (z1, . . . ,zn) = ∑
1≤i1= j≤n

(
ai, j

1
3δ

‖zi− z j‖3−δ 2 ln‖zi− z j‖
)
,

where, δ is a free parameter that is roughly proportional to the expected average
distance between vertices in the plane at the end of the optimization process, ai, j
are the terms of the adjacency matrix of the network and ‖ ·‖ denotes the Euclidean
distance in the plane.

However, the structure of the graph under study, in particular its uneven density,
has adverse effects on the readability of its global representation. We rely therefore
on the classical simplification approach [59] that consists in building a clustering of
the vertices of the graph and in representing the simpler graph of the clusters. More
precisely, the general idea is to define a partition composed of groups with dense
internal links but low inter-group connectivity. Each group can then be considered
as a vertex of a new graph: two such vertices are connected if there is at least one
pair of original vertices in each group that are connected in the original graph.
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Fig. 4.2.1 (a): Raw view of the giant component for the Cuban HIV epidemics. (b) Modularity
clustering of the giant component in 37 classes.

Following [34, 33, 101], we compute a maximal modularity clustering [84] as the
obtained clusters are well adapted to subsequent visual representation, as shown in
[89]. Maximizing QP over all the partitionsP provides an optimal J classes parti-
tion. This is an NP-Hard and can only be solved via some heuristics. As in [101], we
use a modified version of the multi-level greedy merging approach proposed in [90]:
our modification guarantees that the final clusters are connected. The optimization
process is carried out on the partitions for a given number of clusters J but also over
the number of clusters J itself which is then automatically selected. This makes the
method essentially parameter free.

It should be noted however that one can find partitions with a rather high modu-
larity even in completely random graphs (configuration model graphs where vertices
have different degrees but are paired independently) where no modular structure ac-
tually exists (see [95] for an estimation of the expected value of this spurious mod-
ularity in the limit of large and dense graphs). To check that the modular structure
found in a network cannot be explained by this phenomenon, we use the simulation
approach proposed in [35, 101]. Using a Markov Chain Monte Carlo (MCMC) ap-
proach inspired by [98], we generate configuration model graphs with exactly the
same size and degree distribution as the epidemics graph. Using the above algo-
rithm, we compute a maximal modularity clustering on each of those graphs. The
modularities of the clustering provide an estimate of the distribution of the maximal
modularity in random graphs with our degree distribution. If a partition of this graph
exhibits a higher modularity, we conclude that it must be the result of some actual
modular structure rather than a random outcome.

The maximal modularity clustering is visualised using the force directed place-
ment algorithm described above. In addition to giving a general idea of the global
structure of the graph, the obtained visual representation can be used to display dis-
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tributions of covariates at the cluster level. Homogeneity tests are performed in order
to assess possible significant differences between these statistical subpopulations.

However, as demonstrated in [54], finding the maximal modularity clustering can
lead to ignoring small modular structures that fall below the resolution limit of the
modularity measure. It is then recommended in [54] to recursively apply maximal
modularity clustering to the original clusters in order to investigate potential smaller
scale modules. We follow this strategy coupled with the MCMC approach described
above: each cluster is tested for substructure by applying the maximal modularity
clustering technique from [101] and by assessing the actual significance of a poten-
tial sub-structure via comparison with similar random graphs.

To sum up, we recall the procedure that we recommend for clustering a large
network:

• maximization of the modularity (4.1.1) (see [84]).

– this favours dense clusters and produces interesting partitions for visualization
(Fortunato 2010)

– the optimisation is an NP-hard problem but high quality sub-optimal solutions
can be obtained by annealing (Rossi Villa-Vialaneix 2010) or other methods
(Noak Rotta, 2009)

• Clustering significance:

– compute the modularity of the partition that is obtained,
– test the significance of the obtained partition by simulating configuration mod-

els with same degree distribution and compute modularity.

• Hierarchical clustering: if the first clustering is relevant, and if the classes have
large sizes, we can refine the partition.

– Reiterate the clustering for each element of the partition, without taking inter-
cluster connections.

– Test the significance of the cluster’s partition
– Test the significance of the global clustering of the graph.

• Coarsening:merge clusters that induce the least reduction in modularity as long
as we remain above the original graph.

• Visualization: use the Fruchterman–Reingold algorithm to display the network
of clusters

4.3 Analysis of the “Giant Component”

The network density is globally low and very heterogeneous. But although the con-
nectivity of the network seems fragile at first glance, density may be locally very
high. The harmonic average of the geodesic path lengths equals 10.24 and 12.2 for
the directed graph (taking into account the information of who mentions whom).
Most of the graph connectivity is concentrated in the largest component (3,168
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Fig. 4.2.2 In Figure 4.2.1, a modularity clustering is performed on the Cuban HIV data. The modu-
larity of the partition obtained isC 0.85. To test the significancy of this partition, 100 configuration
model graphs with same size and same degree distribution as the observed one are simulated. The
empirical distribution of the random modularity obtained by these simulations is depicted with
small black bars on the abscissa axis and has a support bounded by 0.74. This shows that the
partition obtained by maximizing the modularity is significant (at level 95% for instance).

edges out of 4,073). The largest component has a diameter of 26 (36 when tak-
ing into account the direction of the infections) and the harmonic average of the
geodesic path lengths are the same inside the largest component. These values are
slightly higher than those of other real networks mentioned in [88] but remain well
below the number of vertices and compatible with the logarithmic scaling related to
the so-termed small world effect.

Figure 4.2.1 (b) seems quite clear, with what appears to be two parts in the graph:
the lower part of the graph (on the figure) seems to be dominated by MSM while
the upper part gathers almost all persons from the giant component that have only
heterosexual contacts. However, the upper part is quite difficult to read as it seems
denser than the lower part. The layout shows what might be interpreted as cycles
and also a lot of small trees connected to denser parts. The actual connection pat-
terns between the upper part and the lower part are also very unclear. Because of
these crowding effects, structural properties of the network from Figure 4.2.1 ap-
pears quite difficult and probably misleading. We rely therefore on the simplification
technique outlined in Section 4.2 leveraging a clustering of the giant component to
get an insight into its general organization.

A graphical representation of the partition obtained by the method from [101] is
displayed in Figure 4.3.1 (a). The clustering thus produced exhibits a modularity of
0.8522 and is made up of 37 clusters. This modularity is very high compared to the
random level and strongly supports the hypothesis of a specific (“non-random") un-
derlying community structure. For comparison purpose, the average maximal mod-
ularity attained by random graphs built from a configuration model with the same
size and degree distribution as those of the giant component observed over a col-
lection of 100 simulated replications (using the same partitioning method) is of the
order 0.74, with a maximum of 0.7435.
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Fig. 4.3.1 The giant component divided into 37 clusters. (a) Each disk of representation corre-
sponds to one cluster and has an area proportional to the number of persons (original vertices)
gathered in the associated cluster. The pie chart of the disk displays the percentage of MSM (green),
of heterosexual men (blue) and of women (red) in the cluster. Links between clusters summarise the
connectivity pattern between members of the clusters. The thinnest edge width corresponds to only
one connection between a member of one cluster and another person in the connected cluster (the
corresponding edges are drawn using dashed segments). Thicker edges have a width proportional
to the number of connected persons. (b) Disk areas and edges thicknesses are chosen as in (a). The
grey level of a disk encode the p-value of a χ2 test of homogeneity in which the distribution of the
sexual orientations in the associated cluster is compared to the distribution in the giant component.

Considering that the modules are meaningful, the visual representation provided
by Figure 4.3.1 (a) is more faithful to the underlying graphical structure than the
finer displays of Figure 4.2.1 (b). That said, the two graphs tend to agree as the
pie charts of Figure 4.3.1 clearly show two parts in the network: the lower left part
seems to gather most of the women and heterosexual men (as the upper part of Fig-
ure 4.2.1 (b)), while the upper right part contains clusters made almost entirely of
MSM, as the lower part of Figure 4.2.1 (b). While the display of Figure 4.3.1 (a)
might seem cluttered, it is in fact very readable if one considers that only 328 edges
of the giant component connect persons from different clusters while 2,840 con-
nections happen inside clusters. Then most of the edges on Figure 4.3.1 (a) could
be disregarded as they corresponds to only one pair of connected persons (this is
the case of 94 of such edges out of 142 and the former are represented as dashed
segments). Taken this aspect into account, it appears that the MSM part of the giant
component (upper right part) is made of loosely connected clusters while the bulk of
the connectivity between clusters is gathered in the mixed part of the component, in
which most women and heterosexual men are gathered. The fact that the mixed part
is more dense was already visible in Figure 4.2.1 (b), but Figure 4.3.1 (a) provides
a much stronger demonstration.
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The pie chart based visualization of Figure 4.3.1 (a) shows the sexual orienta-
tion distribution in the clusters and hence sheds light on its relationship with the
graphical structure. In Figure 4.3.1 (b), a visual representation of the corresponding
p-values is given. The darker the node, the more statistically significant the differ-
ence between the cluster distribution of sexual orientation and the distribution of the
giant component.

Combining Figures 4.3.1 (a) and (b) is very useful: Figure (b) highlights atypical
clusters while Figure (a) identifies why they are atypical. It appears that among the
37 clusters, 22 exhibit a χ2 p-value below 5%. They will be abusively referred to
as “atypical clusters" in the following. The set of those clusters can be split into
two subsets, depending on the percentage of MSM in the cluster: above or below
the global value of 76% (the percentage in the giant component), as illustrated by
Figure 4.3.1 (b). Almost two thirds (67%) of the individuals of the largest connected
component lie in the atypical clusters. Among the latter, 774 individuals belong to
the 12 clusters which display a large domination of MSM (denoted the MSM group
of clusters in the sequel) and 825 to the 10 clusters that contain an unexpectedly
large number of heterosexual persons (denoted the mixed group of clusters in the
sequel).

According to Figure 4.3.1, the two subsets of atypical clusters seem to be almost
disconnected. This is confirmed by a detailed connectivity analysis. There are indeed
864 internal connections in the MSM group, 1,276 in the heterosexual group, and
only 10 links between pairs of individuals belonging to the two different groups.
This asymmetry was expected, given the quality of the clustering with only 328
inter-cluster connections. Nevertheless, the number of connections between the two
groups of clusters is also small compared to connections between the clusters of the
groups: 129 connections between persons of distinct clusters in the group of mixed
clusters and 55 in the group of MSM clusters. Finally, there are 83 connections
from persons in the group of mixed clusters to persons in non-atypical clusters,
and 36 connections from persons in the group of MSM clusters to persons in non-
atypical clusters. Mean geodesic distances inside the MSM group are larger than
in the mixed group (respectively 9.95 and 7.28, computed without orientation). To
conclude, the two groups are weakly connected to the outside, with a small number
of direct connections, and rather internally more connected than expected.

4.4 Descriptive Statistics for Epidemics on Networks

We now review some basic descriptive statistics for networks. Exhaustive statistical
exploration of networks has been described by Newman [88] for example.
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4.4.1 Estimating Degree Distributions

For the Cuban HIV data, we want to calculate for instance the degree distribution
(pk : k ∈N) using the number of declared sexual partners in the two years preceding
detection, where pk is the proportion of vertices having declared k sexual partners.

Fig. 4.4.1 (a) Distribution of the declared number of sexual partners for the HIV+ individuals
detected and present in the Cuban database. (b) Preceding degree distribution plotted in a log-log
scale: the graph exhibits a power-law behaviour.

The degree distributions of most real-world networks, referred to as scale-free
networks, often exhibit a power-law behaviour in their right tails (see [49]), i.e.

pk ∼ k−α , as k becomes large,

for some exponent α > 1 (notice that ∑∞
k=1 1/k

α < ∞ in this case). Roughly speak-
ing, this describes the situations where the majority of vertices have few connec-
tions, but a small fraction of the vertices are highly connected (e.g. Chapter 4 in
[83] for further details). We propose to fit a power-law exponent and consider two
methods for this purpose, see also [32]. First, we minimize, over α > 1, the fol-
lowing measure of dissimilarity between the observed degree distribution and the
power-law distribution with exponent α based on degree values larger than k0

Kk0(p,α) = ∑
k≥k0

pk
cp,k0

log
(

Cα · pk
cp,k0 · k−α

)
, (4.4.1)
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where log denotes the natural logarithm, cp,k0 = ∑k≥k0 pk and Cα = ∑k≥k0 1/k
α .

Notice that, when k0 is larger than the maximum observed degree distribution kmax,
we have Kk0(p,α) = 0 no matter the exponent α . Also, the computation of (4.4.1)
involves summing a finite number of terms only, since the empirical frequency pk is
equal to zero for any degree k sufficiently large. The criterionKk0(p,α) is known as
the Kullback–Leibler divergence between the empirical and theoretical conditional
distributions given that the degree is larger than k0. Incidentally, we point out that
other dissimilarity measures could be considered for the purpose of fitting a power-
law, such as the χ2-distance for instance. For a fixed threshold k0 ≥ 1, it is natural
to select the value of the power-law exponent that provides the best fit, that is:

α̂k0 = argmin
α>1

Kk0(p,α).

Choosing k0 precisely being a challenging question to statisticians. Following in
the footsteps of the heuristic selection procedures proposed in the context of heavy-
tailed continuous distributions (see Chapter 4 in [96]), when possible, we suggest
to choose α̂k0 with k0 in a region where the graph {(k, α̂k) : k = 1, . . . , kmax} is
becoming horizontal, or at least shows an inflexion point. For completeness, we also
compute the Hill estimator:

α̃m =

(
1
m

m

∑
j=1

k( j)
k(m)

)−1

,

where n is the number of vertices of the graph under study, 1 ≤ m ≤ n and
k(1) = kmax, k(2), . . . , k(m) denote them largest observed degrees sorted in decreasing
order of their magnitude. The tuning parameterm is selected graphically, by plotting
the graph {(m, α̃m) : m = 1, . . . , n}. In the case when the degrees of the vertices
of the graph are independent, as for the configuration model [85], this statistic can
be viewed as a conditional maximum likelihood estimator and arguments based on
asymptotic theory supports its pertinence in this situation, see [60].

Let us consider the declared degree distribution in the Cuban database (see Fig.
4.4.1). Among the 5,389 individuals appearing in the database, 483 declared no
sexual partners during this period. Degree distributions for the whole population
exhibit a clear power-law behaviour. Power laws are fitted to the declared degree
distributions, for the whole population and for the strata defined by the variable
gender/sexual orientation respectively. Both methods present similar results. The re-
sulting estimates (see Table 4.4.1) reveal the thickness of the upper tails: the smaller
the tail exponent α , the heavier the distribution tail. Women correspond to the heav-
iest tail, followed by MSM and heterosexual men. However, an ANOVA reveals no
statistically significant impact of the covariates gender/sexual orientation. All the
same, using the observed degree distribution, we obtain (k0, α) = (3, 2.99) which
is very close to the result when using the number of neighbours having been de-
tected positive.
All the tail exponent estimates are below the critical value of αc = 3.4788, below
which a giant component exists in scale-free networks generated by means of the
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configuration model, and above the value 2, below which the whole graph reduces
to the giant component with probability one (see [79, 88]).

k̂0 α̂k0 Mean Std dev. Min Max
Whole population 7 3.06 6.17 5.54 1 82

Women 6 2.71 5.88 5.03 1 39
Heterosexual men 7 3.36 4.98 4.11 1 30

MSM 7 3.02 6.43 5.84 1 82

Table 4.4.1 Degree distribution for the Cuban HIV+ network, for the whole population and by
sexual orientation.

For completeness, we can also compare with the Hill estimator (4.4.1) to the
estimator (4.4.1) in each case, obtained by plotting the curves (m, α̃m) in Fig. 4.4.2:
reassuringly, we found that both estimation methods yield similar results.

Fig. 4.4.2 Graph of (m, α̃m) for m ∈ {1, . . . ,n}. This graph allows us to choose the Hill estimator.
The horizontal line y = α̂k0 permits to visualize the estimator α̂k0 and compare it with the Hill
estimator.
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4.4.2 Joint Degree Distribution of Sexual Partners

The independence assumption between the degrees of adjacent vertices does not
hold here, see Fig. 4.4.3, in contrast to what is assumed for the vast majority of
graph-based SIR models of epidemic disease, e.g. [49, 88]. Indeed, the linear corre-
lation coefficient between the degree distributions of alters and egos is equal to 0.68.
Testing the significance of this coefficient, that describes the correlation of these de-
gree distributions, allows us to test the independence of the latter. Independence
between the degree distributions of alters and egos is rejected by a χ2-test with a
p-value of 6.8510−6. In particular, highly connected vertices tend to be connected
to vertices with a high number of connections too. From the perspective of mathe-
matical modeling, this suggests to consider graph models with a dependence struc-
ture between the degrees of adjacent nodes, in opposition to most percolation pro-
cesses on (configuration model) networks used to describe the spread of epidemics
[79, 13, 110, 44, 58]. However, it is worth noticing that, if we restrict our analysis to
some specific, more homogeneous, subgroups, the independence assumption may
be grounded in evidence. So if assumptions such that the network is generated by
a configuration model do not hold globally, they may be valid for smaller clusters,
which is another motivation for clustering.

Fig. 4.4.3 Joint degree distribution of the number of contacts for connected vertices.
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4.4.3 Computation of Geodesic Distances and Other Connectivity
Properties

There is a large literature on describing the social networks on which epidemics
might propagate (see Newman [88] for a more exhaustive list of descriptive statis-
tics, and [35, 36] for an application to the Cuban HIV epidemics). Here, we mention
some of them, related to community and connexity. All results presented here are
obtained with the R-package igraph [42].

A set of connected vertices with the corresponding edges, constitutes a compo-
nent of the graph. The collection of components forms a partition of the graph. We
identify the components of the network and compute their respective sizes. When
the size of the largest component is much larger than the size of the second largest
component, see section IV A in [88] and the references therein, one then refers to
the notion of giant component.

A geodesic path between two connected vertices x and y is a path with shortest
length that connects them, its length d(x,y) being the geodesic distance between x
and y. One also defines the mean geodesic distance:

L =
1

n(n+1) ∑
(x,y)∈V 2

d(x,y),

where V denotes the set of all vertices of the connected graph and n its size. For
non-connected graphs, one usually computes a harmonic average. Mean geodesic
distances measure “how far" two randomly chosen vertices are, given the network
structure. When L is much smaller than n, one says that a “small-world effect" is
observed. In this regard, the diameter of a connected graph, that is to say the length
of the longest geodesic path, is also a quantity of major interest:

δ = max
(x,y)∈V 2

d(x,y).

Computations have been made for each component of the network of sexual con-
tacts among individuals diagnosed as HIV positive before 2006 in Cuba, using the
dedicated “burning algorithm" for the mean geodesic distances, see [4].

Along these lines, we also investigate how the connectivity properties of the net-
work evolve when removing various fractions of specific strata of the population:
we studied the resilience to various strata (robustness of certain statistics such as
mean geodesic distance or size of the largest component to deletion of points in
these strata), the clustering coefficients (defined as the number of triangles over
the number of connected triples of vertices) and the articulation points (points that
disconnect the component they belong to into two components when removed; see
Section 6 of [36]). Indicators show an apparent weak resilience: 1,157 articulation
points (out of 2,386 nodes), only 187 cliques (among them 177 triangles) and low
assortative mixing coefficients. Global statistics thus indicate a low density of the
graph (many articulation points, resilient structure, low clustering coefficients), the
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clustering emphasised the important heterogeneity in the network, with some dense
regions that are internally more connected than average and with few links to the
outside. We found subgroups with atypical covariate distributions, each reflecting
a different stage of the evolution of the epidemic. Clustering the graph also allows
us to unfold the complex structure of the Cuban HIV contact-tracing network. As a
byproduct, the clustering indicates sub-structures that may be considered as random
graphs resulting from configuration models, bridging the gap between the modelling
papers whose assumptions on network structures do not often match reality.



Appendix: Finite Measures on Z+

First, some notation is needed in order to clarify the way the atoms of a given ele-
ment of MF(Z+) are ranked. For all µ ∈MF(Z+), let Fµ be its cumulative distri-
bution function and F−1

µ be its right inverse defined as

∀x ∈ R+, F−1
µ (x) = inf{i ∈ Z+, Fµ(i)≥ x}. (A.0.2)

Let µ = ∑n∈Z+
anδn be an integer-valued measure of MF(Z+), i.e. such that the

an’s are themselves integers. Then, for each atom n ∈ Z+ of µ such that an > 0, we
duplicate the atom n with multiplicity an, and we rank the atoms of µ by increasing
values, sorting arbitrarily the atoms having the same value. Then, we denote for any
i≤ 〈µ,1〉,

γi(µ) = F−1
µ (i), (A.0.3)

the level of the ith atom of the measure, when ranked as described above. We refer
to Example 3.3.3 for a simple illustration.

We now make precise a few topological properties of spaces of measures and
measure-valued processes. For T > 0 and a Polish space (E,dE), we denote by
D([0,T ],E) the Skorokhod space of càdlàg (right-continuous and left-limited) func-
tions from [0,T ] into E (e.g. [24, 66]) equipped with the Skorokhod topology in-
duced by the metric

dT ( f ,g) := inf
α∈∆([0,T ])





sup

(s,t)∈[0,T ]2,
s1=t

∣∣∣∣log
α(s)−α(t)

s− t

∣∣∣∣+ sup
t≤T

dE
(
f (t),g(α(t))

)





,

(A.0.4)
where the infimum is taken over the set ∆([0,T ]) of continuous increasing functions
α : [0,T ]→ [0,T ] such that α(0) = 0 and α(T ) = T .

Limit theorems are heavily dependent on the topologies considered. We intro-
duce here several technical lemmas on the space of measures related to these ques-
tions. For any fixed 0 ≤ ε < A, recall the definition of Mε ,A in (3.3.20). Note that
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for any ν ∈Mε,A, and i ∈ {0, . . . ,5}, 〈ν ,χ i〉 ≤ A since the support of ν is included
in Z+.

Lemma A.0.1. Let I be an arbitrary set and consider a family (ντ ,τ ∈ I) of ele-
ments of Mε ,A. Then, for any real-valued function f on Z+ such that f (k) = o(k5),
we have that

lim
K→∞

sup
τ∈I

|〈ντ , f1[K,∞)〉|= 0.

Proof. By Markov inequality, for any τ ∈ I, for any K, we have

∑
k≥K

| f (k)|ντ(k)≤ A sup
k≥K

| f (k)|
k5

,

hence
lim
K→∞

sup
τ∈I

|〈ντ , f 〉|≤ A limsup
k→∞

| f (k)|
k5

= 0.

The proof is thus complete. '(

Lemma A.0.2. For any A> 0, the setMε,A is a closed subset ofMF(Z+) embedded
with the topology of weak convergence.

Proof. Let (µn)n∈N be a sequence ofMε ,A converging to µ ∈MF(Z+) for the weak
topology, Fatou’s lemma for sequences of measures implies

〈µ,χ5〉 ≤ lim inf
n→∞

〈µn,χ5〉.

Since 〈µn,1〉 tends to 〈µ,1〉, we have that 〈µ,1+χ5〉 ≤ A.
Furthermore, by uniform integrability (Lemma A.0.1), it is also clear that

ε ≤ lim
n→∞

〈µn, χ〉= 〈µ, χ〉,

which shows that µ ∈Mε ,A. '(

Lemma A.0.3. The traces on Mε ,A of the total variation topology and of the weak
topology coincide.

Proof. It is well known that the total variation topology is coarser than the weak
topology. In the reverse direction, assume that (µn)n∈N is a sequence of weakly
converging measures all belonging toMε,A. Since,

dTV (µn, µ)≤ ∑
k∈Z+

|µn(k)−µ(k)|.

according to Lemma A.0.1, it is then easily deduced that the right-hand side con-
verges to 0 as n goes to infinity. '(

Lemma A.0.4. If the sequence (µn)n∈N of MN
ε,A converges weakly to the measure

µ ∈Mε,A, then (〈µn, f 〉)n∈N converges to 〈µ, f 〉 for all function f such that f (k) =
o(k5) for all large k.
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Proof. The triangle inequality implies that:

|〈µn, f 〉−〈µ, f 〉|≤ |〈µn, f1[0,K]〉−〈µ, f1[0,K]〉|
+ |〈µ, f1(K,+∞)〉|+ |〈µn, f1(K,+∞)〉|.

We then conclude by uniform integrability and weak convergence. '(

Recall that Mε,A can be equipped with the total variation distance topology,
hence the topology on D([0,T ],Mε,A) is induced by the distance

ρT (µ., ν.) = inf
α∈∆([0,T ])

(
sup

(s,t)∈[0,T ]2,
s1=t

∣∣∣∣log
α(s)−α(t)

s− t

∣∣∣∣+ sup
t≤T

dTV (µt , να(t))

)
.
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Introduction

Mathematical modeling of epidemic spread and estimation of key parameters from
data provided much insight in the understanding of public health problems related
to infectious diseases. These models are naturally parametric models, where the
present parameters rule the evolution of the epidemics under study.

Multidimensional continuous-time Markov jump processes (Z (t)) on Zp form
a usual set-up for modeling epidemics on the basis of compartmental approaches
as for instance the SIR-like (Susceptible-Infectious-Removed) epidemics (see Part I
of these notes and also [2], [35], [83]). However, when facing incomplete epidemic
data, inference based on (Z (t)) is not easy to be achieved.

There are different situations where missing data are present. One situation con-
cerns Hidden Markov Models, which are in most cases Markov processes observed
with noise. It corresponds for epidemics to the fact that the exact status of all the
individuals within a population are not observed, or that detecting the status has
some noise (see [22] for instance). Another situation comes from the fact that ob-
servations are performed at discrete times. They can also be aggregated (e.g. num-
ber of infected per day). A third case, for multidimensional processes, is that some
coordinates cannot be observed in practice. While the statistical inference has a
longstanding theory for complete data, this is no longer true for many cases that
occur in practice. Many methods have been proposed to fill this gap starting from
the Expectation-Maximization algorithm ([34], [90]) up to various Bayesian meth-
ods ([25], [106]), Monte Carlo methods ([51], [104]), based on particle filtering
([41], [42]), Approximate Bayesian Computation methods ([9], [15], [114], [120]),
maximum iterating filtering ([70]), Sequential Monte Carlo or Particle MCMC ([3],
[37]), see also the R package POMP ([89]). Nevertheless, these methods do not
completely circumvent the issues related to incomplete data. Indeed, as summarized
in [19], there are some limitations in practice due to the size of missing data and to
the various tuning parameters to be adjusted.

The aim of this part is to provide some tools to estimate the parameters ruling
the epidemic dynamics on the basis of available data. We begin with a chapter about
inferential methodology for stochastic processes which is not specific to applications
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to epidemics but is the backbone of the various inference methods detailed in the
next chapters of this part.

The methods used to build estimators are linked with the precise nature of the
observations, each kind of observations generating a different statistical problem.
We detail these facts in the first chapter. We have intentionally omitted in this chapter
the additional problem of noisy observations, which often occurs in practice. This
is another layer which comes on top. It entails Hidden Markov Models and State
space Models (see [22] or [124]) and also the R-package Pomp ([89]).

Chapter 2 is devoted to the statistical inference for Markov chains. Indeed, dis-
crete time Markov chains models are interesting here because many questions that
arise for more complex epidemic models can be illustrated in this set-up.

We had rather focus here on parametric inference since epidemic models always
include in their dynamics parameters that need to be estimated in order to derive
predictions. At the early stage of an outbreak, a good approximation for the epi-
demic dynamics is to consider that the population of Susceptible is infinite and that
Infected individuals evolve according to a branching process (see Part I, Section 1.2
of these notes). We also present in this chapter some classical statistical results in
this domain.

As detailed in Part I, Chapter 1, epidemics in a close population of size N are
naturally modeled by pure jump processes (Z N(t)). However, inference for such
models requires that all the jumps (i.e. times of infection and recovery for the SIR
model) are observed. Since these data are rarely available in practice, statistical
methods often rely on data augmentation, which allows us to complete the data and
add in the analysis all the missing jumps. For moderate to large populations, the
complexity increases rapidly, becoming the source of additional problems. Various
approaches were developed during the last years to deal with partially observed
epidemics. Data augmentation and likelihood-free methods such as the Approximate
Bayesian Computation (ABC) opened some of the most promising pathways for
improvement (see e.g. [18], [101]). Nevertheless, these methods do not completely
circumvent the issues related to incomplete data. As stated also in [19], [27], there
are some limitations in practice, due to the size of missing data and to the various
tuning parameters to be adjusted (see also [2], [105]).

In this context, it appears that diffusion processes satisfactorily approximating
epidemic dynamics can be profitably used for inference of model parameters for
epidemic data, due to their analytical power (see e.g. [45], [109]). More precisely,
when normalized by N, (ZN(t) = N−1Z N(t)) satisfies an ODE as the population
size N goes to infinity and moreover, in the first part of these notes, it is proved
that the Wasserstein L1-distance between (ZN(t)) and a multidimensional diffusion
process with diffusion coefficient proportional to 1/

√
N is of order o(N−1/2) on

a finite interval [0,T ] (see Part I, Sections 2.3 and 2.4). Hence, in the case of a
major outbreak in a large community, epidemic dynamics can be described using
multidimensional diffusion processes (XN(t))t≥0 with a small diffusion coefficient
proportional to 1/

√
N. We detail in Chapter 3 the parametric inference for epidemic

dynamics described using multidimensional diffusion processes (XN(t))t≥0 with a
small diffusion coefficient proportional to 1/

√
N based on discrete observations.

Since epidemics are usually observed over limited time periods, we consider the
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parametric inference based on observations of the epidemic dynamics on a fixed
interval [0,T ].

The last chapter is devoted to the inference for the continuous time SIR model.
We present several algorithms which address the problem of incomplete data in this
set-up: Expectation-Maximization algorithm, Monte Carlo methods and Approx-
imate Bayesian Computation methods. Finally, all the classical statistical results
required for this part are detailed in the Appendix.

Introduction



Chapter 1

Observations and Asymptotic Frameworks

Multidimensional continuous-time Markov jump processes (Z (t)) on Zp form a
usual set-up for modeling epidemics on the basis of compartmental approaches as
for instance the SIR-like (Susceptible-Infectious-Removed) epidemics (see Part I of
these notes and also [2], [35], [83]). However, when facing incomplete epidemic
data, inference based on (Z (t)) is not easy to be achieved.

Assume that a stochastic process (Z (t), t ∈ [0,T ]) models the epidemic dynam-
ics with parameters associated with this process (transition kernels depending on a
parameter θ for Markov chains, drift and diffusion coefficients for a diffusion pro-
cess, infinitesimal generator for a Markov pure jump process). The observed pro-
cess corresponds to the value θ0 of this parameter. This value θ0 is called the true
(unknown) parameter value. Our concern here is the estimation of θ0 from the ob-
servations that are available and the study of their properties. The methods used to
build estimators are linked with the precise nature of the observations, each kind of
observations generating a different statistical problem. We detail these facts in the
next sections. We have intentionally omitted in this chapter the additional problem
of noisy observations, which often occurs in practice. This is another layer which
comes on top. It entails Hidden Markov Models and State space Models (see [22]
or [124]) and also the R-package Pomp ([89]).

1.1 Various Kinds of Observations and Asymptotic Frameworks

As developed in Part I of these notes, the epidemic dynamics is modeled by a
stochastic process (Z (t)) defined on [0,T ] with values in Rp, which describes at
each time t the number of individuals in each of the p health states (e.g. p = 3 for
the SIR model). Inference for epidemic models is complicated by the fact that col-
lected observations usually do not contain all the information on the whole path of
(Z (t),0 ≤ t ≤ T ). Moreover, the inference method relies on an asymptotic frame-
work which allows us to control the properties of estimators. We detail here in a
general set-up these facts, which are not specific to the inference for epidemic dy-
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namics, but rely on general properties of inference for stochastic processes, this
knowledge being useful for applications to epidemics.

1.1.1 Observations

Historically, continuous observation of (Z (t),0 ≤ t ≤ T ) was systematically as-
sumed in the literature concerning the statistics of continuous time stochastic pro-
cesses (see [68], [96], [97]). It is justified by the property that theoretical results
can be obtained. However, many various cases can occur in practice. Among them,
including the complete case, the more frequent are
Case (a). Continuous observation of (Z (t)) on [0,T ].
Case (b). Discrete observations: (Z (t1), . . . ,Z (tn)) with 0≤ t1 < t2 < · · ·< tn ≤ T .
Case (c). Aggregated observations (J0, . . . ,Jn−1) with Ji =

∫ ti+1
ti Z (s)ds.

Case (d). Model with latent variables: Some coordinates of (Z (t), t ∈ [0,T ]) are
unobserved.

Case (a) corresponds to complete data. For the SIR epidemics, it means that the
times of infection and recovery are observed for each individual in the population.
Case (b) corresponds to the fact that observations are made at successive known
times (one observation per day or per week during the epidemic outburst (see [12],
[26], [18], [27]). Case (c) occurs in epidemics when the available observations are
the number of Infected individuals and Removed per week for instance. Case (d)
deals with the fact that, in routinely collected observations of epidemic models, one
or several model variables are unobserved (or latent) (see e.g. [22], [41] for general
references and [18], [19], [70], [71], [106], [120] for applications to epidemics).

1.1.2 Various Asymptotic Frameworks

Taking into account an asymptotic framework is necessary to study and compare the
properties of different estimators. It is also a preliminary step for the study of non-
asymptotic properties. While for i.i.d. observations, the natural asymptotic frame-
work is that the number n of observations goes to infinity, for stochastic processes
various approaches are used according to the model properties or to the available
observations. Two different situations need to be considered according to the time
interval of observation [0,T ], where T either goes to infinity or is fixed.

1.1.2.1 Increasing Time of Observation [0,T ] with T → ∞

If (Z (t)) on [0,T ] is continuously observed, a general theory is available for ergodic
processes and for stationary mixing processes. Inference can also be performed for

GUANHAO HUANG
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some special models but does no longer rely on a general theory. This occurs for
supercritical branching processes and for the explosive AR(1) process.

Let us consider the case of discrete observations of a continuous time process
with regular sampling ∆ . The observations are: (Z (t1),Z (t2), . . . ,Z (tn)) with
ti = i∆ and T = n∆ .
Two distinct cases arise from the study of parametric inference for diffusion pro-
cesses
(1) The sampling interval ∆ is fixed ( T = n∆ and n→ ∞).
(2) The sampling interval ∆ = ∆n → 0 with T = n∆n → ∞ as n→ ∞.
Since the likelihood is not explicit and difficult to compute, it raises many theo-
retical problems. References for the inference in these cases are Kessler [85], [86]
followed by many others [87].

In practice, when a sampling interval ∆ is present in the data collecting, it might
be important to take it explicitly into account. Deciding whether ∆ is small or not
depends more on the time scale than on its precise value. However this parameter ∆
explicitly enters in the estimators, and some estimators with apparently good prop-
erties for ∆ fixed might explode for small ∆ . It corresponds in theory to different
rates of convergence for the various coordinates of the unknown parameter θ as
n → ∞. This typically occurs for discrete observations of a diffusion process (see
Section 1.2).

1.1.2.2 Fixed Observation Time [0,T ]

Several asymptotic frameworks are used.

(1) Discrete observations on [0,T] with T = n∆n fixed
The sampling interval ∆n → 0 while the number of observations n tends to infinity.
For diffusion processes, only parameters in the diffusion coefficient can be estimated
(see [48], [73]).

(2)Observation of k i.i.d. sample paths of (Z i(t),0≤ t ≤ T ), i= 1, . . .k with k→∞.
Observations of (Z i(t)) can be continuous or discrete.This framework is relevant
for panel data which describe for instance the dynamics of several epidemics in dif-
ferent locations. It allows us to include covariates or additional random effects in the
model. The assumption is that the number of paths k goes to infinity (see e.g [59]).

(3) Presence of a “Small parameter” ε > 0 : (Z ε(t),0≤ t ≤ T ), and ε → 0.
Inference is studied in the set-up of a family of stochastic models (Z ε(t),0≤ t ≤ T )
depending on a parameter ε > 0. Such a family of processes naturally appears in the
theory of "Small perturbations of dynamical systems", where (Xε(t)) denotes a dif-
fusion process with small diffusion coefficient εσ(·) (see e.g. [44]). The presence
of a small parameter occurs in the study of epidemics in large closed populations
of size N, when they are density dependent. The small parameter ε is associated to
the population size N by the relation ε = 1/

√
N leading to the family of processes
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Z ε(t)= ε2Z (t) (normalization by the population size of the process). From a prob-
ability perspective, we refer to Part I, Sections 2.3 and 2.4 (see also [39, Chapter
8]). For statistical purposes, we investigate in Chapter 3 of this part the asymptotic
framework "ε → 0" and, for discrete observations, the cases where the sampling in-
terval ∆ can be fixed or ∆ = ∆n → 0.

(4) Asymptotics on the initial population number.
It consists in assuming that one coordinate of (Z (t)) at time 0 satisfies thatZ i(0) =
M → ∞. The parametric inference for the continuous time SIR model is performed
in this framework (see the results recalled in Section 4.2 or [2]). This is also used
for subcritical branching processes where the initial number of ancestors goes to ∞
(see e.g.[59]).

1.1.3 Various Estimation Methods

As pointed out in the introduction of this part, we are mainly concerned by the prob-
lem of parametric inference. There exist several estimation methods.

Maximum Likelihood Estimation
This entails that one can compute the likelihood of the observation. For a continu-
ously observed process, this is generally possible, but for a discrete time observation
of a continuous-time process or for other kinds of incomplete observations, it is of-
ten intractable. This opens the whole domain of stochastic algorithms which aim
at completing the data in order to estimate parameters with Maximum Likelihood
methods. In particular, the well-known Expectation-Maximisation algorithm ([34])
and other related algorithms (see e.g. [3], [90], [106]) are based on the likelihood.
For regular statistical models, Maximum Likelihood Estimators (MLE) are consis-
tent and efficient (best theoretical variance).

Minimum Contrast Estimation or Estimating Functions
When it is difficult to use the accurate (exact) likelihood, pseudo-likelihoods (con-
trast functions; approximate likelihoods,..), or pseudo -score functions (approxima-
tions of the score function, estimating functions) are often used. When they are well
designed, these methods lead to consistent estimators converging at the right rate.
They might loose the efficiency property of MLE in regular statistical models (see
e.g. [123] for the general theory and [31], [67] for stochastic processes).

Empirical and non-parametric Methods
This comprises all the methods that rely on limit theorems (such as the ergodic theo-
rem) associated with various functionals of the observations. Among these methods,
we can refer to Moments methods and Generalized Moment Methods (see e.g. [123]
for the general theory and [64] for discrete observation of continuous-time Markov
processes).
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Algorithmic Methods
Many methods have been developed to perform estimation for incomplete data. It is
difficult to be exhaustive. Let us quote [3], [37] for Particle Markov Monte Carlo
methods; [10], [15], [17], [114], [120] for Approximate Bayesian Computation;
[25], [101] for Bayesian MCMC; [70], [89] for iterated filtering and the R-package
POMP. In the last chapter of this part, MCMC and ABC methods are detailed for
the SIR model.

1.2 An Example Illustrating the Inference in these Various
Situations

Let us investigate here the consequences of these various situations for the statistical
inference on a simple stochastic model for describing a population dynamics: the
AR(1) model which is a simple model for describing dynamics in discrete time,
its continuous time description corresponding to the Ornstein–Uhlenbeck diffusion
process. Besides studying a simplified population model, the main interest of this
example lies in the property that computations are explicit for the various inference
approaches listed in the previous section.

1.2.1 A Simple Model for Population Dynamics: AR(1)

The AR(1) model is a classical model for describing population dynamics in dis-
crete time. On (Ω ,F ,P) a probability space, let (εi) be a sequence of i.i.d. random
variables on R with distributionN (0,1). Consider the autoregressive process on R
defined, for i≥ 0,

Xi+1 = aXi+ γεi+1, X0 = x0. (1.2.1)

In order to compare this model with its continuous time version, the Ornstein–
Uhlenbeck diffusion process, we assume that a > 0 and that x0 is deterministic
and known. The observations are (Xi, i = 1, . . . ,n) and the unknown parameters
(a,γ) ∈ (0,+∞)2. The distribution Pn

a,γ of the n-tuple (X1, . . . ,Xn) is easy to com-
pute, since the random variables (Xi−aXi−1, i= 1, . . . ,n) are independent and iden-
tically distributedN (0,γ2). If λn denotes the Lebesgue measure on Rn, then

dPn
a,γ

dλn
(xi, i= 1, . . . ,n) =

1
(γ
√
2π)n

exp(− 1
2γ2

n

∑
i=1

(xi−axi−1)
2).

Hence, the loglikelihood function is

logLn(a,γ) = !n(a,γ) =−n
2
log(2π)− n

2
logγ2− 1

2γ2
n

∑
i=1

(Xi−aXi−1)
2. (1.2.2)

The maximum likelihood estimators are
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ân =
∑n
i=1Xi−1Xi

∑n
i=1X2

i−1
; γ̂2n =

1
n

n

∑
i=1

(Xi− ânXi−1)
2. (1.2.3)

The properties of (ân, γ̂2n ) can be studied as n→ ∞: (ân, γ̂2n ) is strongly consistent:

(ân, γ̂2n )→ (a,γ2) a. s. under Pa,γ as n→ ∞.

The rates of convergence differ according to the probabilistic properties of (Xi).
(1) If 0< a< 1, (Xi) is a Harris recurrent Markov chain with stationary distribution
µa,γ(dx) = N (0, γ2

1−a2 ). The estimators ân, γ̂2n are asymptotically independent and
satisfy (√

n(ân−a)√
n(γ̂2n − γ2)

)
→N2

(
0,
(
1−a2 0
0 2γ4

))
. (1.2.4)

(2) If a= 1, (Xi) is a null recurrent random walk and n(ân−1) converges to a non-
Gaussian distribution, while γ̂2n has the properties of Case (1).
(3) If a > 1 and x0 = 0, (Xi) is explosive. One can prove that an(ân−a) converges
to a random variable Y = ηZ, where η ,Z are two independent random variables,
Z ∼N (0,1) and η is an explicit positive random variable. The estimator γ̂2n keeps
the properties of Case (1).

1.2.2 Ornstein–Uhlenbeck Diffusion Process with Increasing
Observation Time

This section is based on Chapter 1 of [47] where all the statistical inference is de-
tailed. It is presented here as a starting point for problems that arise when dealing
with epidemic data. In order to investigate the various situations detailed in Sec-
tion 1.1, let us now consider the continuous time version of the AR(1) population
model, the Ornstein–Uhlenbeck diffusion process defined by the stochastic differ-
ential equation

dξt = θξtdt+σdWt ; ξ0 = x0. (1.2.5)

where (Wt , t ≥ 0) denotes a standard Brownian motion on (Ω ,F ,P), and x0 is either
deterministic or is a random variable independent of (Wt). Then, (ξt , t ≥ 0) is a
diffusion process on R with continuous sample paths. This equation can be solved,
setting Yt = e−θ tξt , so that

ξt = x0eθ t + eθ t
∫ t

0
e−θsdWs. (1.2.6)

Let us first consider the case where (ξt) is observed with regular sampling inter-
vals ∆ . The observations (ξti ; i= 1, . . . ,n) with ti = i∆ satisfy

ξti+1 = eθ∆ ξti +σeθ(i+1)∆
∫ (i+1)∆

i∆
e−θsdWs. (1.2.7)
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Hence, (ξti+1 − eθ∆ ξti) is independent of Fti , where Ft = σ(ξ0,Ws,s ≤ t) and the
sequence (ξti , i≥ 0) is the autoregressive model AR(1) defined in (1.2.1) setting

Xi = ξti , a= eθ∆ , γ2 = σ2

2θ
(e2θ∆ −1), (1.2.8)

since the random variables ((σeθ(i+1)∆ ∫ (i+1)∆
i∆ e−θsdWs),1≤ i≤ n) are independent

GaussianN (0,γ2).

Cases (1), (2), (3) of the AR(1) are respectively {θ < 0}, {θ = 0} and {θ > 0}.

Case (a) Continuous observation on [0,T ].
Let us first start with the parametric inference associated with the complete observa-
tion of (ξt) on [0,T ] . The space of observations is (CT ,CT ), the space of continuous
functions from [0,T ] intoR andCT is the Borel σ -algebra. associated with the topol-
ogy of uniform convergence on [0,T ]. Let Pθ ,σ2 denote the probability distribution
on (CT ,CT ) of the observation (ξt ,0 ≤ t ≤ T ) satisfying (1.2.5) . It is well known
that if σ2 1= τ2, the distributions Pθ ,σ2 and Pθ ,τ2 are singular on (CT ,CT ) (see e.g.
[96]). Indeed, the quadratic variations of (ξt) satisfy, as ∆n = ti− ti−1 → 0,

n

∑
i=1

(ξti −ξti−1)
2 → σ2T in Pθ ,σ2 -probability.

Therefore, the set A = {ω,∑n
i=1(ξti − ξti−1)

2 → σ2T} satisfies Pθ ,σ2(A) = 1 and
Pθ ,τ2(A) = 0 for τ2 1= .σ2.
A statistical consequence is that the diffusion coefficient is identified when (ξt) is
continuously observed.

We assume that σ is fixed and known and omit it in this section. Let P0,σ2 = P0
the distribution associated with θ = 0 (i.e dξt = σdWt ). The Girsanov formula gives
an expression of the likelihood function on [0,T ],

LT (θ) =
dPθ
dP0

(ξt ,0≤ t ≤ T ) = exp
(

θ
σ2

∫ T

0
ξt dξt −

θ 2

2σ2

∫ T

0
ξ 2
t dt

)
. (1.2.9)

Substituting (ξt) by its expression in (1.2.5), the MLE is

θ̂T =

∫ T
0 ξtdξt
∫ T
0 ξ 2

t dt
= θ +σ

∫ T
0 ξtdWt
∫ T
0 ξ 2

t dt
. (1.2.10)

The estimator θ̂T defined in (1.2.10) reads as

θ̂T = θ +
MT

〈M〉T
with Mt =

1
σ

∫ t

0
ξsdWs. (1.2.11)

where (Mt) is a (Ft)-martingale in L2 with angle bracket 〈M〉t (i.e. the process such
that (M2

t −〈M〉t) is a martingale). Noting that 〈M〉T → ∞ as T → ∞, the law of large
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numbers yields that
MT

〈M〉T
→ 0. Hence the MLE defined by (1.2.10) is consistent.

As for the AR(1)- model, the rate of convergence of θ̂T to θ depends on the proper-
ties of (Mt). Three different cases can be listed as T → ∞:
(1) {θ < 0}: (ξt) is a positive recurrent process with stationary distributionN (0, σ2

2|θ | )

and
√
T (θ̂T −θ)→L N (0,2|θ |).

(2) {θ = 0}: (ξt) is a null recurrent diffusion; T θ̂T converges to a fixed distribution.
(3) {θ > 0}: (ξt) is a transient diffusion; eθT (θ̂T − θ) converges in distribution to
Y = η Z, where η ,Z are two independent random variables, Z ∼N (0,1) and η is
an explicit a positive random variable.

Case (b)-1 Discrete observations with sampling interval ∆ fixed.
Let ti = i∆ ,T = n∆ and assume that the number of observations n→ ∞.
Using (1.2.8), (Xi = ξti) is an AR(1) with a = eθ∆ ,γ2 = σ2v(θ) with v(θ) =
1
2θ (e

2θ∆ −1).
Let φ∆ : (0,+∞)2 → R× (0,+∞)

φ∆ : m=

(
a
γ2
)
→
(

θ = loga
∆

σ2 = a2−1
2loga∆γ2

)
.

This is a C1-diffeomorphism and the MLE for θ and σ2 can be deduced from
(ân, γ̂2n ) obtained in Section 1.2.1. This yields

θ̂n =
1
∆
log

(
∑n
i=1Xi−1Xi

∑n
i=1X2

i−1

)
; σ̂2

n =
1
n

n

∑
i=1

(Xi− exp(θ̂n∆) Xi−1)
2.

These two estimators inherit the asymptotic properties of the maximum likelihood
estimators (ân, γ̂2n ) obtained in Subsection 1.2.1, their asymptotic variance is ob-
tained using Theorem A.1.1 stated in the Appendix, Section A.1.2 (see also [123],
Theorem 3.1). Therefore, (θ̂n, σ̂2

n ) is consistent and, using that an(m̂n−m) con-
verges to a random variable Y yields

an
(

θ̂n−θ
σ̂2
n −σ2

)
→L ∇xφ∆ (m)Y, (1.2.12)

where an is respectively for Cases (1), (2), (3) the matrix
(√

n 0
0

√
n

)
,

(
n 0
0
√
n

)
,

(
en∆θ 0
0

√
n

)
.

In particular, for Case (1) where Y ∼ N2(0,Σ), the limit distribution
N2(0,∇xφ∆ (m)Σ(∇xφ(m))∗) where Σ is the matrix obtained in (1.2.4).

Looking precisely at the theoretical asymptotic variance of θ̂n obtained in (1.2.12),
we can observe that, for small ∆ , this variance is 2|θ |

∆ and therefore explodes. It cor-
responds to the property that

√
n is not the right rate of convergence of θ for small ∆ .
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Case (b)-2 Discrete observations with sampling interval ∆ = ∆n → 0
We just detail Case (1), which corresponds to the ergodic Ornstein–Uhlenbeck pro-
cess, first studied in [85]. Under the condition n∆ 2

n → 0, the estimators θ̂n, σ̂2
n are

consistent and converge at different rates under Pθ ,
(√

n∆n(θ̂n−θ)√
n(σ̂2

n −σ2)

)
L→N2

(
0,
(
2|θ | 0
0 2σ4

))
. (1.2.13)

Case (c)-1 Aggregated observations on intervals [i∆ ,(i+1)∆ ] with ∆ fixed.
Assume now that the available observations are aggregated data on successive inter-
vals, (Ji) with

Ji =
∫ ti+1

ti
ξs ds. (1.2.14)

The inference problem has first been studied by [55], [54] for an ergodic stationary
diffusion process. It entails that θ < 0 and that X0 is random, independent of (Wt , t ≥
0), distributed according to the stationary distribution of (ξt),N (0, σ2

2|θ | ).

The process (Ji)i≥0 is a non-Markovian strictly stationary centered Gaussian pro-
cess. Using (1.2.6) and (1.2.14), Ji and Ji+1 are linked by the relation

Ji+1− eθ∆ Ji =
σ
θ

∫ (i+1)∆

i∆
(eθ∆ − eθ((i+1)∆−s))dWs (1.2.15)

+
σ
θ

∫ (i+2)∆

(i+1)∆
(eθ((i+2)∆−s)−1)dWs.

Hence, for all i≥ 1, (Ji+1−eθ∆ Ji) is independent of (J0, . . . ,Ji−1) and (Ji) possesses
the structure of an ARMA(1,1) process, for which the statistical inference is derived
with other tools. Indeed,

Var(Ji) = σ2r0(θ) ; Cov(Ji,Jj) = σ2ri− j(θ) with

r0(θ) =
1

θ 2

(
∆ +

1− eθ∆

θ

)
; rk(θ) =− 1

2θ 3 e
−θ∆ (eθ∆ −1)2 eθ∆ |k| if k 1= 0.

Its spectral density has also an explicit expression, fθ ,σ2(λ ) = σ2 fθ (λ ).
The likelihood function is known theoretically but its exact expression is in-

tractable. Instead of the exact likelihood, a well-known method to derive estimators
is to use the Whittle contrast Un(θ ,σ2) which provides efficient estimators. It is
based on the periodogram: if j denotes now the complex number j2 =−1,

Un(θ ,σ2)=
1
2π

∫ π

−π

(
log fθ ,σ2(λ )+

In(λ )
fθ ,σ2(λ )

)
dλ , with In(λ )=

1
n
|
n−1

∑
k=0

Jke− jkλ |2.

The estimators are then defined as any solution of Un(θ̃n, σ̃2
n ) = infθ ,σ2Un(θ ,σ2).

This yields consistent and asymptotically Gaussian estimators at rate
√
n.
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Case (c)-2 Aggregated observations on intervals [i∆ ,(i+1)∆ ] with ∆ = ∆n → 0.
Let us now consider the case of ∆ = ∆n → 0,T = n∆n → ∞ as n → ∞. Let
Ji,n =

∫ (i+1)∆n
i∆n

ξsds. Assume that θ < 0. The diffusion is positive recurrent with

stationary measure µθ ,σ2(dx)∼N (0, σ2

2|θ | ) . The following two convergences hold
in probability (see [55]).

1
n

n−1

∑
i=0

(∆−1
n Ji+1,n−∆−1

n Ji,n)2 → 2
3

σ2, while

1
n

n−1

∑
i=0

(ξ(i+1)∆n −ξi∆n)
2 → σ2.

Hence, for small ∆n, the heuristics 1
∆n
Ji,n ∼ ξi∆n is too rough and does not yield

good statistical results. The two processes corresponding to these two kinds of
observations are structurally distinct: (ξi∆n) is an AR(1) process while ( 1

∆n
Ji,n) is

ARMA(1,1). Ignoring this can lead to biased estimators.

1.2.3 Ornstein–Uhlenbeck Diffusion with Fixed Observation Time

Case (a) Continuous observation on [0,T ]
As in Section 1.2.2 Case (a), the parameter σ2 is identified from the continuous
observation of (ξt). Therefore we assume that σ2 is known. The expression for the
likelihood (1.2.9) holds. We get that, without additional assumptions, as for instance
the presence of a small parameter ε , the MLE given in (1.2.10) θ̂T has a fixed dis-
tribution. On a fixed time interval, parameters in the drift term of a diffusion cannot
be consistently estimated.

Case (b)-1 Discrete observations with fixed sampling ∆
The number of observations n is fixed. Without additional assumptions, neither θ
nor σ2 can be consistently estimated.

Case (b)-2 Discrete observations with sampling ∆n → 0
Let ∆ = ∆n = T/n → 0 as n → ∞. Equation (1.2.7) holds and (1.2.2) is the likeli-
hood. The maximum likelihood estimator θ̂n satisfies

θ̂n =
1

∆n
log

(
1+∆n

∑n
i=1 ξti−1(ξti −ξti−1)

∆n ∑n
i=1 ξ 2

ti−1

)
. (1.2.16)

Since ti = i Tn , using the property of stochastic integrals and the Lebesgue integral
yields that, under Pθ ,

n

∑
i=1

ξti−1(ξti −ξti−1)→
∫ T

0
ξsdξs in probability;

n

∑
i=1

∆n ξ 2
ti−1

→
∫ T

0
ξ 2
s ds a.s.
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Therefore, as n→ ∞, θ̂n converges to the random variable θT =
∫ T
0 ξsdξs∫ T
0 ξ 2

s ds
. Hence θ̂n

is not consistent. Note that θT is precisely the MLE for θ obtained for continuous
observation, which possesses good properties only if T → ∞.
The story is different for the estimation of σ2. The normalized quadratic variations
of (ξt) is a consistent estimator of σ2 and ∑(ξti − ξti−1)

2 → σ2T in probability.
Moreover,

σ̃2 =
1
T

n

∑
i=1

(ξti −ξti−1)
2 satisfies that

√
n(σ̃2−σ2)→N (0,2σ4). (1.2.17)

Note that this result holds whatever the value of θ .

Case (c)-1 Aggregated observations on intervals [i∆ ,(i+1)∆ ] with ∆ fixed
As in Case (b)-1, θ and σ2 cannot be consistently estimated.

Case (c)-2 Aggregated observations on intervals [i∆ ,(i+1)∆ ] with ∆ = ∆n → 0
This has been studied in [55]. Then, as ∆n → 0, in probability,

n−1

∑
i=0

(∆−1
n Ji+1,n−∆−1

n Ji,n)2 →
2
3

σ2T while
n−1

∑
i=0

(ξ(i+1)∆n −ξi∆n)
2 → σ2T.

Here again, the heuristics 1
∆n
Ji,n ∼ ξi∆n is too rough and does not yield good statis-

tical results.

1.2.4 Ornstein–Uhlenbeck Diffusion with Small Diffusion
Coefficient

This asymptotic framework is “ε → 0”. It naturally occurs for diffusion approxima-
tions of epidemic processes. The equation under study is now

dξt = θξtdt+ εσdWt ξ0 = x0. (1.2.18)

We detail the results for fixed observation time [0,T ].

Case (a) Continuous observation on [0,T ]
As before, we assume that σ2 is known and omit it. Let Pε

θ the distribution on
(CT ,CT ) of (ξt) satisfying (1.2.18). The likelihood is now

LT,ε(θ) =
dPε

θ
dPε

0
(ξs,0≤ s≤ T ) = exp(

θ
ε2σ2

∫ T

0
ξs dξs−

θ 2

2ε2σ2

∫ T

0
ξ 2
s ds ).

(1.2.19)

θ̂T,ε = θ + εσ
∫ T
0 ξtdWt
∫ T
0 ξ 2

t dt
. (1.2.20)
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Therefore θ̂T,ε → θ in probability under Pε
θ as ε → 0. Moreover, using results of

[91]),

ε−1(θ̂T,ε −θ)→L N (0,τ2), with τ2 = 2θσ2

x20(e2θT −1)
.

Case (b)-1 Discrete observations with fixed sampling interval ∆
If ∆ is fixed, only θ can be consistently estimated (see [60]). This is detailed in
Chapter 3, Section 3.5. Setting a= eθ∆ , and Xi = ξi∆ , then, using (1.2.1),

Xi = aXi−1+ εγηi, where γ2 = e2θ∆ −1
2θ

σ2,

and (ηi) i.i.d.N (0,1) random variables. Using (1.2.2) and (1.2.3) yields

âε,∆ = a+ εγ ∑n
i=1Xi−1ηi

∑n
i=1X2

i−1
.

Therefore, as ε → 0, âε,∆ is consistent and

ε−1(âε,∆ −a)→N (0,V∆ ), with V∆ = γ2 e2θ∆ −1
x20(e2θT −1)

= σ2 (e2θ∆ −1)2

2x20θ(e2θT −1)
.

Note that for small ∆ , V∆ ∼ ∆
x20(e

2θT−1)σ2.

Case (b)-2 Discrete observations with sampling ∆ = ∆n → 0
This was first studied in [56], [118] and is detailed in Chapter 3. Let T = n∆n (the
number of observations n → ∞ as ∆n → 0). Both θ and σ can be estimated from
discrete observations. One can prove that they converge at different rates: under Pθ
as ε → 0,n→ ∞,

(
ε−1(θ̂ε,n−θ√
n(σ̂2

n −σ2

)
→N2

(
0,

(
2θσ2

x20(e
2θT−1) 0

0 2σ4

))
. (1.2.21)

1.2.5 Conclusions

This detailed example based on the Ornstein–Uhlenbeck diffusion studied under
various asymptotic frameworks and various kinds of observations shows that, before
estimating parameters ruling the process under study, one has to carefully consider
how the available observations are obtained from the process and to study their
properties. Some approximations are relevant and keep good statistical properties,
while other ones lead to estimators which are not even consistent.



Chapter 2

Inference for Markov Chain Epidemic Models

In order to present an overview of the statistical problems, we first detail the statis-
tical inference for Markov chains. Indeed, discrete time Markov chains models are
interesting here because many questions that can arise for more complex models can
be illustrated in this set-up. Moreover, continuous-time stochastic models are often
observed in practice at discrete times, which might sum up to aMarkov chain model.
Therefore, this point of view allows us to illustrate some classical statistical methods
for stochastic models used in epidemics. We have rather focus here on parametric
inference since epidemic models always include in their dynamics parameters that
need to be estimated in order to derive predictions. A recap on parametric inference
for Markov chains is given in the Appendix, Section A.2.1, together with some no-
tations and basic definitions. We apply in this chapter these results on some classical
stochastic models used in epidemics (see Part I, Chapter 1 and also [2], [35]).

2.1 Markov Chains with Countable State Space

Markov chain models occur when assuming that a latent period of fixed length fol-
lows the receipt of infection by any susceptible. According to the epidemic model,
the state space of the Markov chain can be finite if the epidemics takes place in a
fixed finite population, countable (birth and death processes, branching processes,
open Markov Models detailed in Part I, Chapter 4 of these notes), or continuous (see
e.g. the simple AR(1) dynamic model).

Let us first consider a Markov chain (Xn) with finite state space E = {0, . . . ,N}
and transition matrix (Q(i, j), i, j ∈ E). Assume that X0 = x0 is deterministic and
known. Our aim is to estimate the transition matrix Q, which corresponds to q =
N(N+1) parameters since, for all i ∈ E, ∑N

j=0Q(i, j) = 1.
Following the definitions recalled in Section A.2 in the Appendix, denote by PQ the
distribution on (EN,E N) of (Xn) and Fn = σ(X0, . . . ,Xn). Let µn = ⊗n

k=1νk with
νk(·) the measure on E such that νk(i) = 1 for i ∈ E.
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For A a subset of E, let δA(·) denote the Dirac function: δA(x) = 1 if x ∈ A,
δA(x) = 0 if x /∈ A. Define

Ni j
n =

n

∑
k=1

δ{i, j}(Xk−1,Xk); Ni.
n =

n

∑
k=1

δ{i}(Xk−1). (2.1.1)

Using (2.1.1), the likelihood and the loglikelihood read as

Ln(Q) =
dPQ

dµn
(Xk,k = 1, . . . ,n) =

n

∏
k=1

Q(Xk−1,Xk) = ∏
i, j∈E

Q(i, j)N
n
i j , (2.1.2)

!n(Q) = ∑
i, j∈E

Ni j
n logQ(i, j). (2.1.3)

The computation of the Maximum Likelihood Estimator, (Q̂n(i, j,), i, j ∈ E), corre-
sponds to the maximization of !n(Q) under the (N+1) constraints {∑N

j=0Q(i, j) −
1= 0} . This yields that

Q̂n(i, j) =
Ni j
n

Ni.
n
. (2.1.4)

Since the random variables (Ni j
n , i 1= j) are equal to the number of transitions from

i to j up to time n and Ni.
n is the time spent in state i up to time n, the estimators

Q̂n(i, j) are equal to the empirical estimates of the transitions.
To study the properties of the MLE, we assume

(H1) TheMarkov chain (Xn)with transition matrixQ is positive recurrent aperiodic
on E.

Denote by λQ(·) the stationary distribution of (Xn). Then, the following holds.

Proposition 2.1.1. Under (H1), the MLE (Q̂n(i, j), i, j ∈ E) is strongly consistent
and, under PQ,

√
n
(
Q̂n(i, j)−Q(i, j)

)
0≤i≤N,0≤ j≤N−1 →L Nq(0,Σ) with q= N(N+1),

Σi j,i j =
Q(i, j)(1−Q(i, j))

λQ(i)
; Σi j,i j′ =−Q(i, j)Q(i, j′)

λQ(i)
; Σi j,i′ j′ = 0 if i′ 1= i.

Proof. Under (H1), successive applications of the ergodic theorem yield that, almost
surely under PQ,
1
nN

i j
n → λQ(i)Q(i, j), 1

nN
i.
n → λQ(i) so that Q̂n(i, j)→ Q(i, j).

Let us study (Q̂n(i, j)−Q(i, j)). For 0≤ i≤ N,0≤ j ≤ N−1, define

Y i j
k =

(
δ{ j}(Xk)−Q(i, j)

)
δ{i}(Xk−1), Mi j

n =
n

∑
k=1

Y i j
k . (2.1.5)
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Then

Q̂n(i, j)−Q(i, j) =
Ni j
n −Q(i, j)Ni.

n
Ni.
n

=
Mi j

n

Ni.
n

=
∑n
k=1Y

i j
k

Ni.
n

. (2.1.6)

Clearly, EQ(Y
i j
k |Fk−1) = 0 and (Mi j

n ) is a centered Fn-martingale with values in
Rq. Its angle bracket is the random matrix 〈M〉n with indices (i j),(i′ j′)

〈M〉i j,i′ j′n =
n

∑
k=1

EQ(Y
i j
k Y i′ j′

i |Fk−1).

Straightforward computations yield that

EQ(Y
i j
k Y i j

k |Fk−1)) = Q(i, j)(1−Q(i, j))δ{i}(Xk−1),

EQ(Y
i j
k Y i j′

k |Fk−1)) =−Q(i, j)Q(i, j′)δ{i}(Xk−1) if j′ 1= j and

EQ(Y
i j
k Y i′ j′

i |Fk−1) = 0 if i′ 1= i.

Define the q-dimensional matrix JQ by

JQ(i j, i j) = Q(i, j)(1−Q(i, j))λQ(i),
JQ(i j, i j′) =−Q(i, j)Q(i, j′)λQ(i) for j′ 1= j and
JQ(i j, i′ j′) = 0 if i′ 1= i.

Then, the ergodic theorem yields that 1
n 〈M〉i j,i

′ j′
n → JQ(i j, i′ j′) a.s. under PQ.

Applying the Central Limit Theorem for multidimensional martingales (see Ap-
pendix, Section A.4.2 ) yields that, under PQ, 1√

nMn → N (0,JQ) in distribution.
Finally, using that 1

nN
i.
n → λQ(i) a.s., an application of Slutsky’s lemma to (2.1.6)

achieves the proof of Proposition 2.1.1. '(

2.1.1 Greenwood Model

This is a basic model which was introduced by Greenwood [58] to study measles
epidemics in United Kingdom. It is an SIR epidemic in a finite population of size N.
The latent period is fixed and equal 1 with infectiousness confined to a single time
point. At the moment of infectiousness of any given infective, the chance of contact
with any specified susceptible, sufficient or adequate to transmit the infection is
p = 1− q. Infected individuals are removed from the infection chain. At time 0,
assume that the number of Susceptible S0 and Infected I0 verify S0+ I0 = N.
Denote by Sn, In the number of Susceptible and Infected at time n. Then, for all
n≥ 0,

Sn = In+1+Sn+1, (2.1.7)

and, at each generation the actual number of new cases has a Binomial distribution
depending on the parameter p. In the Greenwood model, the chance of a susceptible
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of being infected depends only on the presence of some infectives and not on their
actual number. Hence, if In = 0, the epidemic terminates immediately since there
is no further infectives. If In ≥ 1, the conditional distribution of In+1 given the past
Fn = σ((Si, Ii), i= 0, . . .n) is

L (In+1|Fn) = Bin(Sn, p) and Sn+1 = Sn− In+1.

The process keeps going on up to the time where there is no longer Infected in
the population. Noting that Fn = σ(Si, i = 0, . . .n), (Sn) is a Markov chain on
{0, . . . ,S0} with transition matrix

Qp(i, j)=
(

i
i− j

)
pi− j(1− p) j if 0≤ j≤ i≤ S0; Qp(i, j)= 0 otherwise. (2.1.8)

Parametric inference
Assume that the successive numbers of Susceptible (s0,s1, . . . ,sn) have been ob-
served up to time n. In this model, (Sn) decreases with n, and extinction occurs after
a geometric number of generations. Therefore, the inference framework is to assume
that S0 (hence N)→ ∞.
Let Pp the probability associated to the Markov chain with transition Qp and ini-
tial condition s0. The likelihood associated with parameter p and observations
(s1, . . . ,sn) is, if s0 ≥ s1 · · ·≥ sn,

Ln(p;s1, . . . ,sn) =
n

∏
k=1

Pp(Sk = sk|Sk−1 = sk−1) =C(s0, . . . ,sn)ps0−sn(1− p)∑n
k=1 sn .

(2.1.9)

All the quantities independent of p have been gathered in the termC(s0, , . . . ,sn).
They depend on the model and the observations, and therefore have no influence on
the estimation of p. Elementary computations yield that the value of p that maxi-
mizes the likelihood is

p̂n =
s0− sn
∑n−1
k=0 sk

=
1

“mean time to infection”
.

Another approach for estimating parameters of a stochastic process is the Con-
ditional Least Squares (CLS) method. This is the analog of the traditional Least
Squares method for i.i.d. observations. It is especially relevant when computing the
likelihood is intractable. Noting that Ep(Sk|Fk−1) = (1− p)Sk−1, it reads as

Un(p,S1, . . . ,Sn) =
n

∑
k=1

(Sk−Ep(Sk|Fk−1))
2 =

n

∑
k=1

(Sk− (1− p)Sk−1))
2 . (2.1.10)

The associated Conditional Least Squares estimator is

p̃n = 1− ∑n
k=1 sk−1sk

∑n
k=1 s

2
k−1

. (2.1.11)



2.1 Markov Chains with Countable State Space 347

A concern in statistics is to answer the question: how does such an estimator (or
other ones) behave according to the asymptotic framework (here S0 → ∞). Is one of
these two estimators better?

2.1.2 Reed–Frost Model

It is also a chain Binomial SIR model relevant to model the evolution of an or-
dinary influenza in a small group of individuals. The latent period is long with
respect to a short infectious period and new infections occur at successive gener-
ations separated by latent periods. It is assumed that latent periods are equal to
1, contacts between Susceptibles and Infected are independent, and that the prob-
ability of contact between a Susceptible and an Infected is p = 1− q. Therefore
the probability of a Susceptible escaping infection given I Infected is qI , and if
Fn = σ((S0, I0), . . . ,(Sn, In)),

L (In+1|Fn) = Bin(Sn, pn) with pn = 1−qIn and Sn+1 = Sn− In+1.

Then (Sn, In) is a Markov chain on N2 with probability transitions,

Qq((sn, in),(sn+1, in+1)) =

(
sn
sn+1

)
(qin)sn+1(1−qin)in+1 if sn+1+ in+1 = sn,

= 0 otherwise.

Parametric inference
Assume that the successive numbers of Susceptible and Infected have been observed
up to time n and consider the estimation of q = 1− p. Denote Pq the probability
associated with the Markov chain with transition Qq and initial condition (s0, i0).
Then, if sk+1+ ik+1 = sk for k = 0, . . . ,n−1,

Ln(q;(s1, i1 . . . ,(sn, in)) =
n−1

∏
k=0

(
sk
sk+1

)
(qik)sk+1(1−qik)ik+1 . (2.1.12)

Therefore, logLn(q) =C((sk, ik))+∑n−1
k=0(sk+1ik logq+ ik+1 log(1−qik)).

Differentiating with respect to q yields

d logLn
dq

=
1
q

n−1

∑
k=0

ik
1−qik

(sk+1− skqik).

The maximum likelihood estimator q̂n of q is a solution of the equation

n−1

∑
k=0

ik
1−qik

(sk+1− skqik) = 0.

Its properties can be studied as the number of observations increases (implying that
the initial population grows to infinity).
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Here a problem which occurs in practice already appears in this simple model,
the case of “Partially Observed Markov Processes”: it corresponds to the fact that
both coordinates (Sn, In) are not observed, but only the successive numbers of In-
fected individuals (Ik,k = 0, . . . ,n− 1) are available. In the special case of Hidden
Markov Models (see the Appendix, Section A.1.2 for the definition of H.M.M.), the
theory for inference is now well known ([22], [124]), while there is no general the-
ory for partially observed Markov processes. Many methods and algorithms have
been proposed to deal with it in practice (see e.g. [37], [42], [70]). For applications
specific to epidemics, many authors have addressed this problem (see e.g. [25], [29],
[66], [70], together with the development of packages (see R package POMP [88])

2.1.3 Birth and Death Chain with Re-emerging

We consider now the example of an epidemic model with re-emerging in a large
infinite population. It can be described by a birth and death chain on N with reflec-
tion at 0. This models for instance farm animals epidemics when infection can also
be produced by the environment. Let p,q denote the birth rate and death rates with
{0 < p,q < 1, p+q < 1}. We assume that I0 = i0 ≥ 1 and that (In), the number of
infected at time n, evolves as follows:

- if k ≥ 1, then P(In+1 = k + 1|In = k) = p, P(In+1 = k − 1|In = k) = q,
P(In+1 = k|In = k) = 1− p−q;

- if k = 0, then P(In+1 = 1|In = 0) = p, P(In+1 = 0|In = 0) = 1− p (re-emerging
probability).

The Markov chain (In) is irreducible aperiodic on N and, if p< q, (In) is positive
recurrent with stationary distribution

λ(p,q)(i) =
(
1− p

q

)(
p
q

)i

.

Parametric inference
Let Θ = {(p,q),0 < p < q < 1 with p+ q < 1} and let θ0 be the true parameter
value. Assume that I0 = i0 > 0 is non-random and fixed and consider the estimation
of θ = (p,q) ∈ Θ based on the observation of the successive numbers of Infected
up to time n.
Let (Qθ (i, j), i, j ∈ N) denote the transition kernel (In):

- if i 1= 0, then Qθ (i, j) = pδ{i+1}( j)+qδ{i−1}( j)+(1− p−q)δ{i}( j),

- if i= 0, then Qθ (0, j) = pδ1( j)+(1− p)δ0( j).

Noting that for j 1= {i−1, i, i+1}, Ni j
n = 0, the loglikelihood !n(θ) satisfies
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!n(θ) = ∑
i, j∈ N

Ni j
n logQθ (i, j)

= Bn log p+Dn logq+Rn log(1− p−q)+N0,0
n log(1− p), with

Bn = ∑
i≥0

Ni,i+1
n , Dn = ∑

i≥1
Ni,i−1
n , Rn = ∑

i≥1
Ni,i
n . (2.1.13)

Since the Markov chain (In, In+1) is positive recurrent on N2 with stationary mea-
sure λθ (i)Qθ (i, j), we can study directly the limit behaviour of !n(θ). Applying the
ergodic theorem to (In, In+1) yields that, almost surely under Pθ0 ,

1
n
Ni,i+1
n → p0λθ0(i) for i≥ 1,

1
n
Ni,i−1
n → q0λθ0(i),

1
n
Ni,i
n → r0λθ0(i),

1
n
N0,0
n → (1− p0

q0
)(1− p0).

Therefore, using (2.1.13),

1
n
Bn → p0,

1
n
Dn → q0×

p0
q0

= p0,

1
n
Rn →

r0p0
q0

,

1
n
N0,0
n → (1− p0

q0
)(1− p0).

Joining these results, under Pθ0 , as n→ ∞,

1
n
!n(θ)→ p0 log p+ p0 logq+

r0p0
q0

logr+(1− p0
q0

)(1− p0) log(1− p) := J(θ0,θ).

We can check directly that θ → J(θ0,θ) possesses a unique global maximum at θ0.
The associated maximum likelihood estimator θ̂n is

p̂n =
1
n
Bn; q̂n =

Bn

Dn+Rn
(1− 1

n
Bn). (2.1.14)

Successive applications of the ergodic theorem yield that (p̂n, q̂n) converges Pθ0 a.s.
to (p0,q0).

To study the limit distribution of (p̂n, q̂n), we use the results of Section A.2.1.1
in the Appendix. Let Q = (Q(i, j)) denote the (unnormalized) transition kernel on
N×N:
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Q(i, i+1) = 1= Q(i, i) for i ∈ N and
Q(i, i−1) = 1 for i≥ 1.

According to (A.2.1), the family (Qθ ,θ ∈ Θ) is dominated by Q with associated
function fθ (i, j):

fθ (i, i+1) = p for i≥ 0,
fθ (i, i−1) = q for i≥ 1,

fθ (i, i) = 1− p−q,
fθ (0,0) = 1− p.

Except the compactness assumption of Θ (only required for the consistency of
the MLE), the Markov chain satisfies Assumptions (H1)–(H8) of Section A.2.1.1,
Therefore, under Pθ0 ,

√
n
(
p̂n− p0
q̂n−q0

)
→L N (0, I−1(θ0)),

with, using Definition (A.2.5),

I(θ0) = ∑
i≥0

λθ0(i) ∑
j≥0

∇θ fθ0(i, j)∇∗
θ fθ0(i, j)

fθ0(i, j)2
Qθ0(i, j).

Hence I(θ0) can be explicitly computed: for θ = (p,q), we get

I(p,q) =

(
r+p2

p(1−p)r
p
qr

p
qr

p(1−p)
rq2

)
⇒ I−1(p,q) =

(
p(1− p) −pq
−pq q2(p2+r)

p(1−p)

)
. (2.1.15)

2.1.4 Modeling an Infection Chain in an Intensive Care Unit

This example is taken from Chapter 4 of [35]. It aims at describing nosocomial
infections (i.e. infections acquired in a hospital). The incidence of these infections
is highest in an Intensive Care Unit, which is characterized by a small number of
beds (about 10 beds at most) and rapid turnover of patients by way of admission and
discharge. There are two routes for infection (colonization) for a patient.

- The endogenous route (α mechanism): bacteria are already present in a newly
admitted patient but at low undetectable levels and resistant bacteria develop be-
cause of antibiotic treatments during the stay. Let e−α = (1−a) the probability
per individual per time unit of getting infected by this route.

- The exogenous route (β transmission): it models the probability of infection of
a Susceptible by an Infected in the ICU per time unit, e−β = (1−b).

To describe the composition of the ICU in terms of Infected and Susceptible
individuals on long time intervals, a Markov chain model can be used as follows.
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Each patient has probability d of being discharged by unit of time. Discharge and
admission take place every day at noon; new admitted individuals are susceptible.
Observations are obtained from a bookkeeping scheme that concerns the state of the
ICU immediately after discharge (12h05).

Consider the simplest example, an ICU with two beds. It corresponds to three
possible states: State 0 (both patients are Susceptible), State 1 (one Susceptible, one
Infected) and 2 (both are Infected). Denote by Xn the composition of the ICU at
time n. Let us compute according to θ = (a,b,d) the transition matrix Qθ of (Xn).
Introduce X̄n+1 the state of the ICU just before discharge (at 11h55) on the next
day. If Xn = 0, P(X̄n+1 = 0) = a2, P(X̄n+1 = 1) = 2a(1− a) and P(X̄n+1 = 2) =
(1− a)2. If Xn = 1, P(X̄n+1 = 1) = ab, and P(X̄n+1 = 2) = (1− ab). Finally, if
Xn = 2, P(X̄n+1 = 2) = 1. This yields that, after discharge (12h05), Xn+1 = 0,1,2
with respective probabilities,

Qθ =




(a+(1−a)d)2 2(1−a)(1−d)(a+(1−a)d) (1−a)2(1−d)2

abd+(1−ab)d2 2(1−ab)d(1−d)+ab(1−d) (1−ab)(1−d)2

d2 2d(1−d) (1−d)2



 .

LetΘ = (0,1)3. Assume that the states (Xi) of the ICU after discharge have been
observed up to time n. The maximum likelihood estimator of θ reads, using (2.1.1),

!n(θ) =
n

∑
k=1

logQθ (Xk−1,Xk) = ∑
i, j∈{0,1,2}

Ni j
n logQθ (i, j),

θ̂n = argsupθ∈Θ !n(θ).

Since (Xn) is a positive recurrent Markov chain on {0,1,2}, we can apply the results
stated in the Appendix, Section A.2. The MLE θ̂n is consistent and converges at rate√
n to a Gaussian law N3(0, I−1(θ)), where I(θ) is the Fisher information matrix

defined in (A.2.5).

Assume now that there is no systematic control of the exact status of the pa-
tients after discharge, but that each patient is tested with probability p. Then,
the observations are no longer (Xn), but (Yn), with conditional transition matrix
(Tp(i, j) = P(Yn = j|Xn = i),0≤ i, j ≤ 2),

Tp =




(1− p)2 2p(1− p) p2

p(1− p) p2+(1− p)2 p(1− p)
p2 2p(1− p) (1− p)2



 .

If only (Yn) is observed, we have to deal with a Hidden Markov Model (Xn,Yn) as
defined in the Appendix, Section A.1.2. The estimation of θ or (θ , p) has to take
into account this additional noise to be efficient (see e.g [22]).
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2.2 Two Extensions to Continuous State and Continuous Time
Markov Chain Models

2.2.1 A Simple Model for Population Dynamics

The AR(1)model is a classical model of population dynamics with continuous state
space and allows us to illustrate explicitly various inference questions. Consider the
autoregressive process on Rs introduced in Section 1.2.1 defined by

X0 = x0; and for i≥ 1,Xi = aXi−1+ γεi,

where (εi) is a sequence of i.i.d. random variables on R with distribution fθ (x)dx,
independent of X0.
This is a Markov chain on (R,B(R)) with transition kernel Qθ ,a(x,dy) =
fθ (y− ax)dy. If X0 is known, choosing as dominating kernel the Lebesgue mea-
sure on R, the likelihood reads as

Ln(a,θ) =
n

∏
i=1

fθ (Xi−aXi−1).

The Gaussian AR(1) corresponds to εi ∼N (0,γ2):

Qa,γ2(x,dy) =
1

γ
√
2π

exp−(
1
2γ2

(y−ax)2)dy, and

Ln(a,γ2) =
n

∏
i=1

1
γ
√
2π

exp(− 1
2γ2

(Xi−aXi−1)
2),

!n(a,γ2) = −(n/2) logγ2−1/(2γ2)
n

∑
i=1

(Xi−aXi−1)
2.

The properties of the MLE have been presented in Chapter 1.

2.2.2 Continuous Time Markov Epidemic Model

We just recall here results for the SIR Markov jump process (see Section 4.2). As-
sume that the jump process (Z N(t)) is continuously observed on [0,T ]. Its dynam-
ics is described by the two parameters (λ ,γ). The Maximum Likelihood Estimator
(λ̂ , γ̂) is explicit (see [2] or Section 4.2). Indeed, let (Ti) denote the successive jump
times and set Ji = 0 if we have an infection and Ji = 1 if we have a recovery. Let
KN(T ) = ∑i≥0 1Ti≤T . Then

λ̂N =
1
N

∑KN(T )
i=1 (1− Ji)

∫ T
0 SN(t)IN(t)dt

=
1
N

# Infections
∫ T
0 SN(t)IN(t)dt

,
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γ̂N =
1
N

∑KN(T )
i=1 Ji

∫ T
0 IN(t)dt

=
# Recoveries

“Mean infectious period”
.

As the population size N goes to infinity, (λ̂N , γ̂N) is consistent and

√
N
(

λ̂N −λ
γ̂N − γ

)
→N2

(
0, I−1(λ ,γ)

)
, where I(λ ,γ) =




∫ T
0 s(t)i(t)dt

λ 0

0
∫ T
0 i(t)dt

γ



 ,

and (s(t), i(t)) is the solution of the ODE associated with the limit behaviour of the
normalized process (Z N(t)/N): ds

dt =−λ s(t)i(t); didt = λ s(t)i(t)− γi(t).

The matrix I(λ ,γ) is the Fisher information matrix of this statistical model.

2.3 Inference for Branching Processes

At the early stage of an outbreak, a good approximation for the epidemic dynamics
is to consider that the population of Susceptible is infinite and that Infected individ-
uals evolve according to a branching process (see Section 1.2 of Part I). We present
here some classical statistical results in this domain. This Markov chain model is an
example of non-ergodic processes which leads to different statistical results.

2.3.1 Notations and Preliminary Results

Some basic facts on discrete time branching processes (or Bienaymé–Galton–
Watson processes) are given in Part I, Section A.1 of these notes (see also the clas-
sical monographs on branching processes [6] or [78]). We complete these facts with
some properties useful for the inference.

Consider an ancestor Z0 = 1 has ξ0 children according to an offspring law G
defined by

P(ξ0 = k) = pk, k ≥ 0 and ∑
k≥0

pk = 1.

Let m= E(ξ0) and g(s) = E(sξ0). The i-th of those children has ξ1,i children, where
the random variables {ξk,i,k ≥ 0, i≥ 1} are i.i.d. with distribution G. Let Zn denote
the number of individuals in generation n. Then,

Zn+1 =
Zn

∑
i=1

ξn,i. (2.3.1)

Denote by E = {∃ n, Zn = 0} the set of extinction.
If m≤ 1 and if p1 1= 1, the process Zn has a probability q= 1 of extinction.
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If m> 1, the process is supercritical and has a probability of extinction q< 1, which
is the smallest solution of the equation g(s) = s on [0,1]. The set Ec is equal to
{ω,Zn(ω)→ ∞}.

This extinction probability is an important parameter for the early stages of an
epidemic. It corresponds to the probability of a minor outbreak.
We complete the results given in Part I, Section A.1. Let Fn = σ(Z0, . . . ,Zn) and
defineWn = m−nZn. Then (Wn) is aFn-martingale.

Theorem 2.3.1. Assume that m> 1 and that the offspring law G has finite variance
σ2. Then, there is a non-negative random variable W such that

(i) Wn →W as n→ ∞ a.s. and in L2.
(ii) {W > 0}= {Zn → ∞}= Ec and {W = 0}= {limn Zn = 0}= E.
(iii) Moreover, EW = 1, var(W ) = σ2

m(m−1) .

Corollary 2.3.2. If m> 1, then, almost surely

1
mn

n

∑
i=1

Zi →
m

m−1
W ;

1
mn

n

∑
i=1

Zi−1 →
1

m−1
W. (2.3.2)

Proof. We write ∑n
i=1Zi = ∑n

i=1m
i Zi
mi . Using Theorem 2.3.1, Zn

mn →W a.s. An appli-
cation of the Toeplitz lemma stated below and some algebra yield the two results.

Lemma 2.3.3. (Toeplitz Lemma) Let (an) a sequence of non-negative real numbers
and (xn) a sequence on R. If ∑n

i=1 ai → ∞ and if (xn)→ x ∈ R as n→ ∞, then

∑n
i=1 aixi
∑n
i ai

→ x as n→ ∞.

'(

Assume that the offspring distributionGθ (·) depends on a parameter θ with finite
meanm(θ)> 1 and finite variance σ2(θ). Denote by Pθ the law on (NN,B(NN)) of
the branching process (Zn) with offspring law Gθ (·). Then
(Zn,n ≥ 0) is a Markov chain with state space N, initial condition Z0 = 1 and tran-
sition matrix,

Qθ (i, j) = G"i
θ ( j), (2.3.3)

where " denotes the convolution product of two functions and f "i is the i-fold
convolution product of f (·). Let µi denote the measure µi(k) = 1 for all k ∈ N,
λn =⊗n

i=1µi. Then, the likelihood reads as

dPθ
dλn

(Z0, . . . ,Zn) = Ln(θ) =
n

∏
i=1

G"Zi−1
θ (Zi); !n(θ) =

n

∑
i=1

log(G"Zi−1
θ (Zi)). (2.3.4)

Under this expression, studying the likelihood for general offspring laws is in-
tractable. We detail in the next section a framework where it is possible to study



2.3 Inference for Branching Processes 355

this likelihood, and in the next section another method based on Weighted Condi-
tional Least Squares.

2.3.2 Inference when the Offspring Law Belongs to an
Exponential Family

Among parametric families of distributions, exponential families of distributions,
widely used in statistics, provide here a nice framework to study this likelihood. A
short recap is given in the Appendix Section A.1.2 (see e.g. the classical monograph
[11] for the complete exposition).

Assume that the offspring law is a power series distribution:

p(k) = A(ζ )−1 ak ζ k, with A(ζ ) = ∑
k≥0

akζ k. (2.3.5)

Setting θ = logζ ,Θ = {θ ∈R, A(eθ )< ∞}, h : k→ h(k) = ak and φ : θ → φ(θ) =
logA(log(eθ )), we get that it is a special case of an exponential family of distribu-
tions on N with T (X) = X and

p(θ ,k) = h(k)exp(kθ −φ(θ)). (2.3.6)

The random variable X satisfies that

m(θ) := Eθ (X) = ∇θ φ(θ); σ2(θ) :=Varθ (X) = ∇2
θ φ(θ). (2.3.7)

Moreover, if X1, . . . ,Xn are i.i.d. with distribution (2.3.5), then

P(X1+ · · ·+Xn = k) = H(n,k)exp(kθ −nφ(θ)) where H(n,k) = h∗n(k). (2.3.8)

Therefore for offspring distributions satisfying (2.3.5) or (2.3.6), the transition ker-
nel is

Qθ (i,k) = H(i,k)exp(kθ − iφ(θ)).

Let us note that several families of classical distributions on N are included in
this set-up:

- Geometric distributions on N∗ with parameter p (i.e. P(X = k) = p(1− p)k−1):
θ = log(1− p); h(k) = 1 and φ(θ) = log eθ

1−eθ .

- Binomial distributions (B(N, p), p ∈ (0,1)) with N fixed:
θ = log p

1−p , h(k) =
N!

k!(N−k)! and φ(θ) = N log(1+ eθ ).

- Poisson distributionsP(λ ): θ = logλ , h(k) = 1
k! and φ(θ) = eθ .
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- Negative Binomial distributions (N B(r, p), p ∈ (0,1)) with r fixed (i.e.
P(X = k) = Γ (k+r)

Γ (r)k! p
r(1− p)k:

θ = log(1− p), h(k) = (k+r)...(r+1)
k! and φ(θ) = r log(1− eθ )).

Let us come back to the likelihood (2.3.4). Let θ0 ∈ Θ be the true value of the
parameter. We assume

(A1) The offspring distribution Gθ belongs to an exponential power series family:
For all k ∈ N, Gθ (k) = h(k)exp(kθ −φ(θ)).

(A2) Θ is a compact subset of {θ ,∑k≥0 h(k)eθk < ∞}, θ0 ∈ Int(Θ).
(A3) For all θ ∈Θ , m(θ)> 1 and σ2(θ) finite.
(A4) There exists a δ > 0 such that E(Y 2+δ ) = µ2+δ < ∞ where Y ∼ Gθ .

Consider the estimation of θ when the successive generation sizes (Z1, . . .Zn) are
observed. Under (A1)–(A3), the loglikelihood is, using (2.3.8),

!n(θ) =C(Z0, . . . ,Zn)+
n

∑
i=1

(θZi−φ(θ)Zi−1), (2.3.9)

withC(Z0, . . . ,Zn) =∑n
i=1 logH(Zi−1,Zi). The constantC(Z0, . . . . ,Zn) depends only

on the observations and brings no information on θ .
The M.L.E θ̂n, defined as any solution of ∇θ !n(θ) = 0, satisfies

n

∑
i=1

Zi−∇θ φ(θ̂n)
n

∑
i=1

Zi−1 = 0.

Using that ∇θ φ(θ) = m(θ) (see (2.3.7)), θ̂n satisfies

m(θ̂n) =
∑n
i=1Zi

∑n
i=1Zi−1

. (2.3.10)

By Theorem 2.3.1, m(θ0)−nZn converges a.s. and in L2 under Pθ0 to a random vari-
able W such that W > 0 on Ec, the non-extinction set, which satisfies Pθ0(E

c) =
1−q> 0 under (A3).

Theorem 2.3.4. Assume (A1)–(A4).Then, on Ec, m(θ̂n) satisfies

(i) m(θ̂n)→ m(θ0) a.s. under Pθ0 .

(ii) m(θ0)n/2(m(θ̂n)−m(θ0))→L

√
(m(θ0)−1)σ2(θ0) η−1 N, where η ,N are in-

dependent r.v.s, N ∼N (0,1), and η is the positive variable defined by η2 =W
on Ec.

Clearly, m(θ) is the parameter that is naturally estimated here.

Proof. Let us write

m(θ̂n) =
∑n
i=1 Zi
mn

∑n
i=1 Zi−1
mn

.
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Using Corollary 2.3.2, both terms of the above fraction converge a.s. so that
m(θ̂n)→ m(θ0) a.s.
Let us prove (ii). The score function reads as

∇θ !n(θ) =
n

∑
i=1

Zi−m(θ)
n

∑
i=1

Zi−1 =
n

∑
i=1

(Zi−m(θ)Zi−1).

Under Pθ0 , ∇θ !n(θ0) is a centered Fn-martingale (Mn) with increments Xi =
Zi−m(θ0)Zi−1. Conditionally on Fi−1, Xi is the sum of Zi−1 independent centered
random variables so that

Eθ0(X
2
i |Fi−1) = σ2(θ0)Zi−1; 〈M〉n = σ2(θ0)

n

∑
i=1

Zi−1.

Hence

s2n(θ0) = Eθ0(〈M〉n) = σ2(θ0)
n

∑
i=1

m(θ0)i−1 = σ2(θ0)
m(θ0)n−1
m(θ0)−1

.

Therefore s2n(θ0)→ ∞ as n→ ∞ and

s2n(θ0)
m(θ0)n

→ σ2(θ0)
m(θ0)−1

. (2.3.11)

Let us check the conditions of the Central limit theorem for martingales (see A.4.1)
recalled in the Appendix Under (A3), (Mn) is a square integrable centered Fn-
martingale such that Eθ0(〈Mn〉) = sn(θ0)2 → ∞. Let us check (H2). We have

1
sn(θ0)2

〈Mn〉=
mn(θ0)
s2n(θ0)

σ2(θ0)
mn(θ0)

n

∑
i=1

Zi−1.

Hence according to Corollary 2.3.2 and Theorem 2.3.1, 1
sn(θ0)2

〈Mn〉 →W in proba-
bility under Pθ0 withW > 0 on Ec and Eθ0(W ) = 1. Therefore we can setW = η2

and obtain (H2).
It remains to check the asymptotic negligibility Assumption (H1’). We have, for
Xi = Zi−m(θ0)Zi−1,

Eθ0(|Xi|
2+δ |Fi−1) = Zi−1Eθ0(|Y −m(θ0)|2+δ ).

Under (A4), using that Eθ0(|Y −m(θ0)|2+δ )≤C(µ2+δ +m(θ0)2+δ )< ∞ yields

1
s2+δ
n

n

∑
i
Eθ0(|Xi|

2+δ |Fi−1) = (
1
sδ
n
)Eθ0(|Y −m(θ0)|2+δ )(

1
s2n

n

∑
i=1

Zi−1). (2.3.12)

Using Corollary 2.3.2 and (2.3.11) yields that the last term of (2.3.12) is bounded
in probability under Pθ0 . Since δ > 0, the first term of (2.3.12) tends to 0, which
achieves the proof of (H1’).
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Therefore, we get that on the non-extinction set , under Pθ0 ,

(
Mn

sn
,
〈M〉n
s2n

)→L (ηN,η2), (2.3.13)

with η ,N independent, η =W 1/2 and N ∼N (0,1).
To study the limit distribution of m̂n, we write

m̂n−m(θ0) =
∑n
i=1(Zi−m(θ0)Zi−1)

∑n
i=1Zi−1

= σ2(θ0)
Mn

〈Mn〉
.

This yields that

m(θ0)n/2(m̂n−m(θ0)) = σ2(θ0)
m(θ0)n/2

sn

Mn
sn

〈Mn〉
s2n

.

Using (2.3.11) and (2.3.13) achieves the proof of (ii). '(

Let us stress that here, contrary to the previous models, the Fisher information,
Eθ 〈M〉n = σ2(θ)m(θ)

n−1
m(θ)−1 converges to infinity at a much faster rate than “usually”

for m(θ)> 1. Indeed, the information contained in (Z1, . . . ,Zn) is of the same order
as the information in the last observation Zn. In that respect, the model is explosive
in terms of growth of information.

Note that this result could be obtained using the MLE Heuristics presented in the
Appendix, substituting

√
n by sn and using that

∇2
θ !n(θ) =−∇2

θ φ(θ)∑n
i=1Zi−1 =−σ2(θ)∑n

i=1Zi−1 =−〈M(θ)〉n.

Now we have estimated m(θ) instead of θ . To estimate θ , we just have to con-
sider the application θ → m(θ). Assuming that there exists φ differentiable such
that φ(y) = θ = m−1(y), an application of Theorem A.1.1 yields the result for θ .

2.3.3 Parametric Inference for General Galton–Watson Processes

We assume now that the offspring distribution G(·) has mean m and finite variance
σ2 and consider the Galton–Watson process with initial condition Z0 = 1 and off-
spring distribution G. We assume

(B1) The offspring law G satisfies m> 1 and σ2 < ∞.
(B2) The offspring law G has a finite moment of order 4: E(Y 4) = µ4 < ∞ where

Y ∼ G.

On the basis on the successive population sizes (Z1, . . . ,Zn), we are concerned
with the estimation of θ = (m,σ2). Denote by Pθ the distribution on (NN,B(NN))
of (Zn). Under (B1), the branching process is supercritical (m > 1) and the non-
extinction set Ec has a positive probability. Clearly, studying estimators based on
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(2.3.4) is intractable. Therefore, we had rather study estimators based on Condi-
tional Least Square methods. The conditional mean and variance of Zn with respect
to Fn−1 write

Eθ (Zn|Fn−1) = mZn−1; Varθ (Zn|Fn−1) = σ2Zn−1. (2.3.14)

On the non-extinction set Ec, let us consider the contrast function (which is a
weighted Conditional Least Square method):

Un(θ) =
n

∑
i=1

1
Zi−1

(Zi−mZi−1)
2. (2.3.15)

Note thatUn(θ) only depends on m and therefore σ2 cannot be estimated usingUn.
Define m̃n as a solution of

Un(m̃n) = minθ∈ΘUn(θ).

Hence it satisfies ∇θUn(m̃n) = 0, which yields

m̃n =
∑n
i=1Zi

∑n
i=1Zi−1

. (2.3.16)

The simplest approach for estimating σ2 is to use the residual variance:

σ̃2
n =

1
n

n

∑
i=1

1
Zi−1

(Zi− m̃nZi−1)
2. (2.3.17)

Then the following holds.

Theorem 2.3.5. Assume (B1)–(B2). Then, on the non-extinction set Ec, the estima-
tors (m̃n, σ̃2

n ) defined in (2.3.16)–(2.3.17) satisfy, as n→ ∞, under Pθ ,

(i) m̃n → m almost surely.
(ii) mn/2(m̃n−m)→L

√
(m−1)σ2 η−1 N, where η ,N are independent r.v.s, N ∼

N (0,1), η is the positive variable defined by η2 =W.
(iii) σ̃2

n → σ2 in probability under Pθ .
(iv)

√
n(σ̃2

n −σ2)→L N (0,2σ4).

Proof. The study of the asymptotic properties of m̃n is similar to the previous sec-
tion, since m̃n has the same expression with respect to the observations that m̂n(θ).
The proofs of (iii) and (iv) are derived from [59], Chapter 3. Let us prove (iii). We
have σ̃2

n −σ2 = 1
n (A

1
n+A2

n+A3
n) with

A2
n = (m− m̃n)

2(
n

∑
i=1

Zi−1),

A3
n = 2(m− m̃n)

n

∑
i=1

(Zi−mZi−1) and
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A1
n =

n

∑
i=1

Xi with Xi =
1

Zi−1
(Zi−mZi−1)

2−σ2. (2.3.18)

Let us study the first term A1
n. It is a centeredFn-martingale under Pθ . The compu-

tation of Eθ (X2
i |Fi−1) relies on the property that, for i.i.d. random variables Yi with

E(Yi) =m,VarYi = σ2 and finite fourth moment E(Y 4) = µ4, Ȳ = 1
n ∑n

i=1Yi satisfies

E(Ȳ −m)4 =
3σ4

n2
+

1
n3

(µ4−3σ4).

Hence on the non-extinction set Ec,

〈A1〉n =
n

∑
i=1

(2σ4+
1

Zi−1
(µ4−3σ4)). (2.3.19)

Hence Var(An
1) ≤ 2n(σ4+ µ4). Therefore, applying a strong law of large numbers

for martingales ([63], Theorem 2.18) yields 1
nA

1
n → 0 Pθ -a.s.

The second term is A2
n =
(
mn(m̃n−m)2

)( 1
mn ∑n

i=1Zi−1
)
. By (ii) and Corollary 2.3.2,

we get that these two terms converge in distribution so that A2
n is bounded in proba-

bility.
Noting that Mn = ∑n

i=1(Zi−1−mZi−1) is the martingale studied in the previous sec-
tion yields that A3

n = [mn/2(m− m̃n)][
1

mn/2Mn]. By (ii) [mn/2(m− m̃n)] converges in
distribution. The CLT for (Mn) stated in (2.3.13) yields that mn/2Mn converges in
distribution. Hence, A3

n is also bounded in probability. Joining these results yields
that 1

n (A
1
n+A2

n+A3
n)→ 0, which achieves the proof of (iii).

Let us prove (iv). The previous computations yield that n−1/2A2
n and n−1/2A3

n
both converge to 0. The martingale (A1

n) is centered square integrable and s2n =
Eθ 〈M〉n satisfies 1

n s
2
n → 2σ4. Condition (H1’) is satisfied assuming the existence of

a moment of order 4+δ with δ > 0 for the offspring law G. Therefore, the CLT for
martingales (see Theorem A.4.1) yields that 1

n 〈M〉n → 2σ4 a.s. Joining these results
achieves the proof of (iv). '(

With similar arguments, one can prove the asymptotic independence of (m̃n, σ̃2
n ).

The extinction probability is an important parameter in many applications. In the
early stages of an epidemic, the extinction probability corresponds to the probability
of a minor outbreak. However, unless the extinction probability q is a function of m
and σ2 only, it cannot be consistently estimated observing the generation sizes. A
parametric setting (Gθ ,θ ∈Θ) is required for the offspring law. Let g(θ ,s) denote
the generating function of Gθ and define

q̃n = inf{s,g(s, θ̃n) = s}.

Then, according to [59], under additional regularity assumptions, q̃n is consistent if
θ̃n is consistent, and converges at the same rate m(θ0)n/2 as θ̃n.
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2.3.4 Examples

Example 1. Let us consider the supercritical branching process with offspring law
Poi(λ ) with λ > 1 and initial condition Z0 = 1. Theorem 2.3.4 applies here and
yields that, under Pλ0 , on the non-extinction set Ec,

λ̂n =
∑n
i=1Zi

∑n
i=1Zi−1

→ λ0 a.s.,

λ n/2
0 (λ̂n−λ0) →

√
(λ0−1)λ0 η−1N, with η ,N independent N ∼N (0,1),η2 =W,

whereW > 0 on Ec, EW = 1,VarW = 1
λ0−1 .

Example 2. Consider now the supercritical branching process with offspring law
the Geometric distribution G on N∗ with parameter p (G(k) = p(1− p)k−1,k ≥ 1).
First, note that Pp(E) = 0 and if Y ∼G , E(Y ) = 1/p and VarY = 1−p

p2 . Assume that
0< p< 1 and that Z0 = 1. Theorem 2.3.4 yields that, under Pp0 ,

1
p̂n

=
∑n
i=1Zi

∑n
i=1Zi−1

→ 1
p0

a. s.,

p0−n/2(
1
p̂n

− 1
p0

) →

√
(1− p0)2

p30
η−1N with η2 =W,E(W ) = 1,VarW = 1.

To estimate p, an application of Theorem A.1.1 with φ(y) = 1/y yields that, under
Pθ0 ,

p̂n =
∑n
i=1Zi−1

∑n
i=1Zi

→ p0, p−n/2
0 ( p̂n− p0)→

√
p0(1− p0) η−1W.

Example 3. Consider the general fractional linear branching process with off-
spring law G: G(0) = a,G(k) = (1−a)p(1− p)k−1,k≥ 1. Then the mean offspring
is m = 1−a

p and σ2 = (1−a)
p2 (1− p+ a). Assume that m > 1, the extinction set has

probability q= a
1−p . On E

c, m is estimated at rate mn/2 while σ2 is estimated at rate
√
n. Therefore, q̂n, which depends on m̂n and σ̂2

n , is estimated at rate
√
n.

2.3.5 Variants of Branching Processes

A large class of branching processes are used for modeling Epidemic dynamics.
It encompasses subcritical or critical branching processes (a), branching processes
with immigration (b), multitype branching processes with immigration, Crump–
Mode–Jagers branching process, which are continuous time branching processes
which are no longer Markov if the time between successive generations is not expo-
nential (c).

Case (a) can be studied either assuming that the initial population size
{Z0 → ∞} or conditionally on late extinction (leading to quasi-stationary distribu-
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tions). Cases (b) and (c) can be studied along similar lines than the ones in the
previous section. Stating all these results is beyond the scope of these notes. We had
rather choose to present accurately the simplest case, which already contains many
problems arising in these other models.



Chapter 3
Inference Based on the Diffusion Approximation
of Epidemic Models

3.1 Introduction

The contents of this chapter is mainly based on the three papers [60], [61] and [62].

In the first part of these notes, several mathematical models have been proposed
to describe Epidemic dynamics in a closed homogeneous community. The prop-
erties of the stochastic SEIR model have been studied in the first part of these
notes. Several mathematical formalisms were proposed to describe transitions of in-
dividuals between states: ODE/PDE ([35]), difference equations and continuous or
discrete-time stochastic processes (see Part I of these notes and also [32], [35]), such
as point processes, Pure jump processes, renewal processes, branching processes,
diffusion processes. When data are available, key parameters can be estimated using
these models through likelihood-based orM-estimation methods sometimes coupled
to Bayesian methods (see e.g. [35]). However, these data are most often partially
observed (e.g. infection and recovery dates are not observed for all individuals dur-
ing the outbreak, not all the infectious individuals are reported) and also temporally
and/or spatially aggregated. In this case, estimation via likelihood-based approaches
is rarely straightforward, regardless to the mathematical formalism.

For instance, the natural modeling of epidemics by pure jump processes presents
systematically the drawback that inference for such models requires that all the
jumps are observed. Since these data are rarely available in practice, statistical
methods rely on data augmentation in order to complete the data and add in the
analysis all the missing jumps. For moderate to large populations, the complexity
increases rapidly, becoming the source of additional problems. Various approaches
were developed during the last years to deal with partially observed epidemics. Data
augmentation and likelihood-free methods such as the Approximate Bayesian Com-
putation (ABC) opened some of the most promising pathways for improvement (see
e.g.[18], [101]). Nevertheless, these methods do not completely circumvent the is-
sues related to incomplete data. As stated also in [27], [19], there are some limita-
tions in practice, due to the size of missing data and to the various tuning param-
eters to be adjusted (see also [2], [105]). Moreover, identifiability issues are rarely
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addressed.

In this context, it appears that diffusion processes, satisfactorily approximating epi-
demic dynamics (see e.g. [45], [109]), can be profitably used for inference of model
parameters from epidemiological data. In Part I, Sections 2.2 and 2.3, the Markov
jump process (Z N(t)) in a closed population of size N, when normalized by N,
(ZN(t) = N−1Z N(t)) satisfies an ODE as the population size N goes to infinity. In
Section 2.4, it is proved the Wasserstein L1-distance between (ZN(t)) and a mul-
tidimensional diffusion process with diffusion coefficient proportional to 1/

√
N is

of order o(N−1/2) on a finite interval [0,T ]. Hence, epidemic dynamics can be de-
scribed using multidimensional diffusion processes (XN(t))t≥0 with a small diffu-
sion coefficient proportional to 1/

√
N. Since epidemics are usually observed over

limited time periods, we consider in what follows the parametric inference based on
observations of the epidemic dynamics on a fixed interval [0,T ]. Let us stress that
this approach assumes a major outbreak in a large community.

Historically, statistics for diffusions were developed for continuously observed
processes which renders possible getting an explicit formulation of the likelihood
([91], [96]). In this context, two asymptotics exist for estimating parameters in the
drift coefficient of a diffusion continuously observed on a time interval [0,T ]: T →∞
for recurrent diffusions and {T fixed and the diffusion coefficient tends to 0}. As
mentioned above, in practice, epidemic data are not continuous, but partial, with var-
ious mechanisms underlying the missingness and leading to intractable likelihoods:
trajectories can be discretely observed with a sampling interval (low frequency or
high frequency observations, i.e. n → ∞); discrete observations can correspond to
integrated processes; some coordinates can be unobserved. Since the 1990s, statisti-
cal methods associated to the first two types of data have been developed (e.g. [48],
[49], [54]), [86]). Recently proposed approaches for multidimensional diffusions are
based on the filtering theory ([41], [50]). Concerning diffusions with small diffusion
coefficient from discrete observations, it was first studied in [46], [56], [118], and
more devoted to epidemic dynamics in [60], [61]. Statistical inference for diffusion
processes entails some special features, that we recall for sake of clarity in A.3. It
reveals that, in the context of discrete observations, it is important to distinguish pa-
rameters in the drift and parameters in the diffusion coefficients because they are not
estimated at the same rate. We detail and extend here some recent work ([60], [61],
[62]) where we focus on the parametric inference in the drift coefficient b(α,Xε(t))
and in the diffusion coefficient εσ(β ,Xε(t)) of a multidimensional diffusion model
(Xε(t))t≥0 with small diffusion coefficient, when it is observed at discrete times on
a fixed time interval in the asymptotics ε → 0.

Section 3.2 presents the diffusion approximation of the Markov jump process
describing the epidemic dynamics starting from its Q- matrix and detail these ap-
proximations for several epidemic models studied in Part I of these notes, where
another method is used to get these approximations (see Part I, Sections 2.3 and
2.4). We then consider the parametric inference when the epidemic dynamics is ob-
served at discrete times on a finite interval, which corresponds to one outbreak of
the epidemics. The inference is studied for small sampling intervals (Section 3.4)



3.2 Diffusion Approximation of Jump Processes Modeling Epidemics 365

and fixed sampling intervals (Section 3.5). On simulated data sets of two epidemic
models, the SIR and the SIRS with seasonal forcing (see [83, Chapter 5]), we study
the properties of our estimators based on discrete observations of these two jump
Markov processes, and compare our results to the optimal inference for these jump
processes, which is obtained when all the jumps (i.e. observations of all the times of
infection and recovery within the population) are observed (Section 3.6).

It often occurs that in practice some components of the epidemics are not ob-
served. In the SIR epidemics, the successive numbers of Susceptible for instance
might be unobserved and the data consist of the successive increments of the num-
ber of Infected on each time interval. We study in Section 3.7 the inference when one
coordinate of the process is observed at discrete times. We detail the results on two
examples, the 2-dimensional Ornstein–Uhlenbeck diffusion process and the diffu-
sion approximation of the SIR-model when only the successive numbers of Infected
are available (Section 3.7.2.1). Finally, Section 3.7.2.2 is devoted to the estimation
based on the real data set on Influenza epidemics, which is described by an SIRS
epidemic model.

3.2 Diffusion Approximation of Jump Processes Modeling
Epidemics

This section starts from the definition of the stochastic epidemic model by a Pure
jump Markov process (Z N(t)) on Zd specified by its Q - matrix. We detail how to
get the diffusion approximation of (Z N(t)) from this description, which is another
way for getting the diffusion process obtained in Part I, Section 2.4 of these notes.
Using limit theorems for stochastic processes, we characterize the limiting Gaussian
process. Then, based on the theory of small perturbations of dynamical systems
([44]), we link the normalized process to a diffusion process with small diffusion
coefficient. These approximations are then applied to SIR, SEIR, and SIRS models
for epidemic dynamics.

3.2.1 Approximation Scheme Starting from the Jump Process
Q-matrix

Let (Z N(t)) a multidimensional Markov jump process with state space E ⊂ Zp

which describes the epidemic dynamics in a closed population of size N, the integer
“p” corresponding to the number of health states in the infection dynamics model.

This process is described by an initial distribution on E and a collection of non-
negative functions (β j(t, ·) : E →R+) indexed by j ∈Zp, j 1= (0, . . . ,0), that satisfy,

∀i ∈ E,0< ∑
j∈Zp

β j(t, i) = β (t, i)< ∞. (3.2.1)



366 Part IV. Chapter 3. Inference Based on Diff. Approx. of Epidemic Models

These functions are the transition rates of the process (Z N(t)) with Q(t)-matrix
having as elements

qi,i+ j(t) = β j(t, i) if j 1= 0, and qi,i(t) =−β (t, i) for i, i+ j ∈ E. (3.2.2)

Another useful description of (Z N(t)) is based on the joint distribution of its jump
chain and holding times. The process stays in each state i ∈ E during an exponential
time E (β (t, i)), and then jumps to the state i+ j according to a Markov chain (Xn)
with transition probabilities P(Xn+1 = i+ j | Xn = i) = β j(t, i)/β (t, i).

We consider the class of density dependent Markov jump processes (Z N(t)) which
possess a limit behaviour when normalized by the population size N. Let us define
the two sets

E = {0, . . . ,N}p E− = {−N, . . . ,N}p. (3.2.3)

The state space of (Z N(t)) is E and its jumps belong to E−.
From the original jump process (Z N(t)) on E = {0, . . . ,N}p, let

ZN(t) =
Z N(t)

N
with state space EN = {N−1i, i ∈ E}. (3.2.4)

Its jumps are now y = j/N and transition rates from z ∈ EN to z+ j/N at time t
defined using (3.2.2),

qNz,z+y(t) = βNy(t,Nz). (3.2.5)

Denote for x= (x1, . . . ,xp) ∈Rd , [x] = ([x1], . . . , [xp]) ∈ Zp, where [xi] is the integer
part of xi.

We assume in the sequel that (Z N(t)) is density dependent, i.e. there exist a collec-
tion of functions β j : R+× [0,1]p → R+ such that,

(H1) ∀ j, ∀z ∈ [0,1]p 1
N β j(t, [Nz])→ β j(t,z) as N → ∞ locally uniformly in t.

(H2) ∀ j ∈ E−, β j(t,z) ∈C2(R+, [0,1]p).

Then, define the two functions bN(t,z) and b(t,z) : R+× [0,1]p → Rp and the two
p× p positive symmetric matrices ΣN and Σ (with the notation M" for the transpo-
sition of a matrix or of a column vector j in E),

bN(t,z) =
1
N ∑

j∈E−
β j(t, [Nz]) j; b(t,z) = ∑

j∈E−
β j(t,z) j; (3.2.6)

ΣN(t,z) =
1
N ∑

j∈E−
β j(t, [Nz]) j j"; Σ(t,z) = ∑

j∈E−
β j(t,z) j j". (3.2.7)

Under (H1) the functions b(t,z) and Σ(t,z) are well defined and b(t,z) is Lipschitz
under (H2). Therefore, there exists a unique smooth solution z(t) to the ODE

dz
dt

= b(t,z(t))dt ; z(0) = x. (3.2.8)
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Let ∇zb(t,z) denote the gradient of b(t,z)

∇zb(t,z) =
(∂bi

∂ z j
(t,z)

)
1≤i, j≤p . (3.2.9)

The resolvent matrix Φ(t,u) associated with (3.2.8) is defined as the solution

dΦ
dt

(t,s) = ∇zb(t,z(t))Φ(t,s); Φ(s,s) = Ip. (3.2.10)

Under (H1), (H2) the following holds: if ZN(0) → x as N → ∞, then, locally uni-
formly in t,

∀t ≥ 0, lim
N→∞

‖ ZN(t)− z(t) ‖= 0 a.s. (3.2.11)

where z(t) is solution of (3.2.8).
Let (D,D) denote the space of “cadlag” functions { f : R+ → Rp} endowed with
the Skorokhod topology. Then,

√
N(ZN(t)− z(t))t≥0 → (G(t))t≥0 in distribution in (D,D), (3.2.12)

where (G(t)) is a centered p-dimensional Gaussian process with covariance matrix

Cov(G(t),G(r)) =
∫ t∧r

0
Φ(t,u)Σ(u,z(u)) Φ"(r,u)du. (3.2.13)

The proofs of these results are given under a general form in Part I, Sections 2.2 and
2.3 of these notes, and based on this presentation in [60], [61].

Heuristically, there is an approach which yields the diffusion approximation of
(ZN(t)); it rests on an expansion of the generator AN of (ZN(t)) (3.2.4). For
f ∈C2(R+×Rp,R), it reads as

AN f (t,z) = ∑
j∈E−

β j(t,Nz)( f (t,z+
j
N
)− f (t,z)).

A Taylor expansion of AN f (t,z) yields, using (H1), (H2) and (3.2.6), for j =
( j1, . . . , jp)∗ ∈ E−,

AN f (t,z) = ∑
j∈E−

Nβ j(t,z)( f (t,z+
j
N
)− f (t,z))+o(1/N)

=(∇z f (t,z))" b(t,z)+
1
2N

(

∑
j∈E−

β j(t,z)
d

∑
k,l=1

jk jl ∇2
zkzl f (t,z)

)

+o(1/N)

=(∇z f (t,z))" b(t,z)+
1
2N

d

∑
k,l=1

Σkl(t,z) ∇2
zkzl f (t,z)+o(1/N),
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where the last equality is obtained using (3.2.7). The first two terms of the last
expression correspond to the generator of a diffusion process on Rp with drift coef-
ficient b(t, ·) and diffusion matrix 1

N Σ(t, ·),

dXN(t) = b(t,XN(t))dt+
1√
N

σ(t,XN(t))dB(t) ; XN(0) = x, (3.2.14)

where (B(t)t≥0) is a Brownian motion on Rp defined on a probability space
(Ω ,(Ft)t≥0,P) independent of XN(0), and σ(t, ·) is a square root of Σ(t, ·):
σ(t,z) σ(t,z)" = Σ(t,z).

These approaches can be connected together a posteriori using the theory of random
perturbations of dynamical systems ([7], [44]) and the following theorem.

Theorem 3.2.1. Setting ε = 1/
√
N, the paths of XN(·) satisfy, as ε → 0,

XN(t) = Xε(t) = z(t)+ εg(t)+ ε2Rε(t), with sup
t≤T

‖ εRε(t) ‖→ 0 in probability,

(3.2.15)
where z(t) is the solution of (3.2.8), B(t) is a p-dimensional Brownian motion and
(g(t)) is the process satisfying the SDE

dg(t) = ∇zb(t,z(t))g(t)dt+σ(t,z(t))dB(t), g(0) = 0.

This stochastic differential equation can be solved explicitly and we get, using
(3.2.10), that

g(t) =
∫ t

0
Φ(t,s)σ(s,z(s))dB(s). (3.2.16)

Hence, (g(t)) is a centered Gaussian process having the same covariance ma-
trix (3.2.13) as the process (G(t)) defined in (3.2.12). Therefore, for ε = 1/

√
N,√

N(ZN
t − z(t))t≥0 and ε−1 (Zε(t)− z(t))t≥0 converge to a Gaussian process having

the same distribution.

It is moreover proved in Part I, Section 2.4 of these notes, that the Wasserstein
L1 distance between (ZN(t)) and (XN(t)) converges to 0.

3.2.2 Diffusion Approximation of Some Epidemic Models

3.2.2.1 The Diffusion Approximation Applied to the SIR Epidemic Model

We apply first the generic method leading successively to b(·), Σ(·) and (XN)
described in 3.2.1 to the SIR model introduced iin Part I, Chapter 1 of these
notes through the 2-dimensional continuous-time Markov jump process Z N(t) =
(S(t), I(t)) to build the associated SIR diffusion process. Along to its initial state
Z N(0) = (S(0), I(0)), the Markov jump process is characterized by two transitions,

(S, I)
λ
N SI
−→ (S− 1, I+ 1) and (S, I)

γI−→ (S, I− 1). Parameters λ and γ = 1/d repre-
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sent the transmission rate and the recovery rate (or the inverse of the mean infection
duration d), respectively. The rate λSI/N translates two main assumptions: the pop-
ulation mix homogeneously (same λ for each pair between one S and one I) and the
transmission is proportional to the fraction of infectious individuals in the popula-
tion, I/N (frequency-dependent formulation of the transmission term).

The diffusion approximation of the process(Z N(t)) describing the epidemic dy-
namics can be summarized by three steps. The original SIR jump process in a closed
population has state space {0, . . . ,N}2, the jumps j are (−1,1) and (0,−1) with
transition rates,

q(S,I),(S−1,I+1) = λS I
N

= β(−1,1)(S, I); q(S,I),(S,I−1) = γI = β(0,−1)(S, I).

Normalizing (Z N(t)) by the population size N, we obtain, setting z= (s, i)∈ [0,1]2,
as N → ∞,

1
N

β(−1,1)([Nz])→ β(−1,1)(s, i) = λ si; 1
N

β(0,−1)([Nz])→ β(0,−1)(s, i) = γi.

These two limiting functions clearly satisfy (H1)–(H2). Finally, the two functions
given in (3.2.6), (3.2.7) are well defined and now depend on (λ ,γ).
Set θ = (λ ,γ) and denote by b(θ ,z) and Σ(θ ,z) the associated functions. We get

b(θ ,(s, i)) =
(

−λ si
λ si− γi

)
; Σ(θ ,(s, i)) =

(
λ si −λ si
−λ si λ si+ γi

)
. (3.2.17)

Assume that Z N(0) satisfies (N−1S(0),N−1I(0)) → x = (s0, i0) with s0 > 0,
i0 > 0, s0+ i0 ≤ 1 as N → ∞. Then the associated ODE is, using (3.2.8),

ds
dt

=−λ si ; di
dt

= λ si− γi ; (s(0), i(0)) = (s0, i0). (3.2.18)

The diffusion approximation of the SIR epidemics obtained in (3.2.14) is the solu-
tion of the SDE

dSN(t) =−λSN(t)IN(t)dt+ 1√
N

√
λSN(t)IN(t) dB1(t), SN(0) = s0,

dIN(t) = (λSN(t)IN(t)− γIN(t))dt− 1√
N

(√
λSN(t)IN(t) dB1(t)−

√
γ IN(t) dB2(t)

)
,

IN(0) = i0,

where (B(t)) is standard two-dimensional Brownian motion and σ(θ ,z) corre-
sponds to the Choleski decomposition of Σ(θ ,z) = σ(θ ,z)σ"(θ ,z),

σ(θ ,(s, i)) =
( √

λ si 0
−
√

λ si
√

γi

)
.

In order to visualize the influence of the population size N on the sample paths
of the normalized jump process ZN(t) = Z N(t)/N, several trajectories have been
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simulated using an SIR model with parameters (λ ,γ) = (0.5,1/3), so that R0 =
λ/γ = 1.5. Results are displayed in Figure 3.2.1. We observe that, as the population
size increases, the stochasticity of sample paths decreases. However, it still keeps a
non-negligible stochasticity for a large population size (N = 10000). Since the peak
of IN(t) is quite small (about 0.08 here), this can be explained by a moderate size of
the ratio “signal over noise” even for large N (here of order 0.08/0.01).

Fig. 3.2.1 Five simulated trajectories of the proportion of infectious individuals over time using
the SIR Markov jump process for (s0, i0) = (0.99,0.01) (λ ,γ) = (0.5,1/3) and for each N =
{400,1000,10000} (from left to right).

3.2.2.2 The Diffusion Approximation Applied to the SIRS Epidemic Model
with Seasonal Forcing

Another important class of epidemics models is the SIRS model, which allows pos-
sible reinsertion of removed individuals into S class. The additional transition reads
as (S, I)

δ (N−S−I)−→ (S+ 1, I), where δ is the average rate of immunity waning. To
mimic recurrent epidemics, additional mechanisms need to be considered. Indeed,
to avoid that successive epidemics cycles die out, one way is to introduce an exter-
nal immigration flow. Hence, one possible model to describe recurrent epidemics
is the SIRS model with seasonal transmission (at rate λ (t)), external immigration
flow in the I class (at rate η) and, when the time-scale of study is large, demography
(with birth and death rates equal to µ for a stable population of size N). Season-
ality in transmission is captured using a time non-homogeneous transmission rate,
expressed under a periodic form

λ (t) := λ0(1+λ1 sin(2πt/Tper)) (3.2.19)

where λ0 is the baseline transition rate, λ1 the intensity of the seasonal effect on
transmission and Tper is introduced to model an annual or t seasonal trend (see [83],
Chapter 5). Typically for modeling Influenza epidemics, we fixed it at T = 365.
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Assuming again a constant population size, we obtain a new two-dimensional
system with four transitions for the corresponding Markov jump process:

(S, I)
λ (t)
N S(I+Nη)
−→ (S−1, I+1) ; (S, I)

µS−→ (S−1, I);

(S, I)
(γ+µ)I−→ (S, I−1) ; (S, I)

µN+δ (N−S−I)−→ (S+1, I).

Figure 3.2.2 illustrates the dynamics of the SIRS model (in ODE formalism) which
is forced using sinusoidal terms. In particular, given the parameter values we have
chosen, we can notice two distinct regimes: one with annual cycles (top graph) and
the other with biennial dynamics (middle graph). The qualitative changes in model
dynamics are explored by modifying a control parameter or bifurcation parameter
(here λ1) and constructing a bifurcation diagram.

Fig. 3.2.2 Proportion of infected individuals, I(t), over time (top and middle panels) simulated
using the ODE variant of the SIRS model with N = 107, Tper = 365, µ = 1/(50× Tper), η =
10−6, (s0, i0) = (0.7,10−4) and (λ0,γ,δ ) = (0.5,1/3,1/(2×365)). The top panel corresponds to
λ1 = 0.05, the middle panel to λ1 = 0.1. The bottom panel represents the bifurcation diagram with
respect to λ1.

The diffusion approximation is built following the same generic scheme of Sec-
tion 3.2.1 as for the SIR model in Section 3.2.2.1. The four jumps j corresponding
to functions β j are j∗ = (−1,1);(−1,0);(0,−1);(1,0) leading to

β(−1,1)(t,S, I) =
λ (t)
N

S(I+Nη), β(0,−1)(t,S, I) = (γ +µ)S,

β (0,−1)(t,S, I) = (γ +µ)S, β(1,0)(t,S, I) = µN+δ (N−S− I)S.
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The jump process is time-dependent and so we have to check (H1b)–(H2). Straight-
forward computations yield that they are satisfied since, for (s, i) ∈ [0,1]2,

β(−1,1)(t,(s, i)) = λ (t)s(i+η); β(−1,0)(t,(s, i)) = µs;
β(0,−1)(t,(s, i)) = (γ +µ)i; β(1,0)(t,(s, i)) = µ+δ (1− s− i).

Finally, setting θ = (λ0,λ1,γ,δ ,η ,µ), the associated drift function b(θ , t,(s, i)) and
diffusion matrix Σ(θ , t,(s, i)) are

b(θ , t,(s, i)) =
(
−λ (t)s(i+η)+δ (1− s− i)+µ(1− s)

λ (t)s(i+η)− (γ +µ)i

)
, (3.2.20)

Σ(θ , t,(s, i)) =
(

λ (t)s(i+η)+δ (1− s− i)+µ(1+ s) −λ (t)s(i+η)
−λ (t)s(i+η) λ (t)s(i+η)+(γ +µ)i

)
.

(3.2.21)
Therefore, the associated ODE is, using (3.2.20),

ds
dt

= −λ (t)s(i+η)+δ (1− s− i)+µ(1− s), s(0) = s0;

di
dt

= λ (t)s(i+η)− (γ +µ)i, i(0) = i0.

Choosing σ(θ , t,(s, i)) such that σ(θ , t,(s, i))σ(θ , t,(s, i))" = Σ(θ , t,(s, i)), we ob-
tain that the approximating diffusion XN(t) satisfies

dXN(t) = b(θ , t,(SN , IN))dt+
1√
N

σ(θ , t(SN , IN)); XN(0) = x. (3.2.22)

3.2.2.3 A Minimal Model for Ebola Transmission with Temporal Transition
Rate

According to [20], a basic model for Ebola dynamics consists in a SEIR model
with temporal transmission rate. In a rough approximation, assuming homogeneous
mixing in a size N community yields, setting Z N(t) = (S,E, I),

(S,E, I)
λ (t) SIN−→ (S−1,E+1, I);

(S,E, I) νE−→ (S,E−1, I+1);

(S,E, I)
γI−→ (S,E, I−1).

The diffusion approximation has drift and diffusion matrix given by, for z= (s,e, i),

b(θ , t,z) =




−λ (t)si

λ (t)si−νe
νe− γi



 ; Σ(θ , t,z) =




λ (t)si −λ (t)si 0
−λ (t)si λ (t)si+νe −νe

0 −νe νe+ γi



 .
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Two questions concerning the inference arise in this model: the non-parametric
estimation of λ (·) and the presence of random effects since the dynamics are ob-
served in different locations.

3.2.2.4 Two Variants of the SEIRS Model with Demography

In Part I, Chapter 2 of these notes, an example of SEIRS model with demography
is proposed (see Example 2.2.2). Removed individuals loose their immunity at rate
δ ; there is an influx of susceptible at rate µN and individuals, whichever type, die
at rate µ . Hence, 9 jumps are present in this model, for (s,e, i,r), which yields for
Z = (S,E, I),

(S,E, I)
λ SI

N−→ (S−1,E+1, I), (S,E, I) νE−→ (S,E−1, I+1),

(S,E, I)
µN+δ (N−S−E−I)−→ (S+1,E, I), (S,E, I)

µI+γI−→ (S,E, I−1).

(S,E, I)
µS−→ (S−1,E, I), (S,E, I)

µE−→ (S,E−1, I), (S,E, I)
µ(N−S−E−I)−→ (S,E, I).

This yields, setting z= (s,e, i) and θ = (λ ,ν ,γ,δ ,µ)

b(θ ,z) =




−λ si+µ(1− s)+δ (1− s− i− e)

λ si− (µ+ν)e
νe− (γ +ν)i



 ;

Σ(θ ,z) =




λ si+µ(1+ s)+δ (1− s− i− e) −λ si 0

−λ si λ si+(µ+ν)e −νe
0 −νe νe+(γ +ν)i



 .

3.3 Inference for Discrete Observations of Diffusions on [0,T]

Our concern here is parametric inference for these models. Statistical inference for
discretely observed diffusion processes present some specific properties (see Sec-
tion A.3 in the Appendix) that lead us to consider distinct parameters in the drift
coefficient (here α) and in the diffusion coefficient (β ). The state space of the diffu-
sion is Rp, and the parameter setΘ is a subset of Ra×Rb, with α ∈Ra,β ∈Rb. For
instance, the SIR diffusion approximation corresponds to p= 2 and α = β = (λ ,γ).

In order to deal with general epidemics, we consider time-dependent diffusion
processes on Rp with small diffusion coefficient ε = 1/

√
N satisfying the stochastic

differential equation (SDE):

dX(t) = b(α, t,X(t))dt+ εσ(β , t,X(t)) dB(t) ; X(0) = x, (3.3.1)

where (B(t)t≥0) is a p-dimensional Brownian motion defined on a probability space
(Ω ,(Ft)t≥0,P), b(α, t, ·) : Rp → Rp and σ(β , t, ·) : Rp → Rp ×Rp and x is non-
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random fixed.

Since epidemic dynamics are usually observed at discrete times, our aim is to study
the estimation of θ = (α,β ) based on the observations

(X(tk),k = 1 . . .n) with tk = k∆ ; T = n∆ (sampling interval ∆). (3.3.2)

For observations on a fixed time interval, [0,T ], there are distinct asymptotic
results according to ∆ .

(1) High frequency sampling ∆ = ∆n → 0: The number of observations n = T/∆n
goes to ∞ while T = n∆n is fixed. There is a double asymptotic framework:
ε → 0 and ∆ → 0 (or n = T/∆ → ∞) simultaneously. Let us stress that we
shall use both notations for this second asymptotics n→ ∞ or ∆ → 0. Although
it might be confusing, it is sometimes better to state results according to the
number of observations and sometimes according to the sampling interval ∆ .

(2) Low frequency sampling ∆ is fixed: It leads to a finite number of observations
n= T/∆ . Results are obtained in the asymptotic framework ε → 0.

At first glance, the low frequency sampling seems a priori a suitable framework
for epidemic data. However, both high and low frequency observations could be ap-
propriate in practice because the choice of the statistical framework depends more
on the relative magnitudes between T , ∆ and the population size N (= ε−2) than on
their accurate values.

From a statistical point of view, the sequence (X(tk)) is a time-dependent Markov
chain and therefore the likelihood depends on its transition probabilities. However,
the link between the parameters present in the SDE and the transition probabilities
of (X(tk)) is generally not explicit, which leads to intractable likelihoods. This is
a well known problem for discrete observations of diffusion processes. Alternative
approaches based on M-estimators or contrast functions (see e.g. [123] for indepen-
dent random variables, [87] for stochastic processes) have to be investigated (see
also the recap presented in Section A.3 in the Appendix of this part).

After the statement of some preliminary results, we present successively the
statistical inference for high frequency sampling, where the asymptotics is ε =
1/
√
N → 0, ∆n = T/n → 0 (Section 3.4), and for the low frequency sampling,

ε = 1/
√
N → 0, ∆ fixed (Section 3.5).

3.3.1 Assumptions, Notations and First Results

Let θ0 be the true value of the parameter andΘ the parameter set. Denote byMp(R)
the set of p× pmatrices. We first assume that b(α, t,z) and σ(β , t,z) are measurable
in (t,z), Lipschitz continuous with respect to the second variable and satisfy a linear
growth condition: for all t ≥ 0,z,z′ ∈ Rp, there exists a global constant K such that

(S1): ∀θ ∈Θ , ‖ b(α, t,z)−b(α, t,z′) ‖+ ‖ σ(β , t,z)−σ(β , t,z′) ‖≤ K ‖ z− z′ ‖.
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(S2): ∀(α,β ) ∈Θ ,‖ b(α; t,z) ‖2 + ‖ σ(β ; t,z) ‖2≤ K(1+ ‖ z ‖2).
(S3): ∀(β , t,z), Σ(β ; t,z) = σ(β ; t,z)σ"(β ; t,z) is non-singular.

Assumptions (S1)–(S3) are classical assumptions that ensure that, for all θ , (3.3.1)
admits a unique strong solution (see e.g. [82, Chapter 5.2.B]).

Another set of assumptions is required for the inference:

(S4): Θ = Ka×Kb is a compact set of Ra+b, θ0 ∈ Int(Θ).

(S5): For all t ≥ 0, b(α; t,z)∈C3(Ka×R+×Rp,Rp) and σ(β ; t,z)∈C2(Kb×R+×
Mp(R)).

(S6): α 1= α ′ ⇒ b(t;α,z(α, t)) 1≡ b(t;α ′,z(α ′, t)).
(S7): β 1= β ′ ⇒ Σ(t;β ,z(α0, t)) 1≡ Σ(t;β ′,z(α0, t)).

Assumptions (S4)–(S5) are classical for the inference for diffusion processes. Usu-
ally, it is sufficient in (S5) to deal withC2 functions. The additional differentiability
condition comes from regularity conditions required on α →Φ(α, t,s). Indeed, (S5)
on b(α, t,z) ensures that the function Φ(α, t, t0) belongs to C2(Ka × [0,T ]2,Mp).
Assumption (S6) is the usual identifiability assumption for a diffusion continuously
observed on [0,T ] and (S7) is an identifiability assumption for parameters in the
diffusion coefficient.

Since (X(t)) is a diffusion process on (Ω ,(Ft)t≥0,P), the space of observations
is (CT = C([0,T ],Rp),CT ) where CT is the Borel σ -algebra on C([0,T ],Rp). Let
Pθ = Pα,β the probability distribution on (CT ,CT ) of (X(t)),0 ≤ t ≤ T ) satisfying
(3.3.1). Let G n

k denote the σ -algebra σ(X(s),s≤ kT
n ).

For g(θ , t,z) :Θ × [0,T ]×Rp → Rp, ∇zg(·) is theMp matrix

∇zg(·) = (
∂gi
∂ z j

(θ , t,z))1≤i, j≤p and ∇θg(·) = (
∂gi
∂θ j

(θ , t,z)) (3.3.3)

If z= z(θ , t), then

∇θ (g(θ , t,z(θ , t))) = ∇θg(·)+∇zg(·)∇θ z(·). (3.3.4)

Quantities are indexed by θ (resp. α or β ) when they depend on both α,β (resp.α
or β ). Introducing the dependence with respect to t,θ in (3.2.8), (3.2.10), (3.2.16)
yields,

∂ z
∂ t (α, t) = b(α, t,z(α, t)); z(α,0) = x0,

g(α,β , t) =
∫ t
0 Φ(α, t,u)σ(β ,u,z(α,u))dB(u), with Φ(α, ·) such that

∂Φ
∂ t (α, t,u) = ∇zb(α, t,z(α, t))Φ(α, t,u) , Φ(α,u,u) = Ip.

(3.3.5)
The expansion (3.2.15) holds for time-dependent diffusion processes.
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Proposition 3.3.1. Assume (S1)–(S5). Then, under Pθ , (X(t),0 ≤ t ≤ T ) satisfies
that, uniformly with respect to θ ,

X(t) = z(α, t)+ εg(θ , t)+ ε2Rε(θ , t), with
limε→0,r→∞ Pθ (supt≤T ‖ Rε(θ , t) ‖> r) = 0

supt≤T ‖ Rε(θ , t) ‖ has uniformly bounded moments.
(3.3.6)

Proposition 3.3.2. Under (S1)–(S5), the process (g(θ , t)) satisfies using (3.3.5)

∀s< t, g(θ , t) = Φ(α, t,s)g(θ ,s)+
∫ t

s
Φ(α, t,u)σ(β ,u,z(α,u))dB(u),

where the two terms of the r.h.s. above are independent random variables.

Proposition 3.3.3. Assume (S1)–(S2). If moreover b(α, ·) and σ(β , ·) have uni-
formly bounded derivatives, there exist constants only depending on T and θ such
that

(i) ∀t ∈ [0,T ], Eθ (‖Rε(θ , t)‖2 <C1,
(ii) ∀t ∈ [0,T ], as h→ 0, Eθ (‖Rε(θ , t+h)−Rε(θ , t)‖2)<C2h.

We refer to [7], [44], and [56] for the proofs of these propositions for θ fixed.
Assumption (S4) allows us to extend these results to θ ∈Θ .

3.3.2 Preliminary Results

Let us define using (3.3.5) the random variables,

Bk(α,X) = X(tk)− z(α, tk)−Φ(α, tk, tk−1) [X(tk−1)− z(α, tk−1)] . (3.3.7)

Then the following holds.

Lemma 3.3.4. Assume (S1)–(S4). Then, under Pθ , as ε → 0,

Bk(α,X) = ε
√

∆ Tk(θ)+ ε2Dε
k(θ ,∆) with sup

k
Eθ ||Dε

k(θ ,∆)||2 ≤C∆ , and

Tk(θ) =
1√
∆

∫ tk

tk−1
Φ(α, tk,u)σ(β ,u,z(α,u))dB(u),

where C a constant independent of θ ,ε,∆ .

Therefore, the random variables Tk(θ) are p-dimensional G n
k -measurable inde-

pendent Gaussian random variables with covariance matrix

Sk(α,β ) = Sk(θ) =
1
∆

∫ tk

tk−1
Φ(α, tk,s)Σ(β ,s,z(α,s))Φ"(α, tk,s)ds. (3.3.8)

Proof. Using Propositions 3.3.1 and 3.3.2 yields that
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Dε
k(θ ,∆) = Rε(θ , tk)−Φ(α, tk, tk−1)Rε(θ , tk−1)

= Rε(θ , tk)−Rε(θ , tk−1)− (Φ(α, tk, tk−1)− Ip)Rε(θ , tk−1)

= Rε(θ , tk)−Rε(θ , tk−1)−∆∇zb(α, tk−1,z(α, tk−1))Rε(θ , tk−1)

+∆ 2OP(1).

An application of Proposition 3.3.3 together with (S4) yields the result. '(

Define the two random matrices

Σk(β ) = Σ(β , tk,X(tk)), σk(β ) = σ(β , tk,X(tk)). (3.3.9)

Then, for small ∆ , we have using (3.3.9)

Lemma 3.3.5. Assume (S1)–(S5). Then, under Pθ , as ε,∆ → 0,

||Sk(θ)−Σk−1(β )||≤Kε sup
θ ,t≤T

||g(θ , t)||+∆ sup
θ ,z

||∇zΣ(β ,s,z)||≤ εC1OP(1)+C2∆ .

The proof is straightforward using (S1), (S5) and Proposition (3.3.6).
Let us now state some preliminary results on the random variables Bk(α,X)

defined in (3.3.7) useful for the inference.

Under Pθ0 , Proposition 3.3.1 yields that Bk(α,X) converges to Bk(α,z(α0, ·))
and that Bk(α0,X) converges to Bk(α0,z(α0, ·)) = 0 a.s. Let us define on [0,T ]

Γ (α0,α, t)= b(α0, t,z(α0, t))−b(α, t,z(α, t))−∇zb(α, t,z(α, t))(z(α0, t)−z(α, t)).
(3.3.10)

The sequence Bk(α,z(α0, ·)) satisfies:

Lemma 3.3.6. Assume (S1), (S2), (S4). Then, as ∆ → 0, there exists a constant C
such that

1
∆
Bk(α,z(α0, ·)) = Γ (α0,α, tk−1)+∆ ‖α −α0‖rk(α0,α)

with sup
k,α∈Ka

‖rk(α0,α)‖ ≤C.

Proof. Using (3.3.7), (3.3.10) and that Φ(α, tk, tk−1)= Ip+∆∇zb(α, tk−1,z(α, tk−1))
+∆ 2O(1), yields

Bk(α,z(α0, ·)) =
∫ tk

tk−1
(b(α0,s,z(α0,s))−b(α,s,z(α,s)))ds

+(Ip−Φ(α, tk, tk−1))(z(α0, tk−1)− z(α, tk−1))

= ∆Γ (α0,α, tk−1)+∆ 2 ‖α −α0‖rk(α0,α).

Assumptions (S1), (S2) and (S4) ensure that the remainder term has order ∆ 2 uni-
formly in k,α . '(
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Consider now the random variables Bk(α,X)

Lemma 3.3.7. Assume (S1)–(S5). Then, under Pθ0 , as ε,∆ → 0, the following holds
for all k ≤ n,

1
∆
(Bk(α,X)−Bk(α0,X)) =

1
∆
Bk(α,z(α0, ·))+ ε||α −α0||ηk(α0,α,ε,∆)

= Γ (α0,α, tk−1)+ ||α −α0||(∆O(1)+ εOP(1)),

where ηk = ηk(α0,α,ε,∆) is G n
k−1-measurable and uniformly bounded in probabil-

ity .

Proof. Using (3.3.6) and (3.3.7), we get that

Bk(α,X)−Bk(α0,X) =
Bk(α,z(α0, ·))+ ε(Φ(α0, tk, tk1)−Φ(α, tk, tk1))(g(θ0, tk−1)+ εRε(θ0, tk−1)).

By (S1)–(S5),
∥∥Φ(α0, tk, tk1)−Φ(α, tk, tk1)

∥∥

≤ 2∆ ‖∇zb(α0, , tk−1,z(α0, tk−1))−∇zb(α, , tk−1,z(α, tk−1))‖ .

Now, this term is bounded by K∆ ||α −α0|| since (t,α) → ∇zb(α,z(α, t)) is uni-
formly continuous on [0,T ] × Ka. Using now Proposition 3.3.1 yields that
(g(θ0, tk−1) + εRε(θ0, tk−1)) is bounded in Pθ0 -probability and G n

k−1-measurable.
'(

The next lemma concerns the properties of Bk(α0,X).

Lemma 3.3.8. Assume (S1)–(S5). Then, using (3.3.9), as ε,∆ → 0, under Pθ0 ,

(i) Bk(α0,X)= εσk−1(β0)(B(tk)−B(tk−1))+Ek(θ0,ε,∆),where Ek =Ek(θ0,ε,∆)
satisfies that, for m≥ 2, Eθ0(||Ek||m|G n

k−1)≤Cεm∆m.
(ii) If (Vk) is a sequence of G n

k−1-measurable random variables in Rp uniformly

bounded in probability, then
n

∑
k=1

V ∗
k Bk(α0,X)→ 0 in probability.

Proof. Let us first prove (i) and study the term Ek. We have Ek = E1
k +E2

k with

E1
k =

∫ tk

tk−1
(b(α0, t,X(t))−b(α0, t,z(α0, t)))dt

+(Ip−Φ(α0, tk, tk−1))(X(tk−1)− z(α0, tk−1)) and

E2
k =ε

∫ tk

tk−1
(σ(β0,s,X(s))−σ(β0,s,X(tk−1)))dB(s).

Set in (3.3.6), Rε
1(θ , t) = g(θ , t) + εRε(θ , t). Using that (t,x) → b(α, t,x) is uni-

formly Lipschitz, we obtain,
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∥∥E1
k
∥∥≤∆C sup

t∈[tk−1;tk]
‖X(t)− z(α0, t)‖

+∆ε
∥∥∥∥(
∫ 1

0
∇zb(α0,z(α0, t)))Φ(α0, t, tk−1)dt)Rε

1(θ0, tk−1)

∥∥∥∥

≤C′ε∆ sup
t∈[tk−1;tk]

‖Rε
1(θ0, t)‖

The proof for E2
k follows the sketch given in [56, Lemma 1]. We first prove this

result based on the stronger condition Σ and b bounded. Then, similarly to [56,
Proposition 1], this assumption can be relaxed. We use sequentially the Burkhölder–
Davis–Gundy (see e.g. [82]) and Jensen inequalities to obtain

Eθ0(
∥∥E2

k
∥∥m |G n

k−1)

≤CεmEθ0

(
(
∫ tk

tk−1
‖σ(β0,s,X(s))−σ(β0, tk−1,X(tk−1)‖2 ds)m/2|G n

k−1

)
(3.3.11)

≤Cεm∆m/2−1
∫ tk

tk−1
Eθ0
(
‖σ(β0,s,X(s))−σ(β0, tk−1,X(tk−1))‖m |G n

k−1
)
|ds.

(3.3.12)
Then, using that (t,x)→ σ(β , t,x) is Lipschitz, we obtain:

Eε
θ0(
∥∥E2

k
∥∥m |G n

k−1)≤C′εm∆m/2−1
∫ tk

tk−1
Eε

θ0(‖X(s)−X(tk−1)‖m)ds

≤C′εm∆m/2−1
∫ tk

tk−1
Eε

θ0

[∥∥∥∥
∫ s

tk−1
(b(α0,u,X(u))du+ εσ(β0,u,X(u))dB(u))

∥∥∥∥

]m
ds.

Since b is bounded on U ,
∥∥∥
∫ s
tk−1

b(α0,u,X(u))du
∥∥∥≤ K|s− tk−1| and Itô’s isometry

yields

Eθ0

(∥∥∥∥
∫ s

tk−1
σ(β0,u,X(u))dB(u)

∥∥∥∥
m)

≤ Eθ0

(∥∥∥∥
∫ s

tk−1
Σ(β0,u,X(u))du

∥∥∥∥

)m/2

≤ K|s− tk−1|m/2.

Thus, Eθ0(
∥∥E2

k (θ0)
∥∥m |G n

k−1)≤C
′′εm∆m/2−1 ∫ tk

tk−1
|s− tk−1|m/2ds≤C

′′′εm∆m.

The proof of (ii) relies on the Lemma A.4.3 for triangular arrays stated in Section
A.4. Set ζ n

k =V ∗
k Bk(α0,X). Using (i), we have

Eθ0(ζ
n
k |G n

k−1) =V ∗
k Eε

θ0(Ek(θ0,ε,∆)|G n
k−1)

with Eε
θ0(‖Ek(θ0,ε,∆)‖ |G n

k−1)≤Cε∆ .
Since supk≤n ‖Vk‖ is bounded in probability, ∑n

k=1Eθ0(ζ n
k |G n

k−1)≤CεT → 0.
Therefore condition (i) of Lemma A.4.3 is satisfied withU = 0.
Now, Eθ0 [(ζ

n
k )

2|G n
k−1)] =V ∗

k Eθ0(Bk(α0,X)B∗
k(α0,X)|G n

k−1)Vk.
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Using (i) of Lemma 3.3.8 yields that

Eθ0(Bk(α0,X)B∗
k(α0,X)|G n

k−1) = ε2∆Σk−1(β0)+Eθ0(EkE∗
k |G n

k−1)

≤ K1ε2∆ +C2ε2∆ 2.

Hence, ∑n
k=1Eθ0((ζ n

k )
2|G n

k−1)→ 0. Therefore, applying Lemma A.4.3 achieves the
proof. '(

A last lemma concerns the terms (∇αiBk) for i= 1, . . . ,a.

Lemma 3.3.9. Assume (S1)–(S6). Then, under Pθ0 , for all i, j ≤ a, for all α ∈ Ka,
as ε,∆ → 0,

(i) 1
∆ ∇αiBk(α,X)=−∇αib(α, tk−1,z(α, tk−1))+Mi

k(α)[(z(α0, tk−1)−z(α, tk−1))+
εZε

k−1(θ0)] + ∆OP(1), where Mi
k(α) are uniformly bounded matrices and

Zε
k−1(θ0) are G n

k−1-measurable r.v.s uniformly bounded in probability.

(ii) For all k ≤ n, 1
∆

∥∥∥∇2
αi,α j

Bk(α,X)
∥∥∥ is bounded uniformly in probability.

Proof. We have, using (3.3.6) and (3.3.7),

Bk(α,X) =(X(tk)−X(tk−1))− (z(α, tk)− z(α, tk−1))

+(Ip−Φ(α, tk, tk−1))(X(tk−1)− z(α, tk−1)).

Therefore,
∇αiBk(α,X) = Ek,i+ ε∆Mi

k(α)Zk−1(θ0)

with Mi
k(α) =− 1

∆ ∇αiΦ(α, tk, tk−1), Zk−1(θ0) = g(θ0, tk−1)+ εRε(θ0, tk−1) and

Ek,i =−∇αi(z(α, tk)− z(α, tk−1))+(Φ(α, tk, tk−1)− Ip)∇αi z(α, tk−1)

−∇αiΦ(α, tk, tk−1)(z(α0, tk−1)− z(α, tk−1)).

Proposition 3.3.1 yields the result for Zk(θ0).
Now, Φ(α, tk, tk−1) = exp{

∫ tk
tk−1

∇zb(α,s,z(α,s))ds} so that

Mi
k(α) =−∇αi∇zb(α, tk−1,z(α, tk−1))+∆O(1).

To study Ek,i, we use that Φ(α, tk, tk−1)− Ip = ∆∇zb(α, tk−1,z(α, tk−1))+∆ 2O(1)
and ∇αi (b(α, t,z(α, t))) = ∇αib(α, t,z(α, t))+∇zb(α, t,z(α, t))∇αi z(α, t).
Therefore Ek,i = −∇αib(α, tk−1,z(α, tk−1)) + Mi

k(α)(z(α0, tk−1) − z(α, tk−1))
+∆O(1).
This achieves the proof of (i).

Let us prove (ii). We have ∇2
αiα j

Bk(α,X) = f i jk (α0,α,∆)+ξ i j
k (θ0,α,ε,∆) with

ξ i j
k = (∇2

αiα j
Φ(α, tk, tk−1))[X(tk−1)− z(α0, tk−1)] and

f i jk (α0,α,∆) =−
(

∇2
αiα j

z(α, tk)−Φ(α, tk, tk−1)∇2
αiα j

z(α, tk−1)
)

+∇αiΦ(α, tk, tk−1)∇α j z(α, tk−1)
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+∇α jΦ(α, tk, tk−1)∇αi z(α, tk−1)

−∇2
αiα j

Φ(α, tk, tk−1)(z(α, tk−1)− z(α0, tk−1)).

The result is obtained using Proposition 3.3.1 and the property that 1
∆ ‖∇αiΦ(·)‖

and 1
∆

∥∥∥∇2
αi,α j

Φ(·)
∥∥∥ are uniformly bounded. '(

3.4 Inference Based on High Frequency Observations on [0,T ]

We assume that both ε and ∆ = ∆n go to 0. The number of observations n goes to
infinity. We study the estimation of θ = (α,β ) based on (X(tk),k = 1, . . . ,n).

Lemmas 3.3.4 and 3.3.5 yield that the random variables 1
ε
√

∆ Bk(α0,X) are ap-
proximately conditionally independent centered Gaussian random variables in Rp

with covariance approximated by Σk−1(β0). Analogously to [85] or [56], we intro-
duce a contrast function, using definitions (3.3.7), (3.3.9),

Ǔε,∆ (α,β ) =
n

∑
k=1

logdetΣk−1(β )+
1

ε2∆

n

∑
k=1

Bk(α,X)∗ Σ−1
k−1(β ) Bk(α,X). (3.4.1)

The minimum contrast estimators are defined as any solution of

(α̌ε,∆ , β̌ε,∆ ) = argmin
(α,β )∈Θ

Ǔε,∆ (α,β ). (3.4.2)

3.4.1 Properties of the Estimators

In what follows, we use to describe the asymptotics with respect to ∆ = ∆n either
∆ → 0 or n→ ∞. Indeed, it is more explicit to state results according to the number
of observations n rather than in terms of the size of the sampling interval ∆ = ∆n.
Results are obtained when ε → 0 and ∆ → 0 (or n→ ∞) simultaneously.

Define, for θ = (α,β ) ∈ Θ with Θ a compact subset of Ra×Rb, the matrices
Ib(θ) = (Ib(θ)i j,1≤ i, j ≤ a), Iσ (θ) = (Iσ (θ)i, j,1≤ i, j ≤ b) and I(θ) by

(Ib(θ))i j =
∫ T

0
(∇αib(α, t,z(α, t)))∗Σ−1(β , t,z(α, t))∇α j b(α, t,z(α, t))dt, (3.4.3)

(Iσ (θ))i, j = (3.4.4)
1
2T

∫ T

0
Tr
(

∇βiΣ(β , t,z(α, t))Σ−1(β , t,z(α, t))∇β jΣ(β , t,z(α, t))Σ−1(β , t,z(α, t))
)
dt.
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I(θ) =
(
Ib(θ)) 0

0 Iσ (θ)

)
. (3.4.5)

Recall that A∗ denotes the transpose of a matrix A and Tr(A) its trace.

Theorem 3.4.1. Assume that (X(t)) satisfying (3.3.1) is observed at times tk = k∆n
with T = n∆n fixed. Assume (S1)–(S7) and that Ib(θ0) is non-singular. Then, as
ε → 0,∆ = ∆n → 0,

(i) (α̌ε ,∆ , β̌ε,∆ )→ (α0,β0) in Pθ0 -probability.

(ii) If moreover Iσ (θ0) is non-singular,
(

ε−1 (α̌ε,∆ −α0
)

√
n
(

β̌ε,∆ −β0

)
)

→Na+b

(
0,
(
I−1
b (α0,β0) 0

0 I−1
σ (α0,β0)

))

in distribution under Pθ0 .

Note that results are obtained without any condition linking ε and ∆ (or n). In-
deed, the previous results obtained in [56] require conditions linking ε and ∆ that
do not fit epidemic data, where generally the orders of magnitude for N and n satisfy
N >> n so that ∆ is comparatively large with respect to ε = 1/

√
N. We proposed in

[60] another method based on Theorem 3.2.1 which extends results obtained in [46],
where the inference in the case σ(β ,x) ≡ 1 was investigated for one-dimensional
diffusions using expansion (3.2.15).

Since estimators of parameters in the drift (here α) and in the diffusion coefficient
(here β ) converge at distinct rates, ε−1 and

√
n = ∆−1/2 respectively, the study of

asymptotic properties has to be performed according to the successive steps:

Step (1): Consistency of α̌ε ,∆ (Proposition 3.4.2).
Step (2): Tightness of the sequence ε−1(α̌ε,∆ −α0) with respect to β (Proposition

3.4.3).
Step (3): Consistency of β̌ε ,∆ (Proposition 3.4.5).
Step (4): Asymptotic normality for both estimators (Theorem 3.4.1,(ii)).

The proof is technical and detailed in a separate section. Before this proof, let us
state some comments.

3.4.1.1 Comments

(1) Efficiency of estimators: Note that the matrix Ib(θ) is equal to the Fisher informa-
tion matrix associated to the estimation of α when (X(t)) is continuously observed
on [0,T ] (see e.g. [91] and Section A.3 in the Appendix). Therefore α̌ε,∆ is efficient
for this statistical model.

(2) Comparison with estimation based on complete observation of the jump pro-
cess (Z N(t)): Coming back to epidemics, we can compare the estimation of the
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parameters of the pure jump process (Z N(t)) and (ZN(t) = 1
NZ

N(t)) describing
the epidemic dynamics in a finite population of size N and the estimators built from
its diffusion approximation. Let us stress that there is a main difference between
these two approaches. Statistical inference for (Z N(t)) is based on the observations
of all the jumps, which implies here the observation of all the times of infection and
recovery for each individual in the population, while for the diffusion (X(t)), we
consider discrete observations (X(tk),k = 1, . . . ,n).

(3) Comparison of estimators for the SIR epidemic dynamics: Assume that the jump
process (Z N(t)) is continuously observed on [0,T ]. Its dynamics is described by the
two parameters (λ ,γ). Set ZN(t) = (SN((), IN(t))∗, and assume that ZN(0)→ x0 =
(s0, i0)∗, with s0 > 0, i0 > 0. Let s(t) = s(λ0,γ0, t); i(t) = i(λ0,γ0, t) the solution of
the corresponding ODE.

The Maximum Likelihood Estimator (λ̂ , γ̂) is explicit (see [2] or Chapter 4 of
this part). Indeed, let (Ti) denote the successive jump times and set Ji = 0 if we have
an infection and Ji = 1 if we have a recovery. Let KN(T ) = ∑i≥0 1Ti≤T . Then

λ̂N =
1
N

∑KN(T )
i=1 (1− Ji)

∫ T
0 SN(t)IN(t)dt

=
1
N

# Infections
∫ T
0 SN(t)IN(t)dt

,

γ̂N =
1
N

∑KN(T )
i=1 Ji

∫ T
0 IN(t)dt

=
# Recoveries

“Mean infectious period”
.

As the population size N goes to infinity, (λ̂N , γ̂N) is consistent and

√
N
(

λ̂N −λ
γ̂N − γ

)
→N2

(
0, I−1(λ ,γ)

)
, where I(λ ,γ) =




∫ T
0 s(t)i(t)dt

λ 0

0
∫ T
0 i(t)dt

γ



 .

The matrix I(λ ,γ) is the Fisher information matrix of this statistical model.

Consider now the SIR diffusion approximation X(t) described in Section 3.2.2.1.
We have

b(θ ,(s, i)) =
(

−λ si
λ si− γi

)
; Σ(θ ,(s, i)) =

(
λ si −λ si
−λ si λ si+ γi

)
. (3.4.6)

Therefore,

∇θb(θ ,(s, i)) =
(
−si 0
si −i

)
;Σ−1(θ ,(s, i)) = 1

λγsi

(
λ s+ γ λ s

λ s λ s

)
.

The matrix Ib(θ) defined in (3.4.3) is

Ib(λ ,γ) =

(
1
λ
∫ T
0 s(t)i(t)dt 0

0 1
γ
∫ T
0 i(t)dt

)
.
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Therefore, we obtain the same information matrix in both cases.

Consider the SIRS model with immunity waning δ . We have θ = (λ ,γ,δ ) The
diffusion approximation satisfies

b(θ ,(s, i))=
(
−λ si+δ (1− s− i)

λ si− γi

)
; Σ(θ ,(s, i))=

(
λ si+δ (1− s− i) −λ si

−λ si λ si+ γi

)
.

Hence,

∇θb(θ ,s, i) =
(
−si 0 (1− s− i)
si −i 0

)
,

Ib(θ) =
∫ T

0
∇∗

θb(θ ,s(t), i(t))Σ−1(θ ,s(t), i(t))∇θb(θ ,s(t), i(t))dt.

Then Ib(θ) can be computed and compare to the Fisher information matrix derived
from the statistical model corresponding to complete observation of the SIRS jump
process.

3.4.2 Proof of Theorem 3.4.1

Recall the notations: for a matrix A, A∗ the transposition of A, det(A) the determinant
of A and Tr(A) the trace of A.

3.4.2.1 Step (1): Consistency of α̌ε ,∆

Let us define, using (3.3.10),

K1(α0,α,β ) =
∫ T

0
Γ (α0,α, t)∗Σ−1(β , t,z(α0, t))Γ (α0,α, t)dt. (3.4.7)

By Assumption (S4), if α 1= α0, b(α, t,z(α, t)) 1≡ b(α0, t,z(α0)), therefore the func-
tion Γ (α0,α, ·) 1≡ 0, which implies that K1(α0,α,β ) is non-negative and equal to 0
if and only if α = α0.

The contrast function Ǔε,∆ (α,β ) defined in (3.4.1) satisfies

Proposition 3.4.2. Assume (S1)–(S6). Then, as ε,∆ → 0, the following conver-
gences hold.

(i) supθ∈Θ |ε2
(
Ǔε,∆ (α,β )−Ǔε,∆ (α0,β )

)
−K1(α0,α,β )|→ 0 in Pθ0 -probability.

(ii) α̌ε ,∆ → α0 in probability under Pθ0 .

Proof. Let us prove (i). We have, by (3.4.1) and (3.3.9),

ε2(Ǔε,∆ (α,β )−Ǔε,∆ (α0,β )) = T1+T2
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with

T1 = 2
n

∑
k=1

(Bk(α,X)−Bk(α0,X))∗

∆
Σ−1
k−1(β ) Bk(α0,X),

T2 = ∆
n

∑
k=1

(Bk(α,X)−Bk(α0,X))∗

∆
Σ−1
k−1(β )

(Bk(α,X)−Bk(α0,X))
∆

.

By Lemma 3.3.7,
(Bk(α,X)−Bk(α0,X))

∆
is bounded, and (ii) of Lemma 3.3.8

yields that T1 goes to 0 in Pθ0 -probability. Using now (3.3.10), we have by Lemma
3.3.7, setting ζk = ∆rk+ ε ‖α −α0‖ηk,

T2 = ∆
n

∑
k=1

(Γ (α0,α, tk−1)+ζk−1)
∗Σ−1

k−1(β ) (Γ (α0,α, tk−1)+ζk−1)

= ∆
n

∑
k=1

(
Γ (α0,α, tk−1)

∗Σ−1
k−1(β )Γ (α0,α, tk−1)+Rk(θ0,θ ,ε,∆)

)
.

The first term of the above formula as a Riemann sum converges by Lemma 3.3.6 to
the function K1(α0,α,β ) defined in (3.4.7) as ∆ → 0. This convergence is uniform
with respect to the parameters. The remainder term is

Rk(θ0,θ ,ε,∆) =Γ (α0,α, tk−1)
∗(Σ−1

k−1(β )−Σ−1(β , tk−1,z(α0, tk−1)))Γ (α0,α, tk−1)

+∆R1
k(θ0,θ ,ε,∆)+ εR2

k(θ0,θ ,ε,∆).

Using Proposition 3.3.1 and Lemma 3.3.7, it is straightforward to get that
supk ‖Rk(θ0,θ ,ε,∆)‖ → 0 in Pθ0 -probability uniformly with respect to θ . Hence,
T2 converges to K1(α0,α,β ) in Pθ0 -probability uniformly with respect to θ .
Let us prove (ii). Noting that, for all β , K1(α0,α0,β ) = 0, we have

0≤K1(α0, α̌ε,∆ , β̌ε ,∆ )−K1(α0,α0, β̌ε,∆ )

≤ [ε2(Ǔε,∆ (α, β̌ε,∆ )−Ǔε ,∆ (α0, β̌ε,∆ ))−K1(α0,α, β̌ε,∆ )]

+ [K1(α0, α̌ε,∆ , β̌ε,∆ )− ε2(Ǔε ,∆ (α̌ε,∆ , β̌ε ,∆ )−Ǔε ,∆ (α0, β̌ε,∆ ))]

+ ε2[Ǔε,∆ (α̌ε ,∆ , β̌ε,∆ )−Ǔε,∆ (α, β̌ε,∆ )]

≤2 sup
β∈Kb

|ε2[Ǔε ,∆ (α,β )−Ǔε ,∆ (α0,β )]−K1(α0,α,β )|,

where the last inequality is obtained using that the minimum of Ǔε,∆ (α,β ) is
attained at (α̌ε,∆ , β̌ε,∆ ). By Proposition 3.4.2 (i), we finally get that

|K1(α0, α̌ε ,∆ , β̌ε,∆ )−K1(α0,α0, β̌ε,∆ )|→ 0,

which yields by Assumption (S6) that α̌ε,∆ →α0 in Pθ0 -probability as ε,∆ → 0. '(
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3.4.2.2 Step (2): Tightness of the Sequence ε−1(α̌ε,∆ −α0)

This step is crucial in the presence of different rates of convergence for α and β and
concerns results that hold for all β ∈ Kb.

Proposition 3.4.3. Assume (S1)–(S4) and that Ib(α0,β0) defined in (3.4.3) is non-
singular. Then, as ε,∆ → 0, supβ∈Kb

∥∥ε−1 (α̌ε ,∆ −α0
)∥∥ is bounded in Pθ0 -proba-

bility.

Proof. Recall the notation: for f a twice differentiable real function, ∇2
α f =

( ∂ 2 f
∂αi∂α j

)1≤i, j≤a.

Under (S5), Ǔε,∆ (α,β ) is C2 and a Taylor expansion of ∇αǓε,∆ at point (α0, β̌ε,∆ )
w.r.t. α yields,

0= ε∇αǓε,∆ (α̌ε,∆ , β̌ε,∆ ) = ε∇αǓε,∆ (α0, β̌ε,∆ )+ ε2Nε,∆ (α̌ε,∆ , β̌ε,∆ )
(α̌ε,∆ −α0)

ε
,

(3.4.8)

with Nε,∆ (α,β ) =
∫ 1

0
∇2

αǓε,∆ (α0+ t(α −α0),β )dt. (3.4.9)

The proof relies on two properties: under Pθ0 , as ε,∆ → 0, for all β ∈ Kb,
(ε∇αǓε,∆ (α0,β )) converges in distribution to a Gaussian law and the sequence
ε2∇2

αǓε,∆ (α0,β ) converges almost surely.
Let us study −ε∇αǓε,∆ (α0,β ). Define the a×a matrix

J(θ0,β ) =
∫ T

0
(∇αb(α0, t,z(α0, t)))∗Ξ(θ0,β , t)∇αb(α0, t,z(α0, t))dt, with

(3.4.10)

Ξ(θ0,β , t) = Σ−1(β , t,z(α0, t))Σ(β0, t,z(α0, t))Σ−1(β , t,z(α0, t)). (3.4.11)

The following holds.

Lemma 3.4.4. Assume (S1)–(S5). Then, as ε,∆ → 0,

−ε∇αǓε,∆ (α0,β )→N (0,4J(θ0,β )) in distribution under Pθ0 .

Proof. We have, using the notations of Lemma 3.3.9 and setting

Hi
k(α0,β ) = Σ−1(β , tk−1,z(α0, tk−1))∇αib(α0, tk−1,z(α0, tk−1)) (3.4.12)

−ε∇αiǓε ,∆ (α0,β ) =− 2
ε∆

n

∑
k=1

(∇αiBk(α0,X))∗Σ−1
k−1(β )Bk(α0,X) =Ai

n+A′,i
n +A′′,i

n ,

with

Ai
n =

2
ε

n

∑
k=1

Hi
k(α0,β )∗Bk(α0,X),
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A′,i
n = −2

n

∑
k=1

(Mi
k(α0)Zk−1(θ0))∗Σ−1

k−1(β )Bk(α0,X),

A′′,i
n = 2

n

∑
k=1

∇αiBk(α0,X)
∆

∗ Σ−1
k−1(β )−Σ−1(β , tk−1,z(α0, tk−1))

ε
Bk(α0,X).

By Lemma 3.3.8 (ii), Lemma 3.3.9 and Theorem 3.3.1, A′,i
n and A′′,i

n tend to 0 in
Pθ0 -probability as ε,∆ → 0.
To study Ai

n, we write, using the notations of Lemma 3.3.4,

Bk(α0,X) = ε
√

∆Tk(θ0)+ ε2(R(θ0, tk)−R(θ0, tk−1)) (3.4.13)

+ ε2(Ip−Φ(α0, tk, tk−1))R(θ0, tk−1).

Hence, Ai
n = Di

n+Ci
n+C′,i

n where, using (3.4.12),

Di
n = 2

√
∆

n

∑
k=1

(Hi
k(α0,β ))∗Tk(θ0), (3.4.14)

Ci
n = 2ε

n

∑
k=1

(Hi
k(α0,β ))∗(R(θ0, tk)−R(θ0, tk−1)) and

C′,i
n = 2ε∆

n

∑
k=1

(Hi
k(α0,β ))∗

1
∆
(Ip−Φ(α0, tk, tk−1))R(θ0, tk−1).

Let us first studyC′,i
n . Noting that

1
∆
(Ip−Φ(α0, tk, tk−1)) = ∇zb(α0,z(α0, tk−1))+∆O(1),

we have |C′,i
n |≤ εnC(θ0), withC(θ0) bounded in probability.

To studyCi
n, we first apply an Abel transform to the sequence and get

Ci
n = 2ε

n

∑
k=1

(Hi
k−1(α0,β )−Hi

k(α0,β ))∗R(θ0, tk−1)+ εHn
k (α0,β )∗R(θ0, tn).

The continuity assumptions ensure that supk≤n
1
∆
∥∥Hi

k−1(α0,β )−Hi
k(α0,β ))

∥∥ is
bounded. HenceCi

n → 0 since ‖R(θ0, tk)‖ is uniformly bounded.
It remains to study the main term Dn = (Di

n)1≤i≤a defined in (3.4.14). Let

Hk(α0,β ) = Σ−1
k−1(β )∇αb(α0, tk−1,z(α0, tk−1)).

Then (Dn) is a multidimensional triangular array which reads as Dn = ∑n
k=1 ζ n

k with
ζ n
k =

√
∆Hk(α0,β )∗Tk(θ0) ∈ Ra.

Note that Dn does not depend on ε and convergence results are obtained for ∆n → 0.
To apply to (Dn) a theorem of convergence in law for triangular arrays (Theorem
A.4.2 in the Appendix or [73] Theorem 2.2.14), we have to prove that,

(i) ∑n
k=1Eθ0(ζ n

k |G n
k−1) = 0,
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(ii) ∑n
k=1Eθ0(ζ

n,i
k ζ n, j

k |G n
k−1)→ Ji j(θ0,β ) (see Definition 3.4.10 below),

(iii) ∑n
k=1Eθ0((ζ

n,i
k )4|G n

k−1)→ 0.

Since Tk(α0) is centered, (i) is clearly satisfied. For (ii), consider for 1≤ i, j ≤ a,

Eθ0(ζ
n,i
k ζ n, j

k |G n
k−1) = ∆Hi

k(α0,β )∗Eθ0(Tk(θ0)T
∗
k (θ0))H

j
k (α0,β )

= ∆Hi
k(α0,β )∗Sk(α0,β0)H

j
k (α0,β ).

Noting that ‖Sk(θ0)−Σ(β0, tk−1,z(α0, tk−1)‖ ≤C∆ yields, using Definition 3.4.11,

Eθ0(ζ
n,i
k ζ n, j

k |G n
k−1)

= ∆(∇αib(α0, tk−1,z(α0, tk−1)))
∗Ξ(θ0,β , tk−1)∇α j b(α0, tk−1,z(α0, tk−1))

+∆ 2O(1).

Therefore, as a Riemann sum,

n

∑
k=1

Eθ0(ζ
n,i
k ζ n, j

k |G n
k−1)

→
∫ T

0
(∇αib(α0, t,z(α0, t)))∗Ξ(θ0,β , t)∇α j b(α0, t,z(α0, t))dt.

Checking (iii) is easily obtained since Eθ0((ζ
n,i
k )4|G n

k−1)≤ ∆ 2 supk,β ‖Hk(α0,β )‖.
Joining these results achieves the proof of Lemma 3.4.4. '(

Using (3.4.8) and 3.4.9, it remains to study the term

ε2∇2
αǓε ,∆ (α0+ t(α̌ε,∆ −α0), β̌ε,∆ )

We have ε2∇2
αiα j

Ǔε,∆ (α,β ) = ∑4
l=1A

i j
l with

Ai j
1 =

2
∆

n

∑
k=1

(∇αiBk(α0))
∗Σ−1

k−1(β )∇α jBk(α0),

Ai j
2 =

2
∆

n

∑
k=1

(∇αiBk(α)−∇αiBk(α0))
∗Σ−1

k−1(β )(∇α jBk(α)+∇α jBk(α0)),

Ai j
3 = 2

n

∑
k=1

1
∆
(∇2

αiα j
Bk(α))∗Σ−1

k−1(β )Bk(α0),

Ai j
4 = 2∆

n

∑
k=1

1
∆
(∇2

αiα j
Bk(α,X))∗Σ−1

k−1(β )
1
∆
(Bk(α,X)−Bk(α0,X)).

By Lemmas 3.3.6, 3.3.9 and 3.3.7, Ai j
2 and Ai j

4 satisfy
∥∥∥Ai j

l

∥∥∥≤CT ‖α −α0‖. Lemma

3.3.9 (ii) and Lemma 3.3.8 (ii) yield that Ai j
3 → 0.

The main term Ai j
1 satisfies, by Lemma 3.3.9 (i),
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Ai j
1 =2∆

n

∑
k=1

(∇αib(α0, tk−1,z(α0, tk−1)))
∗Σ−1

k−1(β )∇α j b(α0, tk−1,z(α0, tk−1))

+ εOP(1).

Theorem 3.3.1 yields that, under Pθ0 , Σ−1
k−1(β ) = Σ−1(β , t,z(α0, t)) + εOP(1).

Therefore, as a Riemann sum, we get, using (3.4.3), that Ai j
1 → (Ib(α0,β ))i j in Pθ0 -

probability as ε,∆ → 0. Joining these results, we get that, under Pθ0 , as ε,∆ → 0,
for all β , ε2∇2

αǓε ,∆ (α0,β )→ 2Ib(α0,β ). Using now the consistency of α̌ε,∆ yields
that

sup
β∈Kb

∥∥ε2∇2
αǓε ,∆ (α0+ t(α̌ε,∆ −α0),β )− ε2∇2

αǓε,∆ (α0,β )
∥∥≤ K

∥∥α̌ε,∆ −α0)
∥∥ .

(3.4.15)
Coming back to (3.4.8), it remains to prove thatNε,∆ (α̌ε,∆ ,β ) is non-singular. Under
(S3), Σ(β , t,z) is non-singular. Hence,

inf
β∈Kb

det

([∫ T

0
∇αib(α0, t,z(α0, t))∗Σ−1(β , t,z(α0, t))∇α j b(α0, t,z(α0, t)dt

]

1≤i, j≤a

)

≥ cdet

([∫ T

0
∇αib(α0, t,z(α0, t))∗∇α j b(α0, t,z(α0, t)dt

]

1≤i, j≤a

)
> 0.

Now, the consistency of α̌ε ,∆ implies that, using (3.4.9), Pε
θ0(det(ε

2Nε,∆ (α̌,β ))> 0)
tends to 1. Therefore (3.4.8) yields

ε−1(α̌ε,∆ −α0) =−(ε2N−1
ε,∆ (α̌ε,∆ , β̌ε,∆ )(ε∇αǓε ,∆ (α0, β̌ε,∆ ))

is tight. '(

3.4.2.3 Step (3): Consistency of β̌ε,∆

Let us now study the estimation for the diffusion parameter. Set

K2(α0,β0,β ) = 1
T
∫ T
0 Tr

(
Σ−1(β , t,z(α0, t))Σ(β0, t,z(α0, t))

)
dt

− 1
T
∫ T
0 logdet

(
Σ−1(β , t,z(α0, t))Σ(β0, t,z(α0, t))

)
dt − p

(3.4.16)
Using the following inequality for invertible symmetric p× pmatrices A, logdetA+
p≤ Tr(A), K2(α0,β0,β )≥ 0 and K2(α0,β0,β ) = 0 if and only if

{∀t ∈ [0,T ],Σ(β0, t,z(α0, t)) = Σ(β , t,z(α0, t)),

which implies β = β0 by (S7).
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Proposition 3.4.5. Assume (S1)–(S7). Then, if Ib(α0,β0) defined in (3.4.3) is non-
singular, the following holds in Pθ0 -probability, using (3.4.1), (3.4.2) and (3.4.16)

(i) supβ∈Kb
| 1n
(
Ǔ∆ ,ε(α̌ε ,∆ ,β )−Ǔ∆ ,ε(α̌ε ,∆ ,β0)

)
−K2(α0,β0,β )|→ 0 as ε,∆ → 0.

(ii) β̌ε,∆ → β0 as ε,∆ → 0.

Proof. Let us first prove (i). Using (3.4.1) and (3.3.9),we get
1
n
(
Ǔ∆ ,ε(α,β )−Ǔ∆ ,ε(α,β0)

)
= A1(β0,β )+A2(α,β0,β ) with

A1(β0,β ) =
1
n

n

∑
k=1

logdet(Σk−1(β )Σ−1
k−1(β0)), (3.4.17)

A2(α,β0,β ) =
1

n∆ε2
n

∑
k=1

Bk(α,X)∗(Σ−1
k−1(β )−Σ−1

k−1(β0))Bk(α,X). (3.4.18)

Using that, under (S5), z → log
(
det
[
Σ(β , t,z)Σ−1(β0, t,z)

])
is differentiable, an

application of Proposition 3.3.1 yields that, under Pθ0 ,

A1(β0,β )

=
∆
T

(
n

∑
k=1

log
(
det
[
Σ(β , tk−1,z(α0, tk−1))Σ−1(β0, tk−1,z(α0, tk−1))

])
+ εR1,ε

θ0,β
(tk−1)

)
,

with
∥∥∥R1,ε

α0,β ,β0

∥∥∥ uniformly bounded in probability. Hence, A1(β0,β ), as a Riemann

sum, converges to 1
T
∫ T
0 log

(
det
[
Σ(β , t,z(α0, t))Σ−1(β0, t,z(α0, t))

])
dt as ε,∆ →

0.
Applying Lemma 3.3.8 to Bk(α0,X) and the notations therein yields

A2(θ0,θ) =
∆
T

n

∑
k=1

Z∗
kMkZk+

4

∑
i=1

Λ i(θ0,θ), (3.4.19)

with

Zk =
1√
∆
(B(tk)−B(tk−1)) , Tk = Σ−1

k−1(β )−Σ−1
k−1(β0),Mk = σ∗

k−1(β0)Tk σk−1(β0),

and

Λ1(α,θ0) =
2
√

∆
ε

n

∑
k=1

E∗
k Tk Zk,

Λ2(α,θ0) =
1

Tε2
n

∑
k=1

E∗
k Ek,

Λ3(α,θ0) =
2

Tε2
n

∑
k=1

(B∗
k(α,X)−B∗

k(α0,X))Tk Bk(α0,X), and

Λ4(α,θ0) =
1

Tε2
n

∑
k=1

(B∗
k(α,X)−B∗

k(α0,X))Tk (Bk(α,X)−Bk(α0,X)).
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The random vectors Zk areN (0, Ip) independent of G n
k−1 andMk is G n

k−1-measurable.
Using that for Z ∼N (0, Ip), E(Z∗MZ) = Tr(M), we get

Eε
θ0(Z

∗
k Mk Zk|G n

k−1) = Tr(Mk) = Tr
(
Σ−1
k−1(β )Σk−1(β0)− Ip

)
.

Hence, the first term of A2(α0,β0,β ) converges to

1
T

∫ T

0
Tr
(
Σ−1(β , t,z(α0, t))Σ(β0, t,z(α0, t))

)
dt− p.

It remains to study the other terms of A2(α0,β0,β ). To study Λ1, let ζ n
k =√

∆
ε E∗

k Tk Zk.

We have, by Lemma 3.3.8 that, in Pθ0 -probability,

E(ζ n
k |G n

k−1)≤
√

∆
ε

sup‖Tk‖(E(‖Ek‖2 |G n
k−1))

1/2 ≤C∆ 3/2, and

E((ζ n
k )

2|G n
k−1)≤

∆
ε2

sup‖Tk‖2 ∆ 2ε2 ≤C∆ 3.

Therefore, by Lemma A.4.3, Λ1(α,θ0)→ 0 in Pθ0 -probability as ε,∆ → 0. Similar
arguments yield that Λ2(α,θ0)→ 0 in Pθ0 -probability.

For Λ3(α,θ0), set ζ n
k =

1
ε2

(B∗
k(α,X)−B∗

k(α0,X))Tk Bk(α0,X) Using Lemma 3.3.7
yields that

E(ζ n
k |G n

k−1)≤
‖α −α0)‖

ε
∆ 2OP(1), and

E((ζ n
k )

2|G n
k−1)≤

‖α −α0‖2

ε2
∆ 3OP(1),

so that ∑E(ζ n
k |G n

k−1)≤ ∆
∥∥α̌ε,∆ −α0)

∥∥
ε

. By Proposition 3.4.3, the sequence

(ε−1
∥∥α̌ε,∆ −α0

∥∥) is uniformly bounded in probability, so that ∑E(ζ n
k |G n

k−1)→ 0
and ∑E((ζ n

k )
2|G n

k−1)→ 0.

Another application of Lemma A.4.3 yields that Λ3(α̌ε,∆ ,θ0)→ 0. For Λ4, the

result is straightforward since |Λ4|≤ n∆ 2(

∥∥α̌ε,∆ −α0
∥∥

ε
)2. This achieves the proof

of (i).
Let us study (ii). We have, using (3.4.16),

0 ≤ K2(α0,β0, β̌ε,∆ )≤ [K2(α0,β0, β̌ε,∆ )−
1
n
(Ǔ∆ ,ε(α̌ε ,∆ , β̌ε,∆ )−Ǔ∆ ,ε(α̌ε ,∆ ,β0))]

+
1
n
(Ǔ∆ ,ε(α̌ε,∆ , β̌ε,∆ )−Ǔ∆ ,ε(α̌ε,∆ ,β0)).
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Noting that the last term of the above inequality is non-negative, (i) yields that
K2(α0,β0, β̌ε,∆ ) → 0, which ensures, by Assumption (S5), that β̌ε,∆ → β0 in Pθ0 -
probability. '(

3.4.2.4 Step (4): Asymptotic Normality

Let us now study the asymptotic properties of these estimators and achieve the proof
of Theorem 3.4.1. Let us define for θ = (α,β ),

Λε,n(θ) =

(
ε∇αǓε,∆ (α,β )
1√
n∇βǓε,∆ (α,β )

)
and (3.4.20)

Dε ,n(θ) =




ε2
(

∇2
αi,α j

Ǔε,∆ (θ)
)

1≤i, j≤a
ε√
n

(
∇2

αiβ j
Ǔε,∆ (θ)

)

1≤i≤a,1≤ j≤b
ε√
n

(
∇2

αiβ j
Ǔε,∆ (θ)

)

1≤i≤a,1≤ j≤b
1
n

(
∇2

βiβ j
Ǔε ,∆ (θ)

)

1≤i, j≤b



 .

(3.4.21)
A Taylor expansion at point θ0 yields,

(
0
0

)
= Λε,n(α̌ε,∆ , β̌ε,∆ ) (3.4.22)

= Λε,n(θ0)+
∫ 1

0
Dε,n(θ0+ t(θ̌ε ,∆ −θ0))dt

(
ε−1(α̌ε,∆ −α0)√

n(β̌ε ,∆ −β0)

)
.

Therefore, we have to prove that, under Pθ0 , as ε,∆ → 0 (or n= ∆−1/2 → ∞),

(i) −Λε,n(θ0)→N (0,4I(θ0)) in distribution,
(ii) supt∈[0,1]

∥∥Dε,n(θ0+ t(θ̌ε ,∆ −θ0))−2I(θ0)
∥∥→ 0 in probability.

Proof. Let us prove (i). We have that, for 1≤ i≤ a,

−ε∇αiǓε,∆ (α0,β0) =
n

∑
k=1

ξ i
k(θ0) with ξ i

k(θ0) =− 2
ε∆

B∗
k(α)Σ−1

k−1(β0)∇αiBk(α0).

(3.4.23)
Using that, for a positive symmetric matrixM(x),

d
dx

(logdetM(x)) = Tr
(
M−1(x)

d
dx

M(x)
)

and (3.3.9), set
Mj

k (β ) = Σ−1
k (β )∇β jΣk(β ). (3.4.24)

Then 1√
n∇β jǓε,∆ (α0,β0) = ∑n

k=1 η i
k(θ0) with

η j
k (θ0)=

1√
n
[Tr(Mj

k−1(β0))−
1

ε2∆
B∗
k(α0)M

j
k−1(β0)Σ−1

k−1(β0)Bk(α0,X)]. (3.4.25)



3.4 Inference Based on High Frequency Observations on [0,T ] 393

The proof that −ε∇αǓε ,∆ (α0,β0) converges to the Gaussian distribution
N (0, Ib(θ0)) is obtained by substituting β with β0 in the proof of Proposition 3.4.3.

Let us study − 1√
n

∇βǓε ,∆ (α0,β0). Let us first prove

Lemma 3.4.6. If M is a G n
k−1-measurable random matrix, then

1
ε2∆

E
(
B∗
k(α0)MΣ−1

k−1(β0)Bk(α0,X)|G n
k−1
)
= Tr(M)+∆Rk(ε,∆) (3.4.26)

with supk |Rk(ε,∆)| uniformly bounded in Pθ0 -probability.

Proof. Using Lemma 3.3.8,

E(B∗
k(α0)MΣ−1

k−1(β0)Bk(α0)|G n
k−1) =

p

∑
l,l′=1

(
MΣ−1

k−1(β0)
)
ll′ E(B

l
k(α0)Bl′

k (α0)|G n
k−1)

= ε2∆
p

∑
l,l′=1

(
MΣ−1

k−1(β0)
)
ll′ (Σk−1(β0))l′l +

p

∑
l,l′=1

(
MΣ−1

k−1(β0)
)
ll′ E(E

l
kE

l′
k |G n

k−1)

= ε2∆Tr(M)+Rk(ε,∆)

with |Rk(ε,∆)|≤Cε2∆ 2 in probability. '(

Let us study the convergence of the triangular array ∑n
k=1E(ξ i

k(θ0)). By Lemma
3.4.6, we have for j ≤ b,

n

∑
k=1

E(η j
k (θ0)|G

n
k−1) =

1
ε2∆

√
n

n

∑
k=1

Rk(ε,∆)≤ CT√
n
→ 0.

Consider now, for j1, j2 ≤ b, ∑n
k=1E(η

j1
k (θ0)η j2

k (θ0)|G n
k−1).

We have

E(η j1
k (θ0)η j2

k (θ0)|G n
k−1)

=
1
n
[Tr(Mj1

k−1(β0)M
j2
k−1(β0))−2TrMj1

k−1(β0))TrM
j2
k−1(β0)+C j1, j2

k (ε,∆)+∆OP(1)],

with

C j1 j2
k (ε,∆)

=
1

ε4∆ 2E
(
B∗
k(α0)M

j1
k−1(β0)Σ−1

k−1(β0)Bk(α0)B∗
k(α0)M

j2
k−1(β0)Σ−1

k−1(β0)Bk(α0)|G n
k−1

)
.

Therefore, omitting the parameters when there is no ambiguity,

C j1 j2
k (ε,∆)

= ∑
l1,l2,l3,l4

(Mj1
k−1Σ−1

k−1)l1l2(M
j2
k−1Σ−1

k−1)l3l4E
(
Bl1
k (α0)B

l2
k (α0)B

l3
k (α0)B

l4
k (α0)|G n

k−1

)
.
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Based on the property that, if Z is a p-dimensional Gaussian random variable
N (0,Σ), E(Zl1Zl2Zl3Zl4) = Σl1l2Σl3l4 +Σl1l3Σl2l4 +Σl1l4Σl2l3 , we get that

C j1 j2
k (ε,∆) =

(
Tr(Mj1

k−1M
j2
k−1)+2TrMj1

k−1TrM
j2
k−1+∆OP(1)

)
.

Therefore ∑n
k=1E(η

j1
k (θ0)η j2

k (θ0)|G n
k−1) =

2
n ∑n

k=1 Tr(M
j1
k−1M

j2
k−1)+∆OP(1).

Now, under Pθ0 , M
j
k (β0) = Σ−1(β0, tk,z(α0, tk))∇β jΣ(β0, tk,z(α0, tk))+ εOP(1) so

that, using (3.4.4), as ε,∆ → 0,

n

∑
k=1

E(η j1
k (θ0)η j2

k (θ0)|G n
k−1)→ 4(Iσ (θ0)) j1 j2 .

The proofs that ∑n
k=1E(

∥∥η i
k(θ0)

∥∥4 |G n
k−1)→ 0, ∑n

k=1E(ξ i
k(θ0)η

j
k (θ0)|G

n
k−1)→ 0 are

similar and omitted. Finally, applying the theorem of convergence in law for triangu-

lar arrays recalled in Section A.4 yields that
n

∑
k=1

η i
k(θ0)→N (0,4Iσ (θ0)). Joining

these results achieves the proof of (i). '(

It remains to study Dε,n(θ) defined in (3.4.21).

Proof. We have already proved that

sup
t∈[0,1]

∥∥∥ε2(∇2
αi,α j

Ǔε,∆ (θ0+ t(θ̌ε,∆ −θ0))−2(Ib(θ0))i j
∥∥∥→ 0

in probability. Consider now the term 1
n∇2

βi,β j
Ǔε ,∆ (α,β ). It reads as

∇2
βiβ j

Ǔε,∆ (α,β )

=
n

∑
k=1

(
Tr
(

∇βiM
j
k−1(β )

)
− 1

ε2∆
Bk(α)∗(∇βiM

j
k−1(β ))Σ

−1
k−1(β )Bk(α)

)

+
1

ε2∆

n

∑
k=1

Bk(α)∗Mj
k−1(β )M

i
k−1(β )Σ−1

k−1(β )Bk(α).

Let us define the matrices, for 1≤ i, j ≤ b,

Mi(α,β , t) = Σ−1(β , t,z(α, t))∇βiΣ(β , t,z(α, t)), and (3.4.27)

T i j
k (β ) = [Mj

k (β )M
i
k(β )−∇βiM

j
k (β )]Σ

−1
k−1(β ). (3.4.28)

Using (3.4.26) yields that the first term of ∇2
βiβ j

Ǔε ,∆ (α0,β0) is uniformly bounded

in probability and that the second term satisfies ∑n
k=1(Tr

(
Mj

k−1(β0)Mi
k−1(β0)

)
+

∆OP(1)). Hence,

1
n

∇2
βiβ j

Ǔε ,∆ (α0,β0)→− 1
T

∫ T

0
Tr(Mj(α0,β0, t)Mi(α0,β0, t))dt.
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It remains to prove that, under Pθ0 ,

sup
t∈[0,1]

1
n

∥∥∥∇2
βiβ j

Ǔε,∆ (θt)−∇2
βiβ j

Ǔε,∆ (θ0)
∥∥∥→ 0

with θt = θ0+ t(θ̌ε,∆ −θ0) and that the terms

ε√
n
(∇2

αiβ jǓε,∆ (α,β )−∇2
αiβ j

Ǔε,∆ (α0,β0))→ 0.

These two proofs rely on similar tools and are omitted. '(

3.5 Inference Based on Low Frequency Observations

Consider now the case where the sampling interval ∆ is fixed and the time interval
for observations is fixed. It follows that the number of observation points n = T/∆
is finite. We prove that only parameters in the drift function can be consistently
estimated. This agrees with the previous results where the rate of estimation of pa-
rameter β in the diffusion coefficient is

√
n in the high frequency set-up. Some-

times, when modeling epidemic dynamics, a parameter is added in the SIR model
to take account of larger fluctuations, substituting the term

√
SI by (S(t)I(t))a in

the diffusion term. While in the “High frequency” set-up, this parameter a can be
consistently estimated, this is no longer true for a fixed sampling interval.

In order to illustrate that β cannot be consistently estimated in this set-up, we
study the inference on a simple example, the one-dimensional Brownian motion
with drift on [0,T ].

3.5.1 Preliminary Result on a Simple Example

Let us consider the estimation of (α,β ) as ε → 0 and n= T/∆ finite, for the process

dX(t) = αdt+ εβdB(t); X(0) = 0. (3.5.1)

The observations are (X(tk),k= 1, . . . ,n). The n random variables (X(tk)−X(tk−1))
are independent Gaussian with distribution N (α∆ ,ε2β 2∆). The likelihood is ex-
plicit and the maximum likelihood estimators are

α̂ε =
X(T )
T

; β̂ 2
ε =

1
n∆ε2

n

∑
k=1

(X(tk)−X(tk−1)−∆α̂ε,∆ )
2. (3.5.2)

Under Pθ0 , α̂ε = α0+ εβ0
B(T )
T

. Therefore, as ε → 0, α̂ε → α0 and ε−1(α̂ε −α0) =

β0
B(T )
T is a Gaussian random variableN (0,

β 2
0
T

).
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The MLE of β 2
0 is β̂ 2

ε = β 2
0 (

1
n

n

∑
k=1

Z2
k −

1
n
B(T )2

T
), where (Zk,k = 1, . . . ,n) are

i.i.d.N (0,1).
Hence, since n is fixed, β̂ 2

ε is a fixed random variable which does not depend on ε
with expectation β 2

0 (1−
1
n
) 1= β 2

0 , implying that it is a biased estimator of β 2
0 .

This simple example shows that parameters in the diffusion coefficient cannot be
estimated as ε → 0.

3.5.2 Inference for Diffusion Approximations of Epidemics

Considering equation (3.3.1), three cases might occur: β unknown; β known or
Σ(β ,x) = φ(β )Σ(x) (with φ(β ) a known real function onR+); β present in the drift
coefficient (e.g. β = ϕ(α) with ϕ a known function). This last case systematically
occurs for the diffusion approximation of epidemic dynamics: the parameters ruling
the jump process modeling the epidemic dynamics are both present in the drift and
in the diffusion coefficients, i.e. β ≡ α . For example, the diffusion approximation of
the SIR, we have, setting α = (λ ,γ), that the drift term is b(α,z) and the diffusion
term is Σ(α,z)

Having in mind epidemics, we study here this case and assume that, under Pα ,

dX(t) = b(α, t,X(t))dt+ εσ(α, t,X(t))dB(t), X(0) = x. (3.5.3)

The time interval is [0,T ], the sampling interval is ∆ with T = n∆ , and both T,∆ ,n
are fixed.

The observations consist of the n random variables (X(tk),k = 1, . . . ,n) with
tk = k∆ . As in the previous section, the inference is based on the random variables
Bk(α,X) defined in (3.3.7), which satisfy using Lemma 3.3.4

Bk(α,X)= ε
√

∆Tk(α)+ε2Dε
k(α), with Dε

k =Rε(α, tk)−Φ(α, tk, tk−1)Rε(α, tk−1).
(3.5.4)

Tk(α) =
1√
∆

∫ tk

tk−1
Φ(α, tk,u)σ(α,u,z(α,u))dB(u), (3.5.5)

Sk(α) =
1
∆

∫ tk

tk−1
Φ(α, tk,u)Σ(α,u,z(α,u))Φ∗(α, tk,u)du. (3.5.6)

This leads to define the contrast function depending now on (X(t1), . . . ,X(tn)),

Ūε
(
α,(Xtk)

)
= Ūε(α) =

n

∑
k=1

logdetSk(α)+
1

ε2∆

n

∑
k=1

B∗
k(α,X)S−1

k (α)Bk(α,X).

(3.5.7)
Denote by α0 the true value of the parameter and Θ the parameter set. We assume

(S4b): Θ a compact set of Ra ; α ∈ Int(Θ).
(S5b): Assumption (S5) on b(α, t,z) and σ(α, t,z).
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(S6b): α 1= α0 ⇒ {∃k, 1≤ k ≤ n, z(α, tk) 1= z(α0, tk)}.

The estimator is defined as any solution of

ᾱε = argmin
α∈Ka

Ūε
(
α,(Xtk)

)
. (3.5.8)

Let us study the properties of ᾱε . For this, define, using (3.5.6), the p× a matrix
Gk(α) = (G1

k , . . . ,G
a
k) and the a×a matrixM(α),

M(α) = ∆
n

∑
k=1

Gk(α)∗Sk(α)−1Gk(α), with (3.5.9)

Gi
k(α) =

1
∆
(−∇αi z(α, tk)+Φ(α, tk, tk−1)∇αi z(α, tk−1)). (3.5.10)

Then, the following holds

Theorem 3.5.1. Assume (S1)–(S3), (S4b)–(S6b). Then, as ε → 0, under Pα0 ,

(i) ᾱε → α0 in probability.
(ii) If moreover M(α0) defined in (3.5.9) is non-singular, then

ε−1(ᾱε −α0)→Na(0,M−1(α0))

in distribution.

Proof. Let us first prove (i). Define, using (3.5.4), (3.5.6),

K̄∆ (α0,α) =
1
∆

n

∑
k=1

B∗
k(α,z(α0, ·))S−1

k (α)Bk(α,z(α0, ·)). (3.5.11)

Since Bk(α0,z(α0, ·)) = 0, K̄∆ (α0,α) ≥ 0 and K̄∆ (α0,α0) = 0. Assume now that
K̄∆ (α0,α) = 0. Then, for all k ∈ {1, ..n},

z(α, tk)− z(α0, tk) = Φ(α, tk, tk−1)(z(α, tk−1)− z(α0, tk−1)).

The matrix Φ(α, tk, tk−1) being non-singular, the identifiability Assumption (S6b)
implies that α = α0.
Since the sum in (3.5.7) is finite, we get, using (3.3.7) and Proposition 3.3.1, that
sup

α∈Ka

|ε2Ūε(α)− K̄∆ (α0,α)|→ 0 in Pθ0 -probability as ε → 0. Therefore, we have

0 ≤ K̄∆ (α0, ᾱε)− K̄∆ (α0,α0)

≤ 2 sup
α∈Ka

|ε2Uε(α)− K̄∆ (α0,α)|+ ε2|Uε(ᾱ)−Uε(α0)|

≤ 2 sup
α∈Ka

|ε2Uε(α)− K̄∆ (α0,α)|.

Then the proof of (i) is achieved by means of the identifiability Assumption (S6b).
Let us now prove (ii). To study the asymptotic properties of ᾱε as ε → 0, we

write, for i, j ≤ a,
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0= ε∇αiŪε(ᾱε)

= ε∇αiŪε(α0)+ ε2
a

∑
j=1

(
∫ 1

0
(∇2

α jαi
Ūε(α0+ t(ᾱε −α0))dt) (

ᾱ j
ε −α j

0
ε

).

Consider first ε∇αŪε(α0). Using (3.3.7) and (3.5.6), for i= 1, . . . ,a, it reads as

ε∇αiŪε(α0) = ε
n

∑
k=1

∇αi logdetSk(α0)+
1

ε∆

n

∑
k=1

B∗
k(α0) ∇αiS

−1
k (α0)Bk(α0)

+
2

ε∆

n

∑
k=1

(∇αiB
∗
k(α0)) S−1

k (α0)Bk(α0) = Ai
1(α0)+Ai

2(α0)+Ai
3(α0).

Since ∇αi log(detSk(α0)) = Tr(S−1
k (α0)∇αiSk(α0)), Ai

1(α0) is well defined and, un-
der the regularity assumptions, Ai

1(α0) = nεO(1), which goes to 0 as ε → 0, n being
fixed.

Applying Lemma 3.3.4 for the variables Tk(α0), Dε
k(α0) yields that

Ai
2(α0) = ε

n

∑
k=1

T ∗
k (α0)∇αiS

−1
k (α0)Tk(α0)

+2
ε√
∆

n

∑
k=1

T ∗
k (α0)∇αiS

−1
k (α0)(εDε

k(α0))

+
ε
∆

n

∑
k=1

(εDε
k(α0))

∗∇αiS
−1
k (α0)(εDε

k(α0)).

It follows from Lemma 3.3.4, that supk
∥∥εDε

k(α0)
∥∥ is bounded. Therefore, Ai

2(α0)→
0 in Pα0 -probability.

Let us study the main term (Ai
3(α) of ε∇αiŪε(α0).

Using Proposition 3.3.1 and (3.3.7), (3.5.10) yields that, under Pα0 ,

∇αiBk(α0) = ∆Gi
k(α0)− ε(∇αiΦ(α0, tk, tk−1)(g(α0, tk−1)+ εRε(α0, tk−1))),

(3.5.12)
where supk ‖εR(α, tk)‖ is uniformly bounded in probability. Therefore,

Ai
3(α0) = 2

√
∆

n

∑
k=1

((Gi
k(α0))

∗S−1
k (α0)Tk(α0)+ εR′

k(α0)),

with R′
k(α0) uniformly bounded in probability. By Lemma 3.3.4, (Tk(α0)),k =

1, . . . ,n) are independent centered Gaussian random variables with covariance ma-
trix Sk(α0). We that A3(α0) = (A1

3(α0), . . . ,A3(α0))∗ converges to the Gaussian ran-
dom variableNa(0,4M(α0)). Joining all these results yields that

−ε∇αŪε(α0)→Na(0,4M(α0)) with

M(α0) = (M(α0))i j = ∆
n

∑
k=1

(Gi
k(α0))

∗S−1
k (α0)G

j
k(α0).
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Consider ε2∇2
α jαi

Ūε(α). Similar computations yield that

ε2∇2
α jαi

Ūε(α0) = 2∆
n

∑
k=1

(Gi
k(α0))

∗S−1
k (α0)G

j
k(α0)+nεOP(1).

Therefore, for all 1≤ i, j ≤ a,

ε2∇2
αiα j

Ūε(α0)→ 2Mi j(α0) Pα0a.s. as ε → 0.

It remains to study supt∈[0,1] |ε2∇2
α jαi

Ūε(α0+ t(ᾱε −α0))− ε2∇2
α jα j

Ūε(α0)|.
We have ε2∇2

α jαi
Ūε(α) = 1

∆ (A
i j
1 (α)+Ai j

2 (α)), where

Ai j
1 (α) = 2

n

∑
k=1

∇αiB
∗
k(α)S−1

k (α)∇α jBk(α), Ai j
2 (α) =

n

∑
k=1

Z∗
k (α)Bk(α)

with

Z∗
k (α) = 2∇α jB

∗
k(α)∇αiS

−1
k (α)+B∗

k(α)∇2
αiα j

S−1
k (α)+2∇αiB

∗
k(α)∇α j S

−1
k (α)

+2∇2
αiα j

B∗
k(α)S−1

k (α).

Similarly to the previous section, we need that, under Pα0 , the properties stated
below hold.

‖Bk(α)−Bk(α0)‖ ≤ ‖α −α0‖(C1+C2OP(1)) uniformly with respect to k,α;
(3.5.13)

∥∥∥∥
1
ε
Bk(α0)

∥∥∥∥ are uniformly bounded random variables; (3.5.14)

sup
k≤n,α∈Θ

‖∇αiBk(α)‖= OP(1); and ‖∇αiBk(α)−∇αiBk(α0‖ ≤C1 ‖α −α0‖ .

(3.5.15)
The proofs of these properties are similar to the previous section and omitted.

Therefore,

Ai j
2 (α)−Ai j

2 (α0) =
n

∑
k=1

(Z∗
k (α)−Z∗

k (α0))Bk(α0)+
n

∑
k=1

Z∗
k (α)(Bk(α)−Bk(α0)).

Using (3.5.13), (3.5.14) we get

|Ai j
2 (α)−Ai j

2 (α0)|≤ sup‖Zk(α)‖(2nε sup
∥∥∥∥
Bk(α0)

ε

∥∥∥∥+‖α −α0‖(C1+C2OP(1)).

Consider now Ai j
1 (α)−Ai j

1 (α0). It reads as
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Ai j
1 (α)−Ai j

1 (α0) =2
n

∑
k=1

[∇αiB
∗
k(α)S−1

k (α)(∇α jBk(α)−∇α jBk(α0))]

+ [∇α jB
∗
k(α)S−1

k (α)(∇αiBk(α)−∇αiBk(α0))]

+ [∇αiB
∗
k(α)(S−1

k (α)−S−1
k (α0))∇α jBk(α0)].

Hence,
∥∥∥A1i j(α)−Ai j

1 (α0)
∥∥∥≤ 2nC‖α −α0‖.

Using the consistency ᾱε , we get that

sup
t∈[0,1]

|ε2∇2
α jαi)

Ūε(α0+ t(ᾱε −α0))− ε2∇2
α jα j

Ūε(α0)|→ 0.

This achieves the proof of (ii) and of Theorem 3.5.1. '(

3.5.2.1 Comments

(1) The term ∑n
k=1 logdetSk(α) could have been omitted in the definition of Ūε(α).

It has no influence on the asymptotic properties of ᾱε . However, we have observed
in the simulation results that it yields better estimators (less biased). An explanation
lies in the fact that in practice ε is small, but probably not enough to compensate
this first term. the observations of less biased estimators non-asymptotically.

(2) In [60], we considered the case of an unknown parameter β in the diffu-
sion coefficient and therefore used a Conditional Least Square estimator based
on Uε(α) = ∑n

k=1B
∗
k(α)Bk(α). The CLS estimator obtained is consistent. It con-

verges at the same rate, but with a larger covariance matrix J−1
∆ (α)I∆ (α)J−1

∆ (α)

with Ji j∆ = ∑n
k=1(G

i
k(α))∗Gj

k(α) and I∆ (α) = ∑n
k=1(G

i
k(α))∗Sk(α)Gj

k(α).

(3) We can compare the result of Theorem 3.5.1 to the inference of an unknown
parameter in the drift coefficient for a continuously observed diffusion on [0,T ] in
the asymptotics ε → 0. According to [91], assuming a known diffusion coefficient
εσ(x), the Maximum Likelihood Estimator is consistent and the Fisher information
matrix is

(Ib(α0,β0))i j =
∫ T

0
(∇αib(α0,z(α0,s)))∗Σ−1(z(α0,s))∇α j b(α0,z(α0,s))ds.

(3.5.16)
To compare the estimator ᾱε,∆ with the CLS estimator, we can study the limits of
the two Information matrices when ∆ goes to zero. Using that z(α, ·) satisfies the
ODE (3.2.8), we have,

Gk(α0) =−∇αb(α0,z(α0, tk−1))+o∆ (1), as ∆ goes to zero. (3.5.17)

This result together with Lemma 3.3.5 implies that I∆ (α0,β0) → Ib(α0,β0) as
∆ → 0. Since Ib(α0,β0) is the optimal information matrix for continuous time ob-
servation, this convergence provides some kind of optimality result for fixed ∆ .
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Consider now the covariance matrix of the CLS estimator. We have, ε → 0,

(J∆ (α))i j →
∫ T

0
∇αib(α0,z(α0, t))∗∇α j b(α0,z(α0, t))dt, and

(I∆ (α))i j →
∫ T

0
∇αib(α0,z(α0, t))∗Σ(β0,z(α0, t))∇α j b(α0,z(α0, t))dt.

This clearly differs from the optimal asymptotic variance and confirms that the
CLS estimator is not efficient. However, it might be easier to minimize the CLS
function ∑n

k=1Gk(α)∗Gk(α) than the actual contrast function
∑n
k=1Gk(α)∗S−1

k−1(α)Gk(α). Therefore this CLS estimator can be useful to serve
as an initialization for other computations or algorithms.

3.6 Assessment of Estimators on Simulated Data Sets

We consider two examples of epidemic dynamics, the SIR and the SIRS presented
in the first part of these notes and recalled in Section 3.2.2 for the diffusion approx-
imation. We used the Gillespie algorithm (see Part I of these notes) to simulate the
SIR epidemic dynamics (Z N(t),0≤ t ≤ T ) and, for the SIRS model, the τ-leaping
method ([21]), which is more efficient for large populations.

As pointed in the introduction, diffusion approximations are relevant in case of
a major outbreak in a large community. Therefore, we keep only in the analysis
what we called “non-extinct trajectories”, chosen according to a frequently used
empirical criterion: we keep epidemic trajectories such that the final epidemic size
is larger than the observed empirical size minus the standard empirical error of the
final epidemic size.

The inference is based only on non-extinct trajectories . Since we possess, for
each simulation, the whole sample path of the epidemic process, we can compute
the maximum likelihood estimator (see Chapter 4 of this part) which depends on the
whole path of the jump process. For instance, for the SIR case, the MLE is

λ̂N =
1
N

# Infections
∫ T
0 SN(t)IN(t)dt

; γ̂N =
1
N
# Recoveries
∫ T
0 IN(t)dt

. (3.6.1)

We call this MLE based on complete epidemic data the reference estimator.
This is the best result that can be achieved from these epidemic data.

In order to investigate the influence of various parameters, we consider various
scenarios. Each scenario corresponds to the choice of the model, the parameters
θ , the population size N, the time interval of observation [0,T ] and the sampling
interval ∆ . We proceeded to 1000 repetitions for each scenario.
Hence, we varied the total size of the population N, the parameters ruling the SIR,
SIRS epidemics, the time interval for observations [0,T ]. Then, we sampled with
sampling ∆ each path of the Markov jump process. This sampling interval also
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varies. Therefore the observations coming from the simulations are

Z N(k∆)

N
= ZN(k∆) k = 1, . . . ,n with T = n∆ .

Each scenario corresponds to the choice of the model, the parameters θ , the
population size N, the time interval of observation [0,T ] and the sampling interval
∆ .

We compare the estimators obtained with the method described in the two previ-
ous sections with the MLE (3.6.1). The properties of our minimum contrast estima-
tors are assessed and compared to reference estimators.
For parameters with dimension greater than two, confidence ellipsoids are projected
on planes, by considering all pairs of parameters. Theoretical confidence ellipsoids
are built as follows. Let V (θ0) denote the covariance matrix of the asymptotic nor-
mal distribution of parameters estimation in drift term (i.e. I−1

b (θ0) defined in (3.4.3)
and M−1(θ0) defined in (3.5.9). Since ε−1V (θ0)−1/2(θ̂ε ,∆ − θ0) →L N (0, Ik)
(where θ̂ε,∆ represents α̌ε,∆ obtained minimizing (3.4.1) or η̄ε,∆ in (3.5.8) Then,
for k = a (dimension of α), we have,

1
ε2

(θ̂ε ,∆ −θ0)∗V (θ0)−1(θ̂ε,∆ −θ0)→L χ2(k). (3.6.2)

The matrix V (θ0)−1 being positive, the quantity (θ̂ε,∆ −θ0)∗V (θ0)−1(θ̂ε ,∆ −θ0) is
the squared norm of vector θ̂ε,∆ −θ0 for the scalar product associated toV (θ0)−1. If
we denote by χ2

k (0.95) the 95% quantile of the χ2
k distribution, the relation (3.6.2)

could be rewritten as ||(θ̂ε,∆ −θ0)2M(θ0)−1||≤ ε2χ2
k (0.95) and define an ellipsoid

in Rk.
Empirical confidence ellipsoids are based on the variance-covariance matrix of cen-
tered estimators (based on 1000 independent estimations), whose eigenvalues define
the axes of ellipsoids.
In the two epidemic models detailed below, we assume both components of ZN(t) =
SN(t), IN(t) are observed with sampling interval ∆ , ((SN(k∆), IN(k∆)),k = 1, . . .n)
with T = n∆ .

3.6.1 The SIR Model

The parameters of interest for epidemics are considered following a reparameteriza-
tion: the basic reproduction number, R0 =

λ
γ , which represents the average number

of secondary cases generated by one infectious in a completely susceptible pop-
ulation, and the average infectious duration, d = 1

γ . Two values were tested for
R0 = {1.5,5} and d was set to 3 (in days, an average value consistent with influenza
infection). Three values for the population size N = {400,1000,10000} and of the
number of observations n= {5,10,40} were considered, along with two values for
the final time of observation, T = {20,40} (in days). For each scenario defined by



3.6 Assessment of Estimators on Simulated Data Sets 403

a combination of parameters, the analytical maximum likelihood estimator (MLE),
calculated from the observation of all the jumps of the Markov process (see 4), was
taken as reference.

Effect of the parameter values {R0,d} and of the number of observations n
The accuracy of the two estimators α̌ε,∆ and ᾱε , for N = 1000 and from trajectories
with weak (R0 = 5) and strong (R0 = 1.5) stochasticity is illustrated in Figure 3.6.1.
We observe that R0 and d are moderately correlated (ellipsoids are deviated with
respect to the x-axis and y- axis). The shape of confidence ellipsoids depends on
parameter values: for R0 = 5, the 95% confidence interval is larger for R0 than for d,
whereas the opposite occurs for R0 = 1.5. For R0 = 5, all these confidence intervals
are almost superimposed, which suggests that the estimation accuracy is not altered
by the fact that all the jumps are not observed. However, for R0 = 1.5 the shape of
ellipsoids varies with n. Point estimates for MLE derived for complete observation
of (Z N(t) of the original jump process and the estimators α̌ε ,∆ , ᾱε are very similar
for different values of n, which confirms the interest of using these estimators when
small number of observations is available.

Fig. 3.6.1 Point estimators (+) are computed by averaging over 1000 independent simulated tra-
jectories of the SIR stochastic model (completely observed) together with their associated the-
oretical confidence ellipses centered on the true value: MLE with complete observations (red),
CE for one observation/day, n = 40 (blue) and CE for n = 10 (black). Two scenarios are il-
lustrated: (R0,d,T ) = {(1.5,3,40);(5,3,20)}, with N = 1000. For both scenarios (S(0), I(0)) =
(0.99,0.01).The value of d is reported on the y-axis. Horizontal and vertical dotted lines cross at
the true value
.

Effect of the parameter values {R0,d} and of the population size N From Figure
3.6.2, we can notice that

√
N has an impact on estimation accuracy (the width of the

confidence intervals decreases with
√
N). The case of very few observations (n= 5)

leads to the largest confidence intervals. TheMLE appears biased for N = 400. This
could be due to the fact that theMLE is optimal when data represent a ‘typical’ real-
ization (i.e. a trajectory that emerges leading to a non-negligible number of infected
individuals) of the Markov process, but could yield a bias when observations are far
from the average behaviour. OurCEs seem robust to the departure from the ‘typical’
behaviour (i.e. for noisy trajectories obtained either for small N or small R0).
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Fig. 3.6.2 Point estimators (+) computed by averaging over 1000 independent simulated trajecto-
ries of the SIR stochastic model completely observed and their associated theoretical confidence
ellipses centered on the true value: MLE with complete observations (red), CE for one obser-
vation/day, n = 40 (blue), CE for n = 10 (black) and CE for n = 5 (green) for (S(0), I(0)) =
(0.99,0.01), (R0,d) = (1.5,3) and N = {400,1000,10000} (from left to right). Horizontal and
vertical dotted lines cross at the true value.

3.6.2 The SIRS Model

For the SIRS model introduced in Section 3.2.2.2, four parameters were estimated:
R, d, λ1 and δ . Concerning the remaining parameters,µ was set to 1/50 years−1

(a value usually considered in epidemic models), Tper was set to 365 days (corre-
sponding to annual epidemics) and η was taken equal to 10−6 (which corresponds
to 10 individuals in a population size of N = 107). We should notice that instead
of estimating the real R0 (more complicated to calculate for periodical dynamics),
we prefer to estimate a parameter combination similar to the R0 for SIR model,
λ0/γ , which was called here R.The performances of CEs were assessed on param-
eter combinations: (R,d,λ1,δ ) = {(1.5,3,0.05,2) and (1.5,3,0.15,2)} and T = 20
years, with λ1 = 0.05 leading to annual cycles and λ1 = 0.15 to biennial dynamics
(Figure 3.2.2). Numerically, the scenarios considered are consistent with influenza
seasonal outbreaks. The accuracy of estimation is relatively high, as illustrated in
Figure 3.6.3, regardless of the parameter. For one observation per day (which can
be assimilated to a limit of data availability), the accuracy is very similar to the
one based on a complete observation of the epidemic process (blue and red ellip-
soids respectively). Estimations based on one observation per week are less but still
reasonably accurate.

3.7 Inference for Partially Observed Epidemic Dynamics

In the case of epidemics, numbers of susceptible and infected individuals over time
are generally not observed. In practice, (sometimes noisy) observations are often as-
sumed to correspond to cumulated numbers, over the sampling interval ∆ , of newly
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Fig. 3.6.3 Point estimators (+) computed by averaging over 1000 independent simulated trajec-
tories of the SIRS stochastic model with demography and seasonal forcing in transmission, com-
pletely observed (red), and their associated planar projections of theoretical confidence ellipsoids
centered on the true value:CE for one observation/day (blue) and for one observation/week (black)
for (R,d,λ1,δ ) = (1.5,3,0.15,2), T = 20 years and N = 107. Asymptotic confidence ellipsoids
(n→ ∞) are also represented (red,blue,black). Horizontal and vertical dotted lines cross at the true
value.

infected individuals (i.e.
∫ tk
tk−1

λS(s)I(s)ds). In the SIR diffusion model, this corre-
sponds to the recovered individuals {(R(tk)−R(tk−1)),k= 1, . . .n} for diseases with
short duration of the infected period. Hence, this situation can be assimilated, as a
first attempt, to the case where only one coordinate can be observed.

In this section, we consider the case of a two-dimensional diffusion process X(t) =
(X1(t),X2(t))∗

dX(t) = b(α,X(t))dt+ εσ(β ,X(t)dB(t))dt; X(0) = x, (3.7.1)

where B(t) is a Brownian motion on R2 and x non-random.
We assume that only the first coordinate X1(t) is observed on a fixed time interval

[0,T ] with sampling ∆ . We consider the diffusion on R2 satisfying the stochastic
differential equation Therefore, the observations are now

X1(tk), k = 1, . . .n, with tk = k∆ , T = n∆ . (3.7.2)

For continuous observations of (X1(t)) on a finite time interval [0,T ], two stud-
ies [79], [92] are concerned with parametric inference in this statistical framework.
Both studied the maximum likelihood estimator of parameters in the drift function
for a diffusion matrix equal to ε2Ip. This likelihood is difficult to compute since it
relies on integration on the unobserved coordinate. [79], [92] proposed filtering ap-
proaches to compute this likelihood, as it is done for general HiddenMarkovModels
(see e.g. [22] , [37]). Here, we can take advantage of the presence of ε and extend
to partial observations the method by contrast processes and M- estimators that had
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been developed for complete observations ([46], [56], [60]), [118]).

We study the case of small (or high frequency) sampling interval, ∆ = ∆n → 0, on a
fixed time interval [0,T ] with T = n∆ , which yields explicit results. This allows us
to disentangle problems coming from discrete observations and those coming from
the missing observation of one coordinate and hence provides a better understanding
of the problems rising in this context. The case of ∆ fixed could be studied similarly,
with more cumbersome notations and no such insights .

First, the notations required are introduced, results are then stated, and finally,
to illustrate this approach, the example of a two-dimensional Ornstein–Uhlenbeck
process, where all the computations are explicit is developed. The consequences on
diffusion approximations of Epidemic models where computations are no longer
explicit are detailed later.

3.7.1 Inference for High Frequency Sampling of Partial
Observations

Some specific notations need to be introduced.
For x ∈ R2, Xε(t), the diffusion process, B(t) the Brownian motion, and M a 2×2
matrix, we write

x=
(
x1
x2

)
; X(t) =

(
X1(t)
X2(t)

)
; B(t) =

(
B1(t)
B2(t)

)
; M =

(
M11 M12
M21 M22

)
. (3.7.3)

For functions f (θ ,x) defined for x ∈ R2, we use (3.3.3) for differentiating with
respect to x and (3.3.3), (3.3.4) for differentiation with respect to θ .
The observations are (X1(k∆),k = 0, . . .n). Since x2 is not observed and unknown,
we add it to the parameters. Therefore, setting x2 = ξ , define using (S4),

η = (α,ξ ) ∈ Ra+1; θ = (α,ξ ,β ) = (η ,β ) ∈ Ra+b+1. (3.7.4)

The quantities introduced in (3.2.15) depend on α , η or θ and can be written, using
(3.7.3), The expansion of X(t) stated in (3.2.15) yields that X1(t) satisfies, using
notations (3.7.3),

X1(t) = z1(η , t)+ εg1(θ , t)+ ε2Rε
1(θ , t) with (3.7.5)

g1(θ , t) =
∫ t

0
(Φ(η , t,u)σ(β ,z(η ,u)))11 dB1(u)

+(Φ(η , t,u)σ(β ,z(η ,u)))12 dB2(u). (3.7.6)

Using that Φ(t,u) = Φ(t,s)Φ(s,u) yields another expression for g1(θ , tk),

g1(θ , tk) = (Φ(η , tk, tk−1)g(θ , tk−1))1
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+
∫ tk

tk−1
(Φ(η , t,u)σ(β ,z(η ,u)))11 dB1(u)

+(Φ(η , t,u)σ(β ,z(η ,u)))12 dB2(u). (3.7.7)

For estimating the unknown parameters, we use, instead of a filtering approach, the
stochastic expansion of X(t), where the unobserved component X2(t) is substituted
by its deterministic counterpart z2(η , t). For building a tractable estimation function,
we also simplify the expression of Bk(α,X) (see (3.3.7)) by replacing Φ(η ; tk, tk−1)
by its first-order approximation I2+∆∇xb(α,z(η , tk−1)), so that Φ11(η , tk, tk−1) C
1+∆∇x1b1(α,z(η , tk−1)).

The path used in (3.3.7) is
(

X1(t)
z2(η , t)

)
leading, instead of Bk(α,X) to

(
Ak(η ,X1)

0

)
,

with

Ak(η ,X1)=X1(tk)−z1(η , tk)−(1+∆∇x1b1(α,z(η , tk−1)))(X1(tk−1)−z1(η , tk−1)).
(3.7.8)

For a first approach, we consider an estimation method based on the Conditional
Least Squares built on the Ak(η ,X1)’s defined in (3.7.8).

Ūε ,∆ (η ,X1) =
1

ε2∆

n

∑
k=1

Ak(η ,X1)2. (3.7.9)

This CLS functional does not depend on β , and therefore β cannot be estimated
using Ūε,∆ . estimated. The associated estimators are then defined as

η̄ε,∆ = argmin
η∈Ka×Kz

Ūε,∆ (η ,X1). (3.7.10)

Note that this process could also be used for estimating η for fixed ∆ and low fre-
quency data, using Φ11(tk, tk−1) instead of its approximation.

Assume that η = (α,ξ ) ∈ Θ , with Θ compact set of Ra×R. Denote by η0 =
(α0,ξ0) the true parameter value and consider the estimation of η . The distribution
of (X(t)) satisfying (3.7.1) depends on θ = (η ,β ). Set θ0 = (η0,β0) and Pθ0 the
distribution of (X(t)) on (C([0,T ],R2),CT ).

Let us first study Ūε,∆ (η ,X1).

Lemma 3.7.1. Assume (S1)–(S5). Then, the process Ūε ,∆ (η ,X1) defined in (3.7.9)
satisfies that, under Pθ0 , as ε,∆ → 0,

ε2Ūε ,∆ (η ,X1)→ JT (η0,η) =
∫ T

0
(Γ1(η0,η ; t))2dt a.s. where (3.7.11)

Γ1(η0,η ; t) = b1(α0,z(η0, t))−b1(α,z(η , t)) (3.7.12)
−∇x1b1(α,z(η , t))(z1(η0, t)− z1(η , t)).

So, to get that Ūε ,∆ (η ,Y ) is a contrast function for estimating η = (α,ξ ), we
need an assumption that ensures that {η 1= η0 ⇒ JT (η0,η) > 0}. This leads to the
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additional identifiability assumption,

(S8): η 1= η0 ⇒ {t → Γ1(η0,η ; t) 1≡ 0}.

For deterministic systems, the notion of observability is used in the case of partial
observations (see e.g. [107], [112]), which sums up to {η 1=η0 ⇒ z(η , ·) 1≡ z(η0, ·)}.
If the underlying deterministic system is not observable, Assumption (S8) which
makes reference to the identifiability of the model with respect to the parameters is
not satisfied. But the converse is not true, Assumption (S8) being a bit stronger.

Proof. The proof of Lemma 3.7.1 is a repetition of the proof of Lemma 3.3.7. First,
an application of the stochastic Taylor expansion yields that, as ε → 0,(X1(t),0 ≤
t ≤ T )→ (z1(η0, t),0≤ t ≤ T ) almost surely under Pθ0 . Second, letting ∆ → 0, we
get that, there exists a constantC > 0 such that

1
∆
Ak(α,z1(η0, ·)) = Γ1(η0,η , tk−1)+∆ ‖η −η0‖rk(η0,η), (3.7.13)

with supk supη∈Θ ‖rk(η0,η)‖ ≤C. '(

To study the asymptotic behaviour of η̄ε,∆ , we have to introduce additional quan-
tities. First, we define the vector D(η , t) ∈ Ra+1, using the notations defined in
(3.3.3),

Di(η , t) =− (∇αib1)(α,z(η , t))−∇x2b1(α,z(η , t))∇αi z2(η , t) for i= 1, . . . ,a,
Di(t) =−∇x2b1(α,z(η , t))∇ξ z2(η , t) if i= a+1, (3.7.14)

Then, built on the Di’s, define the matrix Λ(η) = (Λi j(η)) by

Λi j(η) = 2
∫ T

0
Di(η , t)Dj(η , t) dt. (3.7.15)

Finally, define the three functions for θ = (α,ξ ,β ),

v1(θ ; t) = σ2
11(β ,z(η , t))+σ2

12(β ,z(η , t))
= Σ11(β ,z(η , t)),

v2(θ ; t,s) = σ11(β ,z(η ,s))(Φ(η , t,s)σ(β ,z(η ,s)))21
+σ12(β ,z(η ,s))(Φ(η , t,s)σ(β ,z(η ,s)))22

= (Φ(η ; t,s)Σ(β ,x(η ,s)))21 ,

v3(θ , t,s) =
∫ t∧s

0
(Φ(η , t,u)σ(β ,z(η ,u)))11 (Φ(η ,s,u)σ(β ,z(η ,u)))11 du

+
∫ t∧s

0
(Φ(η , t,u)σ(β ,z(η ,u)))22 (Φ(η ,s,u)σ(β ,z(β ,u)))22 du.

(3.7.16)

We can now state the main result of this section.
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Theorem 3.7.2. Assume (S1)–(S8). Then under Pθ0 , as ε,∆ → 0,

(i) η̄ε,∆ → η0 in probability .

(ii) If moreover ε2∆−1 = nε2 → 0 and Λ(η0) defined in (3.7.15) is invertible, then

ε−1(η̄ε,∆ −η0)→N (0,Λ(η0)
−1V (θ0)Λ(η0)

−1) in distribution, (3.7.17)

where V (θ) =V (1)(θ)+V (2)(θ)+V (3)(θ) with, using (3.7.14), (3.7.16),

V (1)
i j (θ) =

∫ T

0
Di(η , t)Dj(η , t)v1(θ , t) dt, (3.7.18)

V (2)
i j (θ) =

∫ ∫

0≤s≤t≤T
Di(η ,s)Dj(η , t)∇x2b1(α,z(η ,s))v2(θ , t,s))ds dt,

(3.7.19)

V (3)
i j (θ) = (3.7.20)
∫ T

0

∫ T

0
Di(η ,s)Dj(η , t)∇x2b1(α,z(η ,s))∇x2b1(α,z(η , t))v3(θ , t,s)ds dt.

Based on (3.7.11) and Assumption (S8), the proof of the consistency of η̄ε,∆ is
obtained by standard tools and omitted.
For the proof of (ii), the main difficulty lies in a precise study of ε∇iŪε,∆ (η0,X1),
which is the sum of n terms that are no longer conditionally independent. The three
terms in the matrix V (θ0) come from this expansion. Indeed,

ε(∇iŪ(η0,Y ))i,→Na+1
(
0,V (θ0)

)
in distribution under Pθ0 . (3.7.21)

Then, studying ε2∇i jŪ(η ,Y ) yields, using (3.7.9), (3.7.14), as ε,∆ → 0,

ε2∇i jŪ(η0,Y )→ Λi j(η0) = 2
∫ T

0
Di(η0, t)Dj(η0, t)dt a.s. under Pθ0 . (3.7.22)

The proof is quite technical and is omitted.

Let us describe our method on a partially observed two-dimensional Ornstein–
Uhlenbeck diffusion process X(t) = (X1(t),X2(t))∗ where all the computations are
explicit. Let

dX(t) = AX(t)dt+ εςdB(t), X(0) =
(
x1
x2

)
, (3.7.23)

with A=

(
a b
0 a+h

)
,ς = σ

(
1 0
0 1

)
.

We assume that h 1= 0, σ > 0. The parameter in the drift is α = (a,b,h). For partial
observations, we also need introducing η = (a,b,h,ξ ) and θ = (a,b,h,ξ ,σ). The
observations are (X1(tk),k = 1, . . . ,n) with tk = k∆ , T = n∆ and ∆ = ∆n → 0.
The solution of the ODE (3.2.8) applied to the drift of diffusion process (3.7.23) is
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z1(η , t) = (z1−
ξb
h
)eat +

ξb
h
e(a+h)t ; z2(η , t) = ξe(a+h)t . (3.7.24)

Let us compute the matrix Φ(α, t,u) = e(t−u)A, we have A= PDP−1, with

P=

(
1 b/h
0 1

)
, D=

(
a 0
0 a+h

)
, so that

Φ(α, t,s) =
(
ea(t−s) b

h
(
e(a+h)(t−s)− ea(t−s))

0 e(a+h)(t−s)

)
.

The solution of (3.7.23) is therefore X(t) =PetDP−1X(0)+εσ
∫ t
0 Pe

(t−s)DP−1dB(s).
Hence,

X1(t) = z1(η , t)+ εσ
(∫ t

0
ea(t−s)dB1(s)+

b
h

∫ t

0
(e(a+h)(t−s)− ea(t−s)) dB2(s)

)
.

(3.7.25)
Using that ∇x1b1(α,z(η , t)) = a and (3.7.24) yields that

Ak(η ,X1) = X1(tk)− z1(η , tk)− (1+a∆)(X1(tk−1)− z1(η , tk−1)) . (3.7.26)

Γ1(η0,η , t) = (a0−a)z1(η0, t)+b0ξ0e(a0+h0)t −bξe(a+h)t .

Assumptions (S1)–(S7) are satisfied. Looking at the analytical expression of z1(η , t),
we have that bξ = b̃ξ̃ leads to identical solutions z1(η , t). Therefore, Assumption
(S8) is not satisfied and b, ξ cannot be estimated separately when observing one co-
ordinate only. This is also true for the deterministic ODE and the non-identifiability
is here an intrinsic problem to this partial observation example.

Therefore, we define a new parameter b′ = bξ and consider that the parameter to
estimate is now η = (a,b′,h). Then, checking (S8) is straightforward.
The various quantities introduced in the previous section have a closed expression.
Indeed, the functions Di(η , t) defined in (3.7.14) write, using (3.7.22), (3.7.24) with
η = (a,b′,h),

D1(η , t) =−(z1−
b′

h
)eat − (

b′

h
+b′t)e(a+h)t ,

D2(η , t) =−e(a+h)t ,

D3(η , t) =−b′te(a+h)t .

ThematrixΛ(η) is defined asΛ(η)= (Λi j(η))withΛi j(η)=
∫ T
0 Di(η , t)Dj(η , t)dt

(=
∫ T
0 D(η , t)D∗(η , t)dt. The functions defined in (3.7.16) are, with θ = (a,b,h,σ),

v1(θ , t) = σ2; v2(θ , t,s) = 0; v3(θ , t,s) = σ2

(
ea|t−s|

2a
+

e(a+h)|t−s|

2(a+h)

)
.

Therefore,



3.7 Inference for Partially Observed Epidemic Dynamics 411

Vi j(θ) = σ2
∫ T

0
Di(η , t)Dj(η , t)dt

+
σ2b2

2

∫ T

0

∫ T

0
Di(η ,s)Dj(η , t)

(
ea|t−s|

a
+

e(a+h)|t−s|

(a+h)

)
dsdt.

The estimator η̄ε,∆ defined by (3.7.10) is a consistent estimator of η0 = (a0,b′0,h0)
and satisfies (3.7.17) with the matrices Λ(η0) and V (θ0) obtained above. The
asymptotic covariance matrix is therefore

σ2Λ−1(η)+ (3.7.27)

σ2b2

2
Λ−1(η)

(∫ T

0

∫ T

0
Di(η , t)Dj(η ,s)

(
ea|t−s|

a
+

e(a+h)|t−s|

a+h

)
dsdt

)

i j

Λ−1(η).

In the case of complete discrete observations, the first term of (3.7.27) is the
asymptotic variance obtained with conditional least squares. Therefore, the loss of
information coming from partial observations is measured by the second term of
(3.7.27) (added to the fact that only bz0 is identifiable).

3.7.2 Assessment of Estimators on Simulated and Real Data Sets

We first present the results on the SIR studied in the previous section but assum-
ing partial observations. Then we investigate the inference on the real data set of
Influenza dynamics modeled with the SIRS studied in the previous section.

3.7.2.1 Inference for Partial Observation of the SIRModel with Sampling
Interval ∆

In this section, we consider the case where one component of the epidemic process
XN(t) = (SN(t), IN(t)) is observed on [0,T ]. The observations are the successive
numbers of infected individuals

(IN(k∆),k = 1, . . .n) with sampling ∆ ;T = n∆ .

According to the notations of Section 3.7, we have to interchange the coordinates
of S, I and set X(t) = (I(t),S(t))∗; the drift term can be written as

X(t) =
(
I(t)
S(t)

)
; b((λ ,γ),(i,s)) =

(
λ si− γi
−λ si

)
; Σ(i,s) =

(
λ si+ γi −λ si
−λ si λ si

)
.

We assume that I(0)= i0,S(0)= s0. Setting ξ = s0, then the parameter defined in the
previous section is η = (λ ,γ,ξ ). Denote by z(η , t) = (i(η , t),s(η , t)) the solution
of the ODE
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di/dt = λ si− γi; i(0) = i0, ds/dt = λ si;s(0) = ξ .

Then, the conditional least square method now reads as

Ūε ,δ (η , I) =
1

ε2∆

n

∑
k=1

(I(tk)− i(η , tk)− (1+λ s(η , tk−1)− γ)(I(tk−1)− i(η , tk−1))
2.

Using definition 3.7.12, the function Γ1(η0,η , t) reads as

Γ1(η0,η , t) = i(η0, t)(λ0s(η0, t)−λ s(η , t)− γ0+ γ).

To investigate the identifiability assumption, let us check (S8). It reads as η 1= η0 ⇒
{t → Γ (η0,η , t)} 1≡ 0.

Assume that we have observed that the epidemic spreads, so that we have ∀t ∈
[0,T ], i(η0, t)> 0 . Therefore, we have to prove that

{t → (λ0s(η0, t)−λ s(η , t)− γ0+ γ)≡ 0}⇒ {η = η0}. (3.7.28)

Differentiating this relation with respect to t yields

∀t,λ 2
0 s(η0, t)i(η0, t)−λ 2s(η , t)i(η , t) = 0. (3.7.29)

Using (3.7.28), we get the second relation

∀t, s(η , t)
i(η0, t)

(λ i(η , t)−λ0i(η0, t)) =
λ0(γ0− γ)

λ
.

Differentiating this relation with respect to t yields that

λ s(η , t)i(η , t)
i(η0, t)

(λ0i(η0, t)−λ i(η , t))≡ 0.

Since at time 0, i(η ,0) = i(η0,0) = i0, we get that λ = λ0. Using now (3.7.29) yields
that, at time 0, s(η ,0) = s(η0,0) so that ξ = ξ0. Finally, by relation (3.7.28), we get
γ = γ0.

We conclude that the two parameters λ ,γ as well as the initial state s0 are identifi-
able when observing (I(tk),k= 0, . . .n). The same holds true for R0 = λ/γ , d = 1/γ
and s0.

Performances of estimators in the case of partially observed SIR model are as-
sessed on simulations obtained with the following parameters: N = 10000, R0 = 1.5,
d = 3, s0 = 0.97, T = 40. Observations are represented by vector IN(k∆). Estima-
tions of parameters (R0,d,s0) are performed on 1000 simulated trajectories. Theo-
retical and empirical confidence ellipses are built as detailed in the introduction of
Section 3.6.
As shown in Figure 3.7.1, confidence ellipsoids are quite large in the case of par-
tial data. However, they do not include unreasonable values from the epidemiologi-
cal point of view. Quantile based empirical 95% confidence intervals are still quite
large.
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Fig. 3.7.1 Point estimators (green) computed by averaging over 1000 independent simulated
trajectories of the SIR stochastic model, partially observed (I(k∆) only) for (R0,d,s0) =
(1.5,3,0.15,0.97), T = 40 days and N = 10000. Theoretical confidence ellipsoid (black), cen-
tered on the true value and empirical confidence ellipsoid (blue), centered on mean estimated value
are provided. Both ellipsoids are truncated at plausible limits on each direction. Mean and median
point estimator are (R0,d,s0) = (1.89,3.43,0.88) (red cross) and (1.54,3.24,0.99) (purple cross),
respectively.

The relatively unexpected large volume of confidence ellipsoids, obtained despite
theoretical identifiability of model parameters when observing only one component
of the system (here IN(k∆)) is probably due to the fact that the numerical variance-
covariance matrix is ill-conditioned (the order of magnitude of the third eigenvalue
is 100 times smaller than that of the first two eigenvalues. It probably corresponds to
the notion of “Numerical Identifiability”, which does not necessarily coincide with
“Theoretical Identifiability”.

Concerning point estimators, we successively considered the mean and the me-
dian of the estimators obtained for the 1000 simulation experiments. Assuming the
complete observation of both coordinates of the SIR jump process yields, as ex-
pected, accurate values for R0,d. Assuming that only I(k∆),k= 1, . . .n with n= 40,
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we obtain for a true parameter value (1.5,3,0.97) that the mean point estimator is
(1.89,3.43,0.88) and for the median estimator (1.54,3.24,0.99).

3.7.2.2 Partial Observations: SIRS Model, Real Data on Influenza Epidemics

The performances of the contrast estimators for the case where only one coordi-
nate of a diffusion process is observed are evaluated on data related to influenza
outbreaks in France, collected by the French Sentinel Network (FSN), providing
surveillance for several health indicators (www.sentiweb.org). These data are rep-
resented by numbers of individuals seeing a doctor during a given time interval,
for symptoms related to influenza infection and are reported by a group of general
practitioners (GP) voluntarily enrolled into the FSN. Several levels of errors of ob-
servation are associated to these data: (i) the state of individuals consulting a GP
from the FSN is not exactly known: it can be assimilated to a new infection or to
a new recovery, given that symptoms and infectiousness are not necessarily simul-
taneous and that a certain delay occurs between symptoms onset and consultation
time (more correctly, the observed state is probably “infected” but not “newly in-
fected”); (ii) not all infected individuals go and see a GP; (iii) the GP’s supplying
the FSN database represent only a proportion of all French GP’s; (iv) the exact dates
of consultations are not known, data are aggregated over two-week time periods; (v)
data are preprocessed by the FSN to produce observations with a daily time step.
Here, we account partly for (i) on one hand and jointly for (ii) and (iii) on the
other hand and assume that observations Y (tk) represent a proportion of daily (ob-
servation times tk = k∆ , with ∆ = 1 day) numbers of newly recovered individu-
als: Y (tk) = ργI(tk), where ρ can be interpreted as the reporting rate. Since data
are available over several seasons of influenza outbreaks (data from 1990 to 2011,
hence [0,T ] = [0,21.5] years), an appropriate model allowing to reproduce periodic
dynamics is the SIRS model described in Section 3.2.2.2.

(S, I)
λ (t)
N S(I+Nη)
−→ (S−1, I+1) ; (S, I)

µS−→ (S−1, I);

(S, I)
(γ+µ)I−→ (S, I−1) ; (S, I)

µN+δ (N−S−I)−→ (S+1, I).

The seasonality in transmission is modeled via λ (t) = λ0(1+λ1sin(2πt/Tper)).

The parameter is θ =(λ0,λ1,γ,δ ,η ,µ), the associated drift function b(θ , t,(s, i))
and diffusion matrix Σ(θ , t,(s, i)) are

b(θ , t,(s, i)) =
(
−λ (t)s(i+η)+δ (1− s− i)+µ(1− s)

λ (t)s(i+η)− (γ +µ)i

)
, (3.7.30)

Σ(θ , t,(s, i)) =
(

λ (t)s(i+η)+δ (1− s− i)+µ(1+ s) −λ (t)s(i+η)
−λ (t)s(i+η) λ (t)s(i+η)+(γ +µ)i

)
.

(3.7.31)

http://www.sentiweb.org
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In summary, the data used are assumed to be discrete high frequency observations
of one coordinate of the following two-dimensional diffusion with small variance:





dS(t) =−λ (t)S(t)(I(t)+η)+δ (1−S(t)− I(t)+µ(1−S(t)))dt
+ 1√

N
(σ11dB1(t)+σ12dB2(t))

dI(t) = (λ (t)S(t)(I(t)+η)− (γ +µ)I(t)dt+ 1√
N
(σ21dB1(t)+σ22dB2(t)).

The vector of parameters to be estimated is α = (R= λ0/γ,10λ1,d = 1/γ,δper =
1/δTper,10ρ), where parameters are defined in equation (3.2.19) and more gener-
ally in the entire Section 3.2.2.2. Parameters η , µ and Tper are fixed at plausible
values: η = 10−6, µ = 1

50 (years−1) and Tper = 365 days. The starting point of the
ODE system is unknown, but since we are interested in the stationary behaviour of
this process, we fix (r−20Tper = 0.27, i−20Tper = 0.0001, see [26] for example) and let
the system evolve until t = 0 for the tested set of parameter α to obtain our initial
starting point.

Estimation results are summarized in Figure 3.7.2, which represents multi-annual
dynamics of influenza cases: observed dynamics (blue curve) and simulated ones
(using the ODE version of the SIRS model based on estimated parameter values;
red curve). Estimators are associated to contrast process defined in (3.7.9). Point
estimates of parameters are: (R,10λ1,d,δper,10ρ) = (1.47,1.94,2.20,5.66,0.87).
These values are in agreement with independent estimation based on data from the
same database but using a different inference method, the maximum iterating filter-
ing proposed by [18] (personal communication S. Ballesteros). As shown in Figure
3.7.1 for the SIR model, widths of theoretical confidence intervals for each parame-
ter should be larger than those corresponding to complete observations of the SIRS
model (drawn in Figure 3.6.3). In particular, for λ1, the width of the confidence in-
terval for partial observations will be larger than 0.35∗

√
(107/6∗107) = 0.14 (after

correction for the population size, which is N = 107 in Figure 3.6.3 and N = 6∗107
in Figure 3.7.2).
We can notice from Figure 3.7.2 that predicted trajectories correspond to a regime
with bi-annual cycles, composed of two different peaks (red curve). The bifurcation
diagram with respect to λ1 (similar to Figure 3.2.2), when the remaining parameters
are either set to fixed values (defined in this section) or to estimated values, exhibits
the bifurcation from one annual cycle to bi-annual cycle at λ1 = 0.035. This value
is likely to belong to the confidence interval of estimated λ1 = 0.19, since the width
of this interval should be greater than 0.14. Hence, this can have some influence
on estimation, influence which is not well characterized in the literature for models
exhibiting bifurcation profiles, especially for trajectories corresponding to parame-
ter values close to the bifurcation point. We also observe that the smaller peak in
the bi-annual cycles is underestimated, leading to almost no epidemic burst every
other year. The presence of a bifurcation in the SIRS ODE model probably requires
a better approximation of the original jump point process.
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Fig. 3.7.2 Time series of reported cases (expressed as a fraction of the total population in France)
of influenza-like illness provided by the FSN (www.sentiweb.org) (blue curve) and deterministic
trajectories (mean behaviour) predicted by the SIRS model based on estimated parameters using
contrast (3.7.9) (red curve).

3.7.2.3 Discussion and Concluding Remarks

Several extensions of this study are possible for partial observations. First, we have
chosen to detail the case of high sampling interval. The study in the case of a fixed
sampling interval ∆ should be obtained with similar tools, leading to similar results.
Another extension concerns our choice of a Conditional Least squares for Ūε ,∆ .
An estimation criterium similar to the one used in Section 3.4 could be studied,
using Sk(α,β ) (see (3.3.8)) or substituting Σ(β ,X(tk)) by Σ(β ,x(η , tk)) for small
sampling. This yields the new process, using (3.7.8),

Ūε,n(η ,(Y (tk))) =
n

∑
k=1

log Σ(β ,x(η , tk))+
1

ε2∆
Σ(β ,x(η , tk))−1(Ak(η ,Y ))2.

(3.7.32)
The study of this process should yield estimators in the diffusion coefficient β with
probably additional assumptions linking ε and ∆ . Finally for fixed ∆ , Sk(α,β ) de-
fined in (3.3.8) could be substituted by (Sk(α,β ))11 in the case of two distinct pa-
rameters in the drift and diffusion coefficient, and (Sk(α)11 in the case correspond-
ing to epidemics where the same parameters are present in the drift and diffusion
coefficients. Another extension of the method described in Section 3.7 is the case
of a p-dimensional diffusion process where only the first l-coordinates are observed
(for instance the SEIR model with only Infected observed).



Chapter 4

Inference for Continuous Time SIR models

by Catherine Larédo and Viet Chi Tran

4.1 Introduction

Consider the SIR epidemic model with exponential times in a finite population of
size N where S(t), I(t),R(t) denote the number of Susceptible, infected/infectious
and Removed individuals at time t with infection rate λ and recovery rate γ (S(t)+
I(t)+R(t) = N for all t). There are various ways of describing this process using
pure jump Markov processes. We refer to Chapter 2 of Part I of these notes and to
Section A.5 of the Appendix for a recap on these processes.

This description now belongs to the domain of event time data, which are con-
veniently studied by the use of counting processes. We refer to Section A.5 of the
Appendix for a short introduction to counting processes in continuous time.

At this point, we need an asymptotic framework to study the properties of these
estimators. Two frameworks have been proposed.
Case (1): Assume that the number of initially infected I(0) = a remains fixed and
that the number of initial Susceptible is S(0) = n := N−a. We also assume for the
sake of simplicity that R(0) = 0. This leads to a total population size N = n+a that
goes to infinity.
Case (2): Assume that the population size N → ∞ and that both S(0), I(0) tend to
infinity with N such that S(0)/N → s0 > 0; I(0)/N → i0 > 0 as N → ∞.

Case (1) has been studied by Rida [108], to which we refer for a detailed presenta-
tion. We focus here mainly on Case (2).
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4.2 Maximum Likelihood in the SIR Case

To ease notation, we work here on a simplification of the SEIR process studied in
Part I of these notes. We omit the state E and consider an SIR model (corresponding
to the limiting case when ν → +∞). Recall that the population size is N, that the
infection rate is λ and the removal rate γ . We assume that we observe the whole tra-
jectory on a time window [0,T ]with T > 0: (SNt , INt ,RN

t )t∈[0,T ]. The successive times
of events are (Ti)1≤i≤KN(T ), where KN(T ) = ∑i≥0 1Ti≤T is the number of events. At
each event, Ji = 0 if we have an infection and Ji = 1 if we have a recovery. Notice
that we are here in the case where we have knowledge of all recovery and infec-
tion events, i.e. that we have complete epidemic data. The case where some data are
missing is treated in the next subsections.

Writing the likelihood of our data is important to calibrate the parameters of the
model, θ = (λ ,γ) ∈ R2

+ in the case of the SIR model, but also because this is also
useful for designing EM or MCMC procedures.

Definition 4.2.1. We define the likelihoodL N
T (θ) of the observations as the density,

in D([0,T ], [0,1]3) of the process (SNt , INt ,RN
t )t∈[0,T ] with respect to the SIR process

where intervals between events follow independent exponential distributions of pa-
rameter 2N and where each event is an infection with probability 1/2 and a recovery
with probability 1/2. The likelihood is of course a function of θ ∈ R2

+ and of the
observations (SNt , INt ,RN

t )t∈[0,T ] which are omitted in the notation for the sake of
notation.

This definition has been proposed in [30] for example. The dominating measure
with respect to which the distribution of (SNt , INt ,RN

t )t∈[0,T ] is written is here the
distribution of the process corresponding to the sequence (Ji,Ti)’s where the Ji’s
are i.i.d. Bernoulli random variables with parameter 1/2, and where the intervals
∆Ti = Ti − Ti−1 are i.i.d. exponential random variables with expectation 1/(2N).
With the notation above:

L N
T (θ) =L N

T
(
(SNt , I

N
t ,R

N
t )t∈[0,T ];λ ,γ

)

= exp
(
NT −

∫ T

0
(λSNs INs − γINs )ds

)KN(T )

∏
i=1

(λSNTi−I
N
Ti−)

1−Ji(γINTi−)
Ji . (4.2.1)

Taking the log, and using the formulation of the processes (St , It ,Rt) by means of
Poisson point processes Q1 and Q2 as in Part I, Chapter 2 of these notes,

logL N
T (θ) = NT −

∫ T

0
(λSNs INs − γINs )ds

+
KN(T )

∑
i=1

[
(1− Ji) log

(
λSNs−I

N
s−

)
+ Ji log

(
γINs−

)]

= NT −
∫ T

0
(λSNs INs − γINs )ds+

∫ T

0
log
(
λSNs− I

N
s−

)
1u≤λNSNs− INs−

Q1(ds,du)
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+
∫ T

0
log
(
γINs−

)
1u≤γNINs−

Q2(ds,du).

The above function is concave in λ and γ , for a given observations (SNt , INt )t∈[0,T ],
and maximizing it, we obtain:

Proposition 4.2.2. The maximum likelihood estimator θ̂N = (λ̂N , γ̂N) of θ (MLE) is
then given by:

λ̂N =
1
N

∑KN(T )
i=1 (1− Ji)
∫ T
0 SNs INs ds

, γ̂N =
1
N

∑KN(T )
i=1 Ji
∫ T
0 INs ds

. (4.2.2)

These estimators have already been mentioned in (3.6.1) and it had been noticed
that the numerators of λ̂N and γ̂N are respectively the numbers of infections and
recoveries on the period [0,T ]. Remark also that the estimators (4.2.2) are the same
for the Cases (1) and (2) presented in Section 4.1. In what follows, we concentrate
on the Case (2).

Using the Law of Large Numbers and the Central Limit Theorem stated in Part
I, Section 2.3 of these notes we obtain that

Proposition 4.2.3. The estimator θ̂N is convergent and asymptotically Gaussian
when N →+∞:

√
N
(
θ̂N −θ

)
=
√
N
(

λ̂N −λ
γ̂N − γ

)
⇒N

(
0R2 , I−1(λ ,γ)

)
,

where the Fisher information matrix is:

I(λ ,γ) =
(
V11(t) 0
0 V22(t)

)

with (s(t), i(t))t∈[0,T ] the solution of the limiting ODE that approximates
(SNt , INt )t∈[0,T ] when N →+∞ (see Example 2.2.10 in Part I) and with

V11(t) =
∫ T
0 s(t)i(t)dt

λ
=

1− s(T )
λ 2 ; V22(t) =

∫ T
0 i(t)dt

γ
=

1+µ− s(T )− i(T )
γ2

.

(4.2.3)

Proof. Notice that the estimator λ̂ given in Proposition 4.2.2 can be rewritten, with
the notations of Example 2.2.1 of Part I of these notes, as

λ̂N =
1
N

P1
(

λN
∫ T
0 SNs INs ds

)

∫ T
0 SNs INs ds

.

Using the Law of Large Numbers given in Part I, Section 2.2, the process (SNt , INt )t∈[0,T ]
converges uniformly when N →+∞ to the unique solution of the ODE

s′(t) =−λ s(t)i(t),
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i′(t) = λ s(t)i(t)− γi(t).

Moreover,

lim
N→+∞

λ̂N = λ
∫ T
0 s(t)i(t)dt
∫ T
0 s(t)i(t)dt

= λ .

Now,

√
N
(
λ̂N −λ

)
=

1
∫ T
0 SNs INs ds

[
1√
N
P1
(

λN
∫ T

0
SNs I

N
s ds

)
−
√
Nλ

∫ T

0
SNs I

N
s ds

]
.

From Part I, Section 2.3, we have the following convergence in distribution

1√
N
P1
(

λN
∫ T

0
s(t)i(t)dt

)
−
√
Nλ

∫ T

0
s(t)i(t)dt ⇒ B1

(
λ
∫ T

0
s(t)i(t)dt

)

where B1 is a standard real Brownian motion. As in the proof of Proposition
2.3.1, the bracket in the right term is then shown to converge to the same limit
B1(λ

∫ T
0 s(t)i(t)dt). Since the denominator of the right-hand side converges in prob-

ability to
∫ T
0 s(t)i(t)dt, we obtain the asymptotic normality of λ̂N with asymptotic

variance
λ

∫ T
0 s(t)i(t)dt

.

Proceeding similarly for γ̂N and using the asymptotic independence between the two
estimators provides the result. Notice that the Fisher information matrix can also be
computed from the log-likelihood, and that all regularity assumptions of generic
asymptotic normality results are satisfied (see e.g. Chapter 4 of [95]). '(

Corollary 4.2.4. An estimator of R0 = λ/γ is R̂(t)
0 = λ̂t

γ̂t . Applying the functional
delta-theorem (e.g. [123]), it converges in distribution to

√
n(R̂(t)

0 −R0)→N (0,σ2(t)) with σ2(t) =
V−1
11 (t)+R2

0V
−1
22 (t)

γ2
. (4.2.4)

Remark 4.2.5 (Maximum likelihood estimators in the Case (1)). Let us denote by
(Nt)t∈R+ the counting processes associated to the infection process:

Nt = P1
(∫ t

0
λNSNs INs ds

)
,

and by τN the extinction time, when there is no infective individual left. Because the
population is finite, τN <+∞ almost surely and N(τN)≤ N. Let

A= {ω;N(τN ,ω)→ ∞ as N → ∞}

be the event on which a major outbreak occurs. Ball [8] proved that P(A) = 1−
min{1,(γ/λ )a}. Moreover if R0 = λ/γ > 1, then P(A)> 0 and as n→ ∞,
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N(τN)
N

→ π1A where π is such that
λ
γ
=− log(1−π)

π
.

Asymptotic results for the estimators are obtained on A and Ac. The maximum like-
lihood estimator satisfies that

λ̂N → λ1A+Z1Ac

in distribution where Z is a positive explicit random variable such that E(Z)< 1/λ
if λ/γ > 1. Note that in this case, λ̂N is not a consistent estimator. We refer to [108]
for a detailed presentation of the results.

These methods can be extended to other epidemic models. We will detail later
for the SEIR and SIRS epidemic models. The main drawback of this approach is
that the epidemic process is rarely observed in such details, which prevents this
kind of statistical approach. However, this study sums up the best statistical results
that can be obtained when complete observations are available. When incomplete
observations are available, the loss of information will be measured with respect to
this general reference.

4.2.1 MCMC Estimation

The preceding subsection treated the case of complete observation. In practice, pa-
rameter estimation for SIR models is usually a difficult task because of missing
observations, which is a recurrent issue in epidemiology. O’Neill Roberts [106] de-
veloped a Markov chain Monte Carlo method (MCMC) to make inferences about
the missing data and the unknown parameters in a Bayesian framework.

We consider an SIR model as in Section 4.2. Instead of observing the sequence
(Ji,Ti)i∈{1...KN

T } (type – infection or recovery – and time of occurrence of the suc-
cessive events, as described in the beginning of Section 4.2), we observe only the
Ti’s such that Ji = 1 (recovery events, that can also be detection events in some ap-
plications) and the total number of events KN

T is unknown. In this section, we adopt
the following notation. Let us assume that there are m infections at times σ = (σ1 <
0, . . .σm) that are unobserved and n removals at times τ = (τ1 = 0, . . .τn) which
constitute our observations. For later purposes, we will denote by σ−1 = (σ2, . . .σm)
the vector of infection times starting from the second infection. We observe the total
size of the population N, the number n of removal times and the vector τ of these
removal times. The parameter of interest is (λ ,γ,σ1) and the vector σ−1 is the vec-
tor of nuisance parameters.

The MCMC algorithm proposed by O’Neill and Roberts [106] take place in a
Bayesian framework. Given λ , γ and the first infection time σ1, the likelihood of
(σ−1,τ) = (σ2 . . .σm,τ1, . . .τm) is obtained from adapting (4.2.1):
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L N
T (σ−1,τ|λ ,γ,σ1) =exp

(
NT −

∫ T

σ1
(λSNs INs − γINs )ds

) n

∏
i=1

(λSNσi−I
N
σi−)

m

∏
i=1

(γINτi−).

(4.2.5)

4.2.1.1 A Priori Distributions

We suppose that λ and γ have a prioriGamma distribution with parameters (αλ ,βλ )
and (αγ ,βγ) respectively, where we recall that the density of a Gamma distribution
with parameter (α,β ) is:

β α

Γ (α)
xα−1e−βx 1(0,+∞)(x)

where Γ (x) is the gamma function such that for any positive integer k, Γ (k) =
(k− 1)!. Following [106], we also chose for the a priori distribution of σ1 the
‘exponential’ distribution with density (on R−) with ρ > 0:

ρeρσ11(−∞,0)(σ1).

4.2.1.2 A Posteriori Distributions

The purpose is now to generate a sample from the a posteriori distribution
π(σ ,λ ,β |τ). For this, O’Neill and Roberts propose a Metropolis–Hastings algo-
rithm.

Recall the principle of the Metropolis–Hastings algorithm used to obtain a sam-
ple x in a distribution with a density π(x) that is proportional to some f (x). Consider
a transition kernel with a density q(y|x) from which it is easy to simulate. Starting
from a first point x0, construct a sequence of points (xk)k∈N with f and q as follows.
Assume that xk has been constructed, then:

• draw y from q(y|xk).
• With probability

φ(xk,y) =min
( f (y)q(xk|y)
f (xk)q(y|xk)

,1
)

define xk+1 = y.
With probability 1−φ(xk,y), define xk+1 = xk.

This defines a reversible Markov chain whose stationary distribution is π .

We apply the above idea to sample σ ,λ ,β from the a posteriori distribution. To
choose the transition kernels, notice first that with direct computation, we obtain:

π
(
σ1|τ,σ−1,λ ,γ

)
∼(ρ +λN+ γ)e−(θ+λN+γ)(σ2−y)1y<σ2

π
(
λ |τ,σ ,γ

)
∼Γ
(
αλ +

∫ T

σ1
SNs I

N
s ds,m−1+βλ

)
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π
(
γ|τ,σ ,λ

)
∼Γ
(
αγ +

∫ T

σ1
INs ds,n+βγ

)
.

Hence, it is natural to choose the above distributions for the proposals of σ1, λ and
β . It remains to propose a transition kernel for σ−1. O’Neill and Roberts propose a
Hasting algorithm with the three following moves:

• Move an infection time chosen at random by sampling the candidate uniformly
in [0,T ]. If the infection time chosen at random was at time s and the proposal
time drawn uniformly in [0,T ] is t, the move is accepted with probability

φ(σ ,σ ∪{t}\{s}) =
L N

T
(
σ ∪{t}\{s},τ|λ ,γ,σ1

) 1
|σ |−1

1
T

L N
T
(
σ ,τ|λ ,γ,σ1

) 1
|σ |−1

1
T

∧1

=
L N

T
(
σ ∪{t}\{s},τ|λ ,γ,σ1

)

L N
T
(
σ ,τ|λ ,γ,σ1

) ∨1.

• Remove an infection time chosen at random. If the chosen infection time was at
time s, the acceptation probability is then:

L N
T
(
σ \{s},τ|λ ,γ,σ1

) 1
T−σ1

L N
T
(
σ ,τ|λ ,γ,σ1

) 1
|σ |−1

∧1=
L N

T
(
σ \{s},τ|λ ,γ,σ1

)
(|σ |−1)

L N
T
(
σ ,τ|λ ,γ,σ1

)
(T −σ1)

∧1.

• Add a new infection at a time t drawn uniformly on [0,T ]:

L N
T
(
σ ∪{t},τ|λ ,γ,σ1

) 1
|σ |

L N
T
(
σ ,τ|λ ,γ,σ1

) 1
(T−σ1)

∧1=
L
(
σ +{t}

)
(T −σ1)

L
(
σ
)
|σ |

∧1.

A numerical application is performed in [106] for small epidemics. This algo-
rithm is simulated and compared with other ones in Section 4.3.2.

4.2.2 EM Algorithm for Discretely Observed Markov Jump
Processes

We consider now the situation where the Markov jump process is only observed at
discrete time points. This has been considered by Bladt and Sorensen [14]. We study
the maximum likelihood estimation of the Q-matrix based on a discretely sampled
Markov jump process. The problem of identifiability and of existence and unique-
ness of the MLE is related to the following problem in probability: can a given
discrete time Markov chain be obtained as a discrete time sampling of a continuous
time Markov jump process?
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4.2.2.1 Likelihood Function

Let X = (X(s),s ≥ 0) be a Markov jump process with finite state space E =
{1, . . . ,N} and Q-matrix Q= (qkl). If X is continuously observed on the time inter-
val [0,T ], the likelihood function is given by,

LT (Q) =
N

∏
k=1

∏
l 1=k

qNkl(T )
kl exp(−qklRk(T )), where (4.2.6)

the process Nkl(t) is the number of transitions from state k to state l in the time
interval [0, t] and Rk(t) is the time spent in state k before time t.

Rk(t) =
∫ t

0
δ{X(s)=k} ds. (4.2.7)

For details see e.g. [72] .
Therefore, if the process is continuously observed on [0,T ], the maximum likelihood
estimator of its Q- matrix is easily obtained:

Q̂kl =
Nkl(T )
Rk(T )

. (4.2.8)

Assume now that the process is observed with a sampling interval ∆ with T = n∆ .
Then, setting Xi = X(ti) is a discrete time Markov chain with transition matrix

P∆ (Q) where Pt(Q) = exp(tQ), t > 0,

with exp(·) denoting the matrix exponential function.
Hence the likelihood for the discrete observations (x0, . . . ,xn) is

Ln,∆ (Q) =
n

∏
i=1

P∆ (Q)xi−1xi ,

with the notation that the i j entry of a matrix A is denoted Ai j. Since it is a discrete
time Markov chain, it satisfies,

Ln,∆ (Q) =
N

∏
k=1

N

∏
l=1

(P∆ (Q)N
kl(n)

kl ,

Nkl(n) =
n

∑
i=1

δ{Xi−1=k,Xi=l}.

The random variables (Nkl(n)) are the number of transitions from state k to state l
before n. We have proved in Section 2.1) that the associated MLE of the transition
matrix P̂ is explicit. But building an estimator of Q from P̂ is not straightforward.

Indeed, letP0 = {exp Q |Q ∈Q} denote the set of transition matrices that cor-
respond to discrete time observation of a continuous time Markov jump process. If
P̂ ∈P0, there exists a Q̂ ∈Q such that P∆ (Q̂) = P̂. This raises two distinct prob-
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lems. First the setP0 is quite complex, and second the matrix exponential function
is not an injection on its domain, so Q̂ may not be unique leading to identifiability
questions for the statistical model. Additional assumptions are thus required in order
to ensure the convergence of stochastic algorithms such as EM, MCMC. We refer
to Bladt and Sorensen [14] for details.

4.2.2.2 The Expectation-Maximization (EM) Algorithm

This is a broadly used method for optimizing the likelihood function in cases where
only partial information is available (see e.g. [33, 34, 122, 126]). A discretely ob-
served Markov jump process is such an example where only data Yi = X(ti); i =
1, . . . ,n are available. Let X = {X(t);0≤ t ≤ T} and Y = {Yi; i= 1 . . . ,n}. The EM-
algorithm aimed at estimating the Q-matrix Q = (qi j, ; i, j ∈ E) iterating the two
steps:
E-step: replace the unobserved parts by their conditional expected values given the
data Y = y
M-step: perform maximum likelihood on the complete data.

The difficult part in the EM algorithm here is the E-step:
i.e. compute EQ0 [logLT (Q)|Y = y] where Q0 is an arbitrary Q-matrix.
Indeed, consider theM-step. From equation (4.2.6), we have

EQ0(logLT (Q)|Y = y) =
N

∑
k=1

∑
l 1=k

log(qkl)EQ0(Nkl(T )|Y = y)

−
N

∑
k=1

∑
l 1=k

qklEQ0(Nk(T )|Y = y).

This is the likelihood of a continuous time process with observed statistics
EQ0(Nkl(T )|Y = y),EQ0(Nk(T )|Y = y). It is maximized, as a function of Q, accord-
ing to (4.2.8) by

Q̂kl =
EQ0(Nkl(T )|Y = y)
EQ0(Nk(T )|Y = y)

. (4.2.9)

Therefore, to perform the algorithm, we have to compute the two quantities
EQ0(Nkl(T )|Y = y) and EQ0(Nk(T )|Y = y).
For this, let us consider a fixed intensity matrix Q and omit the index Q. Denote by
ei the unit vector with ith coordinate equal to 1, and for U a vector or a matrix, let
U∗ the transpose ofU .

Noting that Nk(T ) = ∑n
p=1(N

k(tp)−Nk(tp−1)), we get by the Markov property
and the time homogeneity of X = X(t),

E(Nk(tp)−Nk(tp−1)/Y = y) = E(Nk(tp)−Nk(tp−1)|X(tp) = yp,X(tp−1) = yp−1)

= E(Nk(tp− tp−1)|X(tp− tp−1) = yp,X(0) = yp−1).

Similarly Nkl(T ) = ∑n
p=1(N

kl(tp)−Nkl(tp−1)), and
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E(Nkl(tp)−Nkl(tp−1)/Y = y) = E(Nkl(tp− tp−1)|X(tp− tp−1) = yp,X(0) = yp−1).

Hence,

E(Nk(T )|Y = y) =
n

∑
p=1

Ek
yp−1yp(tp− tp−1); Ekl(T )|Y = y) =

n

∑
p=1

Fkl
yp−1yp(tp− tp−1);

(4.2.10)
where if (i, j) and (k, l) ∈ E, and t > 0,

Ek
i j(t) = EQ0(N

k(t)|X(t) = j,X(0) = i),

Fkl
i j (t) = EQ0(N

kl(t)|X(t) = j,X(0) = i).

Fix k ∈ E and define the matrixMk(t) by

Mk
i j(t) = E(Nk(t)1X(t)= j|X(0) = i). (4.2.11)

Then, according to [13],

d
dt
Mk

i j(t) =
N

∑
l=1

Mk
il(t)ql j+ exp(tQ)i jδ jk; Mk

i j(t0) = 0.

This equation has an explicit solution which reads asMk(t) = (Mk
i j(t), i, j ∈ E),

Mk(t) =
∫ t

0
exp(sQ)(eke∗k)exp((t− s)Q) ds. (4.2.12)

Fix now k, l ∈ E and define the matrix fkli j(t) = E(Nkl(t)1X(t)= j|X(0) = i). Similarly

fkl(t) = qkl
∫ t

0
exp(sQ)(eke∗l )exp((t− s)Q)ds. (4.2.13)

Hence, using that P(X(t) = j|X(0) = i) = e∗i exp(Qt)e j yields that

Ek
i j(t) =

Mk
i j(t)

e∗i exp(tQ)e j
; Fkl

i j (t) =
fkli j(t)

e∗i exp(tQ)e j
. (4.2.14)

So the EM-algorithm works along the successive iterations. Start from an initial
Q-matrix Q0. Let Qm denote the Q-matrix of iteration m. Then

• For all k, l ∈ E, compute using (4.2.12), (4.2.13), (4.2.14) the matrices
Eyiyi+1(ti+1− ti), and Fkl

yiyi+1
(ti+1− ti) associated to Q=Qm

• Compute the two quantities E(Nk(T )|Y = y), E(Nkl(T )|Y = y) using (4.2.10)
• Define Qm+1 by (4.2.9).

Let Q0,Q1, . . . ,Qp, . . . a sequence a Q- matrices obtained by the EM algorithm.
Then Ln,∆ (Qp+1) ≥ Ln,∆ (Qp) for p = 0,1,2, . . . (see e.g. [34]). Under additional
regularity conditions, one can prove (cf [14], Theorem 4) that,
If Q0 satisfies that, for all k, l ∈ E, (Q0)kl > 0, then the sequence (Qp) converge to
a stationary point of the likelihood function Ln,∆ or det{exp(Qp)}→ 0.
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4.3 ABC Estimation

Markov Chain Monte Carlo (MCMC) methods that treat the missing data as extra
parameters, have become increasingly popular for calibrating stochastic epidemio-
logical models with missing data [25, 104, 106]. However, MCMC may be com-
putationally prohibitive for high-dimensional missing observations [26, 119] and
fine tuning of the proposal distribution is required for efficient algorithms [52]. The
computation of the likelihood can sometimes be numerically infeasible because it
involves integration over the unobserved events. In discrete time, or when the to-
tal population size is known and small as in [106], this is possible. But in (4.2.1)
for example, because we are in continuous time, the likelihood of removal times,
when the infection times and KN

t are unknown, involves a summation over all pos-
sibilities which is impossible: the sum is over all the possible numbers of infections
between each successive removal times, plus on the possible times of these infec-
tions. An alternative is given by Approximate Bayesian Computation (ABC), which
was originally proposed for making inference in population genetics [10]. This ap-
proach is not based on the likelihood function but relies on numerical simulations
and comparisons between simulated and observed summary statistics. We detail
here the ABC procedure and its application to epidemiology. For more information
on ABC methods, the interested reader is referred to [99, 113]. In particular, there
have been many refinements of the ABC method presented here, for instance using
simulations to modify the sampling distributions (e.g. [9, 115, 120]).

In [17], the development of ABC estimation techniques for SIR models is mo-
tivated by the study of the Cuban HIV-AIDS database. In this case, the population
is separated into the following compartments: 1) susceptible individuals who can
be infected by HIV, 2) non-detected HIV positive infectious individuals who can
propagate the disease, and 3) detected HIV positive individuals. When an individual
is detected as HIV positive, we assume that the transmission of the disease ceases.
So detection corresponds here to ‘recovery’ events in the classical SIR model pre-
sented in Part I of this book. The Cuban database contains the dates of detection
of the 8,662 individuals that have been found to be HIV positive in Cuba between
1986 and 2007 [4]. The database contains additional covariates including the man-
ner by which an individual has been found to be HIV positive. The individuals can
be detected either by random screening (individuals ‘spontaneously’ take a detec-
tion test) or contact-tracing. The total number of infectious individuals as well as
the infection times are unknown. Blum and Tran [17] proposed an ABC estimation
procedure when all detection times are known, which they then extend to noisy or
binned detection times. They also propose an extension of ABC to path-valued sum-
mary statistics consisting of the cumulated number of detections through time. They
introduce a finite-dimensional vector of summary statistics and compare the statis-
tical properties of point estimates and credibility intervals obtained with full and
binned detection times. We present here these methods for a simple SIR model and
compare numerically the posterior distributions obtained with ABC and MCMC.
We refer the reader to [17] for more details and treatment of Cuban HIV data. Other
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use of ABC estimation techniques in public health can be found in [38, 102] for
example.

4.3.1 Main Principles of ABC

For simplicity, we deal here with densities and not general probability measures.
Let x be the available data and π(θ) be the prior where θ is the parameter. Two
approximations are at the core of ABC.

Replacing observations with summary statistics Instead of focusing on the pos-
terior density p(θ |x), ABC aims at a possibly less informative target density
p(θ |S(x) = sobs) ∝ Pr(sobs|θ)π(θ) where S is a summary statistic that takes its
values in a normed space, and sobs denotes the observed summary statistic. The
summary statistic S can be a d-dimensional vector or an infinite-dimensional vari-
able such as a L1 function. Of course, if S is sufficient, then the two conditional
densities are the same. The target distribution will also be coined as the partial pos-
terior distribution.

Simulation-based approximations of the posterior Once the summary statistics
have been chosen, the second approximation arises when estimating the partial pos-
terior density p(θ |S(x) = sobs) and sampling from this distribution. This step in-
volves nonparametric kernel estimation and possibly correction refinements.

4.3.1.1 Sampling from the Posterior

The ABC method with smooth rejection generates random draws from the target
distribution as follows (see e.g. [10])

1. Generate N random draws (θi,si), i = 1, . . . ,N. The parameter θi is generated
from the prior distribution π and the vector of summary statistics si is calculated
for the ith data set that is simulated from the generative model with parameter
θi.

2. Associate to the ith simulation the weightWi = Kδ (si− sobs), where δ is a tol-
erance threshold and Kδ a (possibly multivariate) smoothing kernel.

3. The distribution (∑N
i=1Wiδθi)/(∑

N
i=1Wi), in which δθ denotes the Dirac mass at

θ , approximates the target distribution.

4.3.1.2 Point Estimation and Credibility Intervals

Assume here that θ = (θ1, . . .θd) is a d-dimensional vector. We denote by θi =
(θ1,i, . . .θd,i) the simulated vectors of parameters in the previous paragraph. Once
a sample from the target distribution has been obtained, several estimators may
be considered for point estimation of each one-dimensional component θ j, j ∈
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{1, . . .d}. Using the weighted sample (θ j,i,Wi), i = 1, . . . ,N, the mean of the tar-
get distribution p(θ j|sobs) is estimated by

θ̂ j =
∑N
i=1 θ j,iWi

∑N
i=1Wi

=
∑N
i=1 θ j,iKδ (si− sobs)
∑N
i=1Kδ (si− sobs)

, j = 1,2,3 (4.3.1)

which is the well-known Nadaraya–Watson regression estimator of the conditional
expectation E(θ j |sobs) (see e.g. [121, Chapter 1]). We also compute the medians,
modes, and 95% credibility intervals (CI) of the marginal posterior distribution (see
Section 3 of the supplementary material).

4.3.1.3 Summary Statistics

We are here interested in estimating the parameter θ = (λ ,γ) of a SIR model (see
Part I of this book). Two different sets of summary statistics are considered.

First, we consider the (infinite-dimensional) statistics (Rt , t ∈ [0,T ]) consisting of
the cumulated number of recoveries at time t since the beginning of the epidemic.
Because the data consist of the recovery times this curve (Rt , t ∈ [0,T ]) can simply
be viewed as a particular coding of the whole dataset. It is thus a sufficient statistic
implying that the partial posterior distribution p(θ |R1,R2) is equal to the posterior
distribution p(θ |x).
The L1-norm between the ith simulated path Ri and the observed one Robs is

‖Robs−Ri‖1 =
∫ T

0
|Robs,s−Ri,s|ds , i= 1, . . . ,N. (4.3.2)

The weightsWi are then computed asWi = Kδ (‖Robs−Ri‖1) where δ is a tolerance
threshold found by accepting a given percentage Pδ of the simulations and where an
Epanechnikov kernel is chosen for K.

Second, when there is noise or when the recovery times have been binned, the
full observations (Rt , t ∈ [0,T ]) are unavailable. Then, we replace these summary
statistics by a vector of summary statistics such as the numbers of recoveries per
year during the observation period. We consider a d-dimensional vector of sum-
mary statistics of three different types: 1) number RT of individuals detected by the
end of the observation period, 2) for each year j, numbers of removed individuals
Rj+1 −Rj, 3) numbers of new infectious in the first years (assuming for instance
that all of them have been detected since) I j+1 − I j for j = 0, . . . ,J0, where J0 is
a small number of years where the information is supposed to be known, 4) mean
time during which an individual is infected but has not been detected in the J0 first
years. This mean time corresponds to the mean sojourn time in the class I for the J0
first years. Since these new summary statistics are not sufficient anymore, the new
partial posterior distribution may be different from the posterior p(θ |x).
In order to compute the weights Wi, we consider the following spherical kernel
Kδ (x) ∝ K(‖H−1x‖/δ ). Here K denotes the one-dimensional Epanechnikov kernel,
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‖ ·‖ is the Euclidean norm of Rd and H−1 a matrix. Because the summary statistics
may span different scales, H is taken equal to the diagonal matrix with the standard
deviation of each one-dimensional summary statistic on the diagonal.

4.3.2 Comparisons Between ABC and MCMC Methods for a
Standard SIR Model

Following [10] a performance indicator for ABC techniques consists in their ability
to replicate likelihood-based results given by MCMC. Here the situation is partic-
ularly favourable for comparing the two methods since the partial and the full pos-
terior are the same. In the following examples, we choose samples of small sizes
(n = 3 and n = 29) so that the dimension of the missing data is reasonable and
MCMC achieves fast convergence. For large sample sizes with high-dimensional
missing data, MCMC convergence might indeed be a serious issue and more thor-
ough updating scheme shall be implemented [26, 119].

We consider the standard SIR model with infection rate λ and recovery rate γ .
The data consist of the recovery times and we assume that the infection times are
not observed. We implement the MCMC algorithm of [106]. A total of 10,000 steps
are considered for MCMC with an initial burn-in of 5,000 steps. For ABC, the sum-
mary statistic consists of the cumulative number of recoveries as a function of time.
A total of 100,000 simulations are performed for ABC.

The first example was previously considered by [106]. They simulated recovery
times by considering one initial infectious individual and by setting S0 = 9, λ =
0.12, and γ = 1. We choose gamma distributions for the priors of λ and γ with a
shape parameters of 0.1 and rate parameters of 1 and 0.1. As displayed by Figure
4.3.1, the posterior distributions obtained with ABC are extremely close to the ones
obtained with MCMC provided that the tolerance rate is sufficiently small. We see
that the tolerance rate changes importantly the posterior distribution obtained with
ABC (see the posterior distributions for λ ).

In a second example, we simulate a standard SIR trajectory with λ = 0.12, γ = 1,
S0 = 30 and I0 = 1. The data now consist of 29 recovery times (and are given in the
supplementary material of [17]). Once again, Figure 4.3.1 shows that the ABC and
MCMC posteriors are close provided that the tolerance rate is small enough. ABC
produces posterior distributions with larger tails compared to MCMC, even with the
lowest tolerance rate of 0.1%. This can be explained by considering the extreme
scenario in which the tolerance threshold δ goes to infinity: every simulation has a
weight of 1 so that ABC targets the prior instead of the posterior. As the prior has
typically larger tails than the posterior, ABC inflates the posterior tails.
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Fig. 4.3.1 Comparison of the posterior densities obtained with MCMC and ABC. The vertical
lines correspond to the values of the parameters used for generating the synthetic data. Left: the
data consist of 3 recovery times that have been simulated by [106]. Right: The data consist of 29
recovery times that we simulated by setting λ = 0.12, γ = 1, S0 = 30, I0 = 1, and T = 5 (see the
supplementary material of [17] for the 29 recovery times).

4.3.3 Comparison Between ABC with Full and Binned Recovery
Times

4.3.3.1 The Curse of Dimensionality and Regression Adjustments

In this case, the first set of summary statistics presented in Section 4.3.1 can not be
used any more and we have to use the second set of summary statistics, which con-
stitute a vector of descriptive statistics as is much often encountered in the literature.
In the case of a d-dimensional vector of summary statistics, the estimator of the con-
ditional mean (4.3.1) is convergent if the tolerance rate satisfies limN→+∞ δN = 0, so
that its bias converges to 0, and limN→+∞Nδ d

N =+∞, so that its variance converges
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to 0 [40]. As d increases, a larger tolerance threshold shall be chosen to keep the
variance small. As a consequence, the bias may increase with the number of sum-
mary statistics. This phenomenon known as the curse of dimensionality may be an
issue for the ABC-rejection approach. The following paragraph presents regression-
based adjustments that cope with the curse of dimensionality.

The adjustment principle is presented in a general setting within which the cor-
rections of [10] and [16] can be derived. Correction adjustments aim at obtaining
from a random couple (θi,si) a random variable distributed according to p(θ |sobs).
The idea is to construct a coupling between the distributions p(θ |si) and p(θ |sobs),
through which we can shrink the θi’s to a sample of i.i.d. draws from p(θ |sobs). In
the remaining of this subsection, we describe how to perform the corrections for
each of the one-dimensional components separately. For θ ∈ R, correction adjust-
ments are obtained by assuming a relationship θ = G(s,ε) =: Gs(ε) between the
parameter and the summary statistics. Here G is a (possibly complicated) function
and ε is a random variable with a distribution that does not depend on s. A possibil-
ity is to choose Gs = F−1

s , the (generalized) inverse of the cumulative distribution
function of p(θ |s). In this case, ε = Fs(θ) is a uniform random variable on [0,1].
The formula for adjustment is given by

θ ∗
i = G−1

sobs(Gsi(θi)) i= 1, . . . ,N. (4.3.3)

For Gs = F−1
s , the fact that the θ ∗

i ’s are i.i.d. with density p(θ |sobs) arises from the
standard inversion algorithm. Of course, the function G shall be approximated in
practice. As a consequence, the adjusted simulations θ ∗

i , i = 1, . . . ,N, constitute an
approximate sample of p(θ |sobs). The ABC algorithm with regression adjustment
can be described as follows

1. Simulate, as in the rejection algorithm, a sample (θi,si), i= 1, . . . ,N.
2. By making use of the sample of the (θi,si)’s weighted by theWi’s, approximate

the function G such that θi = G(si,εi) in the vicinity of sobs.
3. Replace the θi’s by the adjusted θ ∗

i ’s. The resulting weighted sample (θ ∗
i ,Wi),

i= 1, . . . ,N, form a sample from the target distribution.

Local linear regression (LOCL) The case where G is approximated by a linear
model G(s,ε) = α + stβ + ε , was considered by [10]. The parameters α and β are
inferred by minimizing the weighted squared error

N

∑
i=1

Kδ (si− sobs)(θi− (α +(si− sobs)Tβ ))2.

Using (4.3.3), the correction of [10] is derived as

θ ∗
i = θi− (si− sobs)T β̂ , i= 1, . . . ,N. (4.3.4)

Asymptotic consistency of the estimators of the partial posterior distribution with
the correction (4.3.4) is obtained by [15].
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Nonlinear conditional heteroscedastic regressions (NCH) To relax the assump-
tions of homoscedasticity and linearity inherent to local linear regression, Blum and
Francois [16] approximated G by G(s,ε) =m(s)+σ(s)×ε where m(s) denotes the
conditional expectation, and σ2(s) the conditional variance. The estimators m̂ and
log σ̂2 are found by adjusting two feed-forward neural networks using a regularized
weighted squared error. For the NCH model, parameter adjustment is performed as
follows

θ ∗
i = m̂(sobs)+(θi− m̂(si))×

σ̂(sobs)
σ̂(si)

, i= 1, . . . ,N.

In practical applications of the NCH model, we train L = 10 neural networks for
each conditional regression (expectation and variance) and we average the results of
the L neural networks to provide the estimates m̂ and log σ̂2.

Reparameterization In both regression adjustment approaches, the regressions can
be performed on transformations of the responses θi rather that on the responses
themselves. Parameters whose prior distributions have finite supports are trans-
formed via the logit function and non-negative parameters are transformed via the
logarithm function. These transformations guarantee that the θ ∗

i ’s lie in the support
of the prior distribution and have the additional advantage of stabilizing the variance.

Comparison between the first and second set of summary statisticsA simulation
study is carried to compare the ABCmethods based on the two different sets of sum-
mary statistics presented in Section 4.3.1 has been carried in [17] using a slightly
more elaborate SIR model with contact-tracing introduced in [30]. Blum and Tran
simulatedM = 200 synthetic data sets epidemic. When using the finite-dimensional
vector of summary statistics, they perform the smooth rejection approach as well
as the LOCL and NCH corrections with a total of 21 summary statistics. Each of
the M = 200 estimations of the partial posterior distributions are performed using a
total of N = 5000 simulations.

Figure 4.3.2 displays the boxplots of the 200 estimated modes, medians, 2.5%
and 97.5% quantiles of the posterior distribution for λ as a function of the tolerance
rate Pδ . First, the medians and modes are found to be equivalent except for the re-
jection method with 21 summary statistics for which the mode is less biased. For the
lowest tolerance rates, the point estimates obtained with the four possible methods
are close to the value λ used in the simulations, with smaller CI for the LOCL and
NCH variants. When increasing the tolerance rate, the bias of the point estimates
obtained with the rejection method with 21 summary statistics slightly increases.
By contrast, up to tolerance rates smaller than 50%, the biases of the point estimates
obtained with the three other methods remain small. As can be expected, the widths
of the CI obtained with the rejection methods increase with the tolerance rate while
they remain considerably less variable for the methods with regression adjustment.

For further comparison of the different methods, we can compute the rescaled
mean square errors (ReMSEs):
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Fig. 4.3.2 Boxplots of the M = 200 estimated modes and quantiles (2.5%, 50%, and 97.5%) of the
partial posterior distributions of λ in a model presented in Blum and Tran [17]. For each ABC
method and each value of the tolerance rate, 200 posterior distributions are computed for each of
the 200 synthetic data sets. The horizontal lines correspond to the true value λ = 1.14×10−7 used
when simulating the 200 synthetic data sets. The different tolerance rates are 0.01, 0.05, 0.10, 0.25,
0.50, 0.50, 0.75, and 1 for all the ABC methods except the rejection scheme with the two summary
statistics. For the latter method, the tolerance rates are 0.007, 0.02, 0.06, 0.13, 0.27, 0.37, 0.45,
0.53, 0.66, 0.80, 1.

ReMSE(λ ) = 1
M

M

∑
k=1

(log(λ̂ k)− log(λ ))2

Range(prior(λ ))2
, (4.3.5)

where λ̂ k is a point estimate obtained with the kth synthetic data set.

To compare the whole posterior distributions obtained with the four different
methods, we can also compute the different CIs. The rescaled mean CI (RMCI) is
defined as follows

RMCI=
1
M

M

∑
k=1

|ICk|
Range(prior(λ ))

, (4.3.6)
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where |ICk| is the length of the kth estimated 95% CI for the parameter λ . As dis-
played by Figure 4.3.2, the CIs obtained with smooth rejection increase importantly
with the tolerance rate whereas such an important increase is not observed with
regression adjustment.

4.4 Sensitivity Analysis

Epidemiological models designed in order to test public health scenarios by simu-
lations or disentangle various factors for a better understanding of the disease prop-
agation are often over-parameterized. Input parameters are the rates describing the
times that individuals stay in each compartment, for example. The sources that are
used to calibrate the model can also be numerous: some parameters are for example
obtained from epidemiological studies or clinical trials, but there can be uncertainty
on their values due to various reasons. The restricted size of the sample in these
studies brings uncertainty on the estimates, which are given with uncertainty inter-
vals (classically, a 95% confidence interval). Different studies can provide different
estimates for the same parameters. The study populations can be subject to selection
biases. In the case of clinical trials where the efficacy of a treatment is estimated, the
estimates can be optimistic compared with what will be the effectiveness in real-life,
due to the protocol of the trials. It is important to quantify how theses uncertainties
on the input parameters can impact the results and the conclusion of an epidemio-
logical modelling study. To check the robustness of some output with respect to the
parameters, sensitivity analyses are often performed.

In a mathematical model where the output y ∈ R depends on a set of p ∈ N in-
put parameters x = (x1, ...xp) ∈ Rp through the relation y = f (x), there are various
ways to measure the influence of the input x!, for ! ∈ {1, . . . , p}, on y. In this article,
we are interested in Sobol indices [116], which are based on an ANOVA decom-
position (see [111, 76, 77] for a review). These indices have been proposed to take
into account the uncertainty on the input parameters that are here considered as a
realisation of a set of independent random variables X = (X1, ...Xp), with a known
distribution and with possibly correlated components. Denoting by Y = f (X) the
random response, the first-order Sobol indices can be defined for ! ∈ {1, . . . , p} by

S! =
Var
(
E[Y | X!]

)

Var(Y )
. (4.4.1)

This first-order index S! corresponds to the sensitivity of the model to X! alone.
Higher order indices can also be defined using ANOVA decomposition: considering
(!,!′) ∈ {1, . . . , p}, we can define the second order sensitivity, corresponding to the
sensitivity of the model to the interaction between X! and X!′ index by

S!!′ =
Var
(
E[Y | X!,X!′ ]

)

Var(Y )
−S!−S!′ (4.4.2)
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We can also define the total sensitivity indices by

ST! = ∑
L⊂{1,...,p}|!∈L

SL. (4.4.3)

As the estimation of the Sobol indices can be computer time consuming, a usual
practice consists in estimating the first-order and total indices, to assess 1) the sen-
sitivity of the model to each parameter taken separately and 2) the possible interac-
tions, which are quantified by the difference between the total order and the first-
order index for each parameter. Several numerical procedures to estimate the Sobol
indices have been proposed, in particular by Jansen [81] (see also [110, 111]). These
estimators, that we recall in the sequel, are based on Monte Carlo simulations of
(Y,X1 . . .Xp).

The literature focuses on deterministic relations between the input and output
parameters. In a stochastic framework where the model response Y is not unique
for given input parameters, few works have been done, randomness being usually
limited to input variables. Assume that:

Y = f (X ,ε), (4.4.4)

where X = (X1, . . .Xp) still denotes the random variables modelling the uncertainty
of the input parameters and where ε is a noise variable. When noise is added in the
model, the classical estimators do not always work: Y can be very sensitive to the
addition of ε . Moreover, this variable is not always controllable by the user.

When the function f is linear, we can refer to [43]. In the literature, meta-models
are used: approximating the mean and the dispersion of the response by determinis-
tic functions allows us to come back to the classical deterministic framework (e.g.
Janon et al. [80], Marrel et al. [100]). We study here another point of view, which
is based on the non-parametric statistical estimation of the term Var

(
E[Y | X!]

)
ap-

pearing in the numerator of (4.4.1).

Approaches based on the Nadaraya–Watson kernel estimator have been proposed
by Da Veiga and Gamboa [125] or Solís [117] while an approach based on warped
wavelet decompositions is proposed by Castellan et al. [24]. An advantage of these
non-parametric estimators is that their computation requires less simulations of the
model. For Jansen estimators, the number of calls of f required to compute the
sensitivity indices is n(p+ 1), where n is the number of independent random vec-
tors (Y i,Xi

1, . . .X
i
p) (i ∈ {1, . . .n}) that are sampled for the Monte Carlo procedure,

making the estimation of the sensitivity indices time-consuming for sophisticated
models with many parameters. In addition, for the non-parametric estimators, the
convergence of the mean square error to zero may be faster than for Monte Carlo
estimators, depending on the regularity of the model.
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4.4.1 A Non-parametric Estimator of the Sobol Indices of Order 1

Denoting by V! = E
(
E2(Y | X!)

)
the expectation of the square conditional expecta-

tion of Y knowing X!, we have:

S! =
V!−E(Y )2
Var(Y )

, (4.4.5)

which can be approximated by

Ŝ! =
V̂!− Ȳ 2

σ̂2
Y

(4.4.6)

where

Ȳ =
1
n

n

∑
j=1

Yj and σ̂2
Y =

1
n

n

∑
j=1

(Yj− Ȳ )2

are the empirical mean and variance of Y . We consider here two approximations V̂!
of V!, based on Nadaraya–Watson and on warped wavelet estimators.

Assume that we have n independent couples (Y i,Xi
1, . . .X

i
p) in R×Rp, for i ∈

{1, . . . ,n}, generated by (4.4.4). Let us start with the kernel-based estimator:

Definition 4.4.1. Let K : R 3→ R be a kernel such that
∫
RK(u)du= 1. Let h> 0 be

a window and let us denote Kh(x) = K(x/h)/h. An estimator of S! for ! ∈ {1, . . . p}
is:

Ŝ(NW )
! =

1
n ∑n

i=1

(∑n
j=1YjKh(X

j
!−Xi

!)

∑n
j=1Kh(X

j
!−Xi

!)

)2
− Ȳ 2

σ̂2
Y

. (4.4.7)

This estimator is based on the Nadaraya–Watson estimator of E(Y |X! = x) given
by (e.g. [121])

∑n
j=1YjKh(X

j
! − x)

∑n
j=1Kh(X

j
! − x)

.

Replacing this expression in (4.4.6) provides Ŝ(NW )
! . This estimator and the rates of

convergence have been studied by Solís [117]. If we instead use a warped wavelet
decomposition of E(Y |X! = x) (see e.g. [28, 84]), this provides an estimator studied
by Castellan et al. [24]. Let us present this second estimator.

Let us denote byG! the cumulative distribution function of X!. Let (ψ jk) j≥−1,k∈Z
be a Hilbert wavelet basis of L2, the space of real functions that are square integrable
with respect to the Lebesgue measure on R. In the sequel, we denote by 〈 f ,g〉 =∫
R f (u)g(u)du, for f ,g ∈ L2, the usual scalar product of L2. The wavelet ψ−10 is the
father wavelet, and for k ∈Z, ψ−1k(x) = ψ−10(x−k). The wavelet ψ00 is the mother
wavelet, and for j ≥ 0, k ∈ Z, ψ jk(x) = 2 j/2ψ00(2 jx− k).
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Definition 4.4.2. Let us define for j ≥−1, k ∈ Z,

β̂ !
jk =

1
n

n

∑
i=1

Yiψ jk(G!(Xi
!)). (4.4.8)

Then, we define the (block thresholding) estimator of S! as

Ŝ(WW )
! =

V̂!− Ȳ 2

σ̂2
Y

, (4.4.9)

where V̂! is an estimator of the variance V! given by:

V̂! =
Jn

∑
j=−1

[
∑
k∈Z

(
β̂ !
jk
)2−w( j)

]
1

∑k∈Z
(

β̂ !
jk

)2
≥w( j)

(4.4.10)

with w( j) = K
(
2 j+log2

n

)
and Jn :=

[
log2

( √
n

log(n)

)]
(where [·] denotes the integer

part) and K a positive constant.

Let us present the idea explaining the estimator proposed in Definition 4.4.2. Let
us introduce centered random variables η! such that

Y = f (X ,ε) = E(Y |X!)+η!. (4.4.11)

Let g!(x) = E(Y |X! = x) and h!(u) = g! ◦G−1
! (u). h! is a function from [0,1] 3→ R

that belong to L2 since Y ∈ L2. Then

h!(u) = ∑
j≥−1

∑
k∈Z

β !
jkψ jk(u), with (4.4.12)

β !
jk =

∫ 1

0
h!(u)ψ jk(u)du=

∫

R
g!(x)ψ jk(G!(x))G!(dx). (4.4.13)

Notice that the sum in k is finite because the function h! has compact support in
[0,1]. It is then natural to estimate h!(u) by

ĥ! = ∑
j≥−1

∑
k∈Z

β̂ !
jkψ jk(u), (4.4.14)

and we then have:

V! = E
(
E2(Y |X!)

)

=
∫

R
G!(dx)

(
∑
j≥−1

∑
k∈Z

β !
jkψ jk

(
G!(x)

))2

=
∫ 1

0

(
∑
j≥−1

∑
k∈Z

β !
jkψ jk(u)

)2
du

= ∑
j≥−1

∑
k∈Z

(
β !
jk
)2

= ‖h!‖22. (4.4.15)
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Adaptive estimation of ‖h!‖22 has been studied in [94], which provides the block
thresholding estimator V̂! in Definition 4.4.2. The idea is: 1) to sum the terms

(
β !
jk
)2,

for j≥ 0, by blocks {( j,k), k ∈Z} for j ∈ {−1, . . . ,Jn}with a penalty w( j) for each
block to avoid choosing too large j’s, 2) to cut the blocks that do not sufficiently con-
tribute to the sum, in order to obtain statistical adaptation.

Notice that V̂! can be seen as an estimator of V! resulting from a model selection
on the choice of the blocks {( j,k), k ∈ Z}, j ∈ {−1, . . . ,Jn} that are kept, with the
penalty function pen(J ) = ∑ j∈J w( j), forJ ⊂ {−1, . . . ,Jn}. Indeed:

V̂! = sup
J⊂{−1,0,...,Jn}

∑
j∈J

[
∑
k∈N

(
β̂ !
jk
)2−w( j)

]

= sup
J⊂{−1,0,...,Jn}

∑
j∈J

∑
k∈N

(
β̂ !
jk
)2−pen(J ). (4.4.16)

Note that the definition of the estimator and the penalization depend on a constant
K through the definition of w( j). The value of this constant is chosen in order to
obtain oracle inequalities. In practice, this constant is hard to compute, and can be
chosen by a slope heuristic approach (see e.g. [5]).

4.4.2 Statistical Properties

In this Section, we are interested in the rate of convergence to zero of the mean
square error (MSE) E

(
(S!− Ŝ!)2

)
. Let us consider the generic estimator Ŝ! defined

in (4.4.6), where V̂! is an estimator of V! = E(E2(Y | X!)) (not necessarily (4.4.10)).
We first start with a Lemma stating that the MSE can be obtained from the rate of
convergence of V̂! to V!.

Lemma 4.4.3. Consider the generic estimator Ŝ! defined in (4.4.6) and V̂! an esti-
mator of V! (not necessarily (4.4.10)). Then there is a constant C such that:

E
(
(S!− Ŝ!)2

)
≤ C

n
+

4
Var(Y )2

E
[(
V̂!−V!

)2]
. (4.4.17)

Proof. From (4.4.5) and (4.4.6),

E
(
(S!− Ŝ!)2

)
=E
[(V!−E(Y )2

Var(Y )
− V̂!− Ȳ 2

σ̂2
Y

)2]

≤2E
[( E(Y )2

Var(Y )
− Ȳ 2

σ̂2
Y

)2]
+2E

[( V!
Var(Y )

− V̂!
σ̂2
Y

)2]
. (4.4.18)

The first term in the right-hand side (r.h.s.) is in C/n. For the second term in the
right-hand side of (4.4.18):
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E
[( V!

Var(Y )
− V̂!

σ̂2
Y

)2]
≤2E

[
V̂ 2
!

( 1
Var(Y )

− 1
σ̂2
Y

)2]
+

2
Var(Y )2

E
[(
V̂!−V!

)2]
.

(4.4.19)

The first term in the r.h.s. is also inC/n, which concludes the proof. '(

The preceding lemma implies that the rate of convergence of V̂! to V! is deter-
minant for the rate of convergence of Ŝ!. We recall the result of Solís [117], where
an elbow effect for the MSE is shown when the regularity of the density of (X!,Y )
varies. The case of the warped wavelet estimator introduced by Castellan et al [24]
is studied at the end of the section and the rate of convergence is stated in Corollary
4.4.8.

4.4.2.1 MSE for the Nadaraya–Watson Estimator

Using the preceding Lemma, Loubes Marteau and Solís prove an elbow effect for
the estimator Ŝ(NW )

! . Let us introduce H (α,L), for α,L > 0, the set of functions φ
of class [α], whose derivative φ ([α]) is α − [α] Hölder continuous with constant L.

Proposition 4.4.4 (Loubes Marteau and Solís [98, 117]). Assume that E(X4
! ) <

+∞, that the joint density φ(x,y) of (X!,Y ) belongs to H (α,L), for α,L > 0 and
that the marginal density of X!, φ! belongs to H (α ′,L′) for α ′ > α and L′ > 0.
Then:
If α ≥ 2, there exists a constant C > 0 such that

E
(
(S!− Ŝ!)2

)
≤ C

n
.

If α < 2, there exists a constant C > 0 such that

E
(
(S!− Ŝ!)2

)
≤C

( log2 n
n
) 2α

α+2 .

For smooth functions (α ≥ 2), Loubes et al. recover a parametric rate, while they
still have a nonparametric one when α < 2. Their result is based on (4.4.17) and a
bound for E

[(
V̂!−V!

)2] given by [98, Th. 1], whose proof is technical. Since their
result is not adaptive, they require the knowledge of the window h for numerical
implementation. Our purpose is to provide a similar result for the warped wavelet
adaptive estimator, with a shorter proof.

4.4.2.2 MSE for the Warped Wavelet Estimator

Let us introduce first some additional notation. We define, for J ⊂ {−1, . . . ,Jn},
the projection hJ ,! of h on the subspace spanned by {ψ jk, with j ∈J , k ∈ Z} and
its estimator ĥJ ,!:
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hJ ,!(u) = ∑
j∈J

∑
k∈Z

β !
jkψ jk(u) (4.4.20)

ĥJ ,!(u) = ∑
j∈J

∑
k∈Z

β̂ !
jkψ jk(u). (4.4.21)

We also introduce the estimator of V! for a fixed subset of resolutionsJ :

V̂J ,! = ‖ĥJ ,!‖22 = ∑
j∈J

∑
k∈Z

(
β̂ !
jk
)2
. (4.4.22)

Note that V̂J ,! is one possible estimator V̂! in Lemma 4.4.3.

The estimators β̂ jk and V̂J ,! have natural expressions in term of the empirical
process γn(dx) defined as follows:

Definition 4.4.5. The empirical measure associated with our problem is:

γn(dx) =
1
n

n

∑
i=1

YiδG!(Xi
!)
(dx) (4.4.23)

where δa(dx) denotes the Dirac mass in a.
For a measurable function f , γn( f ) = 1

n ∑n
i=1Yi f

(
G!(Xi

!)
)
. We also define the cen-

tered integral of f with respect to γn(dx) as:

γ̄n( f ) =γn( f )−E
(
γn( f )

)
(4.4.24)

=
1
n

n

∑
i=1

(
Yi f
(
G!(Xi

!)
)
−E

[
Yi f
(
G!(Xi

!)
)])

. (4.4.25)

Using the empirical measure γn(dx), we have:

β̂ !
jk = γn

(
ψ jk
)
= β !

jk+ γ̄n
(
ψ jk
)
.

Let us introduce the correction term

ζn =2γ̄n
(
h!
)

(4.4.26)

=2
[1
n

n

∑
i=1

Yih!
(
G!(Xi

!)
)
−E

(
Y1h!

(
G!(X1

! )
))]

=2
[1
n

n

∑
i=1

h2!
(
G!(Xi

!)
)
−‖h!‖22

]
+

2
n

n

∑
i=1

η i
!h!
(
G!(Xi

!)
)
. (4.4.27)

The rate of convergence of the estimator (4.4.10) is obtained in [24] based on
the estimate presented in the next theorem. This result is derived using ideas due to
Laurent and Massart [94] who considered estimation of quadratic functionals in a
Gaussian setting. Because we are not necessarily in a Gaussian setting here, we rely
on empirical processes and use sophisticated technology developed by Castellan
[23].
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Theorem 4.4.6 (Castellan, Cousien, Tran [24]). Let us assume that the random
variables Y are bounded by a constant M, and let us choose a father and a
mother wavelets ψ−10 and ψ00 that are continuous with compact support (and thus
bounded). The estimator V̂! defined in (4.4.10) is almost surely finite, and:

E
[(
V̂!−V!−ζn

)2]≤C inf
J⊂{−1,...,Jn}

(
‖h!−hJ ,!‖42+

2Jmax

n2
)
+

C′

n log2(n)
,

(4.4.28)

for constants C and C′ > 0.

We deduce the following corollary from the estimate obtained above. Let us con-
sider the Besov space B(α,2,∞) of functions h = ∑ j≥−1 ∑k∈Z β jkψ jk of L2 such
that

|h|α,2,∞ := ∑
j≥0

2 jα

√
sup

0<v≤2− j

∫ 1−v

0
|h(u+ v)−h(u)|2du<+∞.

For a h ∈B(α,2,∞) and hJ its projection on

Vect{ψ jk, j ∈J = {−1, . . .Jmax}, k ∈ Z},

we have the following approximation result from [65, Th. 9.4].

Proposition 4.4.7 (Härdle, Kerkyacharian, Picard and Tsybakov). Assume that
the wavelet function ψ−10 has compact support and is of class C N for an integer
N > 0. Then, if h ∈B(α,2,∞) with α < N+1,

sup
J⊂N∪{−1}

2αJmax‖h−hJ ‖2 = sup
J⊂N∪{−1}

2αJmax
(

∑
j≥Jmax

∑
k∈Z

β 2
jk

)1/2
<+∞.

(4.4.29)

Notice that Theorem 9.4 of [65] requires assumptions that are fulfilled when
ψ−10 has compact support and is smooth enough (see the comment after the Corol.
8.2 of [65]).

Corollary 4.4.8. If ψ−10 has compact support and is of class C N for an integer
N > 0 and if h! belongs to a ball of radius R> 0 of B(α,2,∞) for 0< α < N+1,
then

sup
h∈B(α,2,∞)

E
[(
V̂!−V!

)2]≤C
(
n−

8α
4α+1 +

1
n

)
. (4.4.30)

As a consequence, we obtain the following elbow effect:
If α ≥ 1

4 , there exists a constant C > 0 such that

E
(
(S!− Ŝ!)2

)
≤ C

n
.

If α < 1
4 , there exists a constant C > 0 such that
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E
(
(S!− Ŝ!)2

)
≤Cn−

8α
4α+1 .

Proof. Using (4.4.28) and the fact that

E
(
ζ 2
n
)
=

4
n
Var
(
Y1h!

(
G!(X1

! )
))

≤ 2M2‖h!‖22
n

, (4.4.31)

we obtain:

E
[(

θ̂!−V!
)2]≤C

[
inf

J⊂{−1,...,Jn}

(
‖h!−hJ ,!‖42+

2Jmax

n2
)
+

1+‖h!‖22
n

]
. (4.4.32)

If h! ∈ B(α,2,∞), then from Proposition 4.4.7, we have for J = {−1, . . . ,Jmax}
that ‖h!−hJ ,!‖42 ≤ 2−4α Jmax . Thus, for subsetsJ of the form considered, the in-
fimum is attained when choosing Jmax =

2
4α+1 log2(n), which yield an upper bound

in n8α/(4α+1).

For h! in a ball of radius R, ‖h!‖22 ≤ R2, and we can find an upper bound that
does not depend on h. Because the last term in (4.4.32) is in 1/n, the elbow effect is
obtained by comparing the order of the first term in the r.h.s. (n8α/(4α+1)) with 1/n
when α varies. "

'(

Let us remark that in comparison with the result of Loubes et al. [98], the regu-
larity assumption here is on the function h! rather than on the joint density φ(x,y)
of (X!,Y ). The adaptivity of the estimator is then welcomed since the function h! is
a priori unknown. Note that in applications, the joint density φ(x,y) also has to be
estimated and hence has an unknown regularity.

When α < 1/4 and α → 1/4, the exponent 8α/(4α +1)→ 1. In the case when
α > 1/4, we can show from the estimate of Th. 4.4.6 that:

lim
n→+∞

nE
[(
V̂!−V!−ζn

)2]
= 0, (4.4.33)

which yields that
√
n
(
V̂!−V!− ζn

)
converges to 0 in L2. Since

√
nζn converges in

distribution to N
(
0,4Var

(
Y1h!(G!(X1

! ))
))

by the central limit theorem, we obtain
that:

lim
n→+∞

√
n
(
V̂!−V!

)
=N

(
0,4Var

(
Y1h!(G!(X1

! ))
))

, (4.4.34)

in distribution.

4.4.2.3 Numerical Illustration on an SIR Model

Let us consider an SIRmodel. The input parameters are the rates λ and γ . The output
parameter is the final size of the epidemic, i.e. at a time T > 0 where INT = 0,Y =RN

T .
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Recall from Chapter 2 that the fractions (SNt /N, INt /N,RN
t /N)t∈[0,T ] can be ap-

proximated by the unique solution (s(t), i(t),r(t))t∈[0,T ] of a system of ODE (see
Example 2.2.2 of Chapter 2 in Part I of this volume). These limiting equations pro-
vide a natural deterministic approximating meta-model (recall [100]) for which sen-
sitivity indices can be computed.

For the numerical experiment, we consider a close population of 1200 individu-
als, starting with S0 = 1190, I0 = 10 and R0 = 0. The parameters distributions are
uniformly distributed with λ/N ∈ [1/15000,3/15000] and γ ∈ [1/15,3/15]. Here
the randomness associated with the Poisson point measures is treated as the nui-
sance random factor in (4.4.4).
We compute the Jansen estimators of Sλ and Sγ for the deterministic meta-model
constituted by the Kermack–McKendrick ODEs of Chapter 2 in Part I of this vol-
ume, with n = 30,000 simulations. For the estimators of Sλ and Sγ in the SDE, we
compute the Jansen estimators with n= 10,000 (i.e. n(p+1) = 30,000 calls to the
function f ), and the estimators based on Nadaraya–Watson and on wavelet regres-
sions with n= 30,000 simulations.

(a) (b)

Fig. 4.4.1 Estimations of the first-order Sobol indices, using Jansen estimators on the meta-model
with n = 10,000 and the non-parametric estimations based on Nadaraya–Watson and wavelet
regressions. (a): the distributions of the estimators of Sλ and Sγ is approximated by Monte-carlo
simulations. (b): the distributions of E(Y | λ ) and E(Y | γ) are approximated by Monte Carlo
simulations.
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Let us comment on the results. First, the comparison of the different estimation
methods is presented in Fig. 4.4.1. Since the variances in the meta-model and in
the stochastic model differ, we start with comparing the distributions of E(Y | λ )
and E(Y | γ) that are centered around the same value, independently of whether
the meta-model or the stochastic model is used. These distributions are obtained
from 1,000 Monte-carlo simulations. In Fig. 4.4.1(b), taking the meta-model as a
benchmark, we see that the wavelet estimator performs well for both λ and γ while
Nadaraya–Watson regression estimator performs well only for γ and exhibit biases
for λ . Jansen estimator on the stochastic model exhibit biases for both λ and γ .

In a second time, we focus on the estimation of the Sobol indices for the stochas-
tic model. The smoothed distributions of the estimators of Sλ and Sγ , for 1,000
Monte Carlo replications, are presented in Fig. 4.4.1 (a); the means and standard
deviations of these distributions are given in Table 4.4.1. Although there is no theo-
retical values for Sλ and Sγ , we can see (Table 4.4.1) that the estimators of the Sobol
indices with non-parametric regressions all give similar estimates in expectation for
γ . For λ , the estimators are relatively different, with the Nadaraya–Watson showing
the lower estimate. This is linked with the bias seen on Fig. 4.4.1 (b) and discussed
below. In term of variance, the Nadaraya–Watson estimator gives the tightest distri-
bution, while the wavelet estimator gives the highest variance.

Jansen Nadaraya–Watson Wavelet
Ŝλ 0.39 0.38 0.40
s.d. (9.2e-3) (4.3e-3) (1.4e-2)
Ŝγ 0.44 0.42 0.42
s.d. (9.0e-3) (4.4e-3) (1.2e-2)

Table 4.4.1 Estimators of the Sobol indices for λ and γ and their standard deviations using
n=10,000 Monte Carlo replications of the stochastic SIR model.

The advantage of using the estimators with wavelets lies in their robustness to the
inclusion of high frequencies and in the fact that they can overcome some smoothing
biases that the Nadaraya–Watson regressions exhibit (Fig. 4.4.1 (b)). This can be
understood when looking at Fig. 4.4.2: the simulations can give very noisy Y ’s. For
example, extinctions of the epidemics can be seen in very short time in simulations,
due to the initial randomness of the trajectories. This produces distributions for Y ’s
that are not unimodal or with peaks at 0, which makes the estimation of E(Y | λ ) or
E(Y | γ) more difficult. The variance of the estimator with wavelets is however the
widest and in practice, finding the thresholding constants for the wavelet coefficients
can be somewhat tricky when the number of input parameters is large.
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Fig. 4.4.2 Prevalence (Y ) simulated from the n(p+ 1) = 30,000 simulations of λ and γ , for the
SIR model.
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Appendix

A.1 Some Classical Results in Statistical Inference

In this section, we have gathered results on inference useful for this part of these
notes.

A.1.1 Heuristics on Maximum Likelihood Methods

As a guide for statistical inference for epidemic dynamics, we first describe the
heuristics for getting properties of Maximum likelihood Estimators, each family of
statistical models having to be studied specifically (see [22] for more details).

Definitions and properties are given for general discrete time stochastic pro-
cesses. Consider a sequence (X1, . . . ,Xn) of random variables with values in E, and
let Pn

θ denote the distribution of (X1, . . . ,Xn) on (En,E n). Assume that the parameter
setΘ is included inRq and that θ0 the true value of the parameter belongs to Int(Θ).

The properties on the MLE relies on three basic results that hold as n→ ∞ under
Pn

θ0 :

(i) a law of large numbers for the log-likelihood !n(θ),
(ii) a central limit theorem for the score function ∇θ !n(θ0)
(iii) a law of large numbers for the observed information ∇2

θ !n(θ0) under Pn
θ0 .

For a regular statistical model with a standard rate of convergence
√
n,

(i) For all θ ∈Θ , n−1!n(θ)→ J(θ0,θ) in Pn
θ0 -probability. uniformly w.r.t. θ , θ →

J(θ0,θ) is a continuous function with a global unique maximum at θ0.
(ii) n−1/2∇θ !n(θ0)→N (0,I (θ0)) in distribution under Pn

θ0 ,
(iii) − 1

n∇2
θ !n(θ0)→I (θ0) in Pn

θ0 -probability.

Condition (i) ensures consistency of the MLE θ̂n.
Assuming that I (θ0) is non-singular, a Taylor expansion of the score function

∇θ !n at point θ0 leads, using that ∇θ !n(θ̂n) = 0,

447
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0= ∇θ !n(θ̂n) = ∇θ !n(θ0)+
(∫ 1

0
∇2

θ !n(θ0+ t(θ̂n−θ0))dt
)
(θ̂n−θ0). (A.1.1)

From this expansion, we get, using that I (θ0) is non-singular,

√
n(θ̂n−θ0) =

(
− 1

n

∫ 1

0
∇2

θ !n(θ0+ t(θ̂n−θ0))dt
)−1( 1√

n
∇θ !n(θ0)

)
. (A.1.2)

Since θ̂n → θ0 in Pn
θ0 -probability we get, using (iii), that

- the first factor of the r.h.s. of the equation above converges to I (θ0)−1 Pθ0 a.s.
- the second factor converges in distribution under Pθ0 toN (0,I (θ0)).

Finally, Slutsky’s Lemma yields that
√
n(θ̂n−θ0)→L N (0,I (θ0)−1) under Pθ0 .

A.1.2 Miscellaneous Results

We first state a theorem concerning the properties of the φ(θ).

Theorem A.1.1. Let (Xn) be a sequence of random variables with values in Rp and
an > 0 such that an →∞ as n→∞. Assume that an(Xn−m) converges in distribution
to a random variable Z. Let φ : Rp → Rq a continuously differentiable application.
Then an(φ(Xn)−φ(m)) converges in distribution to the random variable ∇xφ(m)Z,
where ∇xφ is the Jacobian matrix of φ : ∇xφ = ( ∂φk

∂xl
)1≤k≤q,1≤l≤p.

We refer to [123] for the proof.

For sake of clarity, we also give a recap on Exponential families of distribu-
tions (see e.g. [11] or [123]). Indeed, among parametric families of distributions,
exponential families of distributions, widely used in statistics, provide here a nice
framework to study the likelihood.

Let X be a random variable inRk (or Zk) with distribution Pθ and density p(θ ,x),
with θ ∈Θ , subset of Rq.

Definition A.1.2. The family {Pθ ,θ ∈ Θ} is an exponential family if there exist q
functions (η1, . . . ,ηq) and φ defined onΘ , q real functions T1, . . . ,Tq and a function
h(·) defined on Rk such that

p(θ ,x) = h(x)exp{
q

∑
j=1

η j(θ)Tj(x)−φ(θ)} ;x ∈ Rk (A.1.3)

Then T (X) = (T1(X), . . . ,Tq(X)) is a sufficient statistic in the i.i.d. case. The
random variable X satisfies

m(θ) := Eθ (X) = ∇θ φ(θ); σ2(θ) := Varθ (X) = ∇2
θ φ(θ). (A.1.4)
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A.2 Inference for Markov Chains

In order to present a good overview of the statistical problems, we detail the statisti-
cal inference for Markov chains. We have rather focus here on parametric inference
since epidemic models always include in their dynamics parameters that need to be
estimated in order to derive predictions.

A.2.1 Recap on Markov Chains

We first begin setting the notations used throughout this chapter and introducing the
basic definitions.

Let (Xn,n≥ 0) a Markov chain on a probability space (Ω ,F,P) with state space
(E,E ), transition kernel Q and initial distribution µ on (E,E ).

The space of observations: (EN,E ⊗N). Based on a classical theorem of proba-
bility, there exists a unique probability measure on (EN,E ⊗N), denoted Pµ,Q such
that the coordinate process (Xn,n≥ 0) is a Markov chain (with respect to its natural
filtration) with initial distribution µ and transition kernel Q. Then, based on a classi-
cal theorem in probability, there exists a unique probability measure on (EN,E ⊗N),
denoted Pµ,Q such that the coordinate process (Xn,n ≥ 0) is a Markov chain (with
respect to its natural filtration) with initial distribution µ and transition kernel Q.

The probability Pµ,Q has the property:

- if A0,A1, . . . ,An are measurable sets in E, then

Pµ,Q(Xi ∈ Ai; i= 0, . . . ,n) =
∫

A0
µ(dx0)

∫

A1
Q(x0,dx1) . . .

∫

An
Q(xn−1,dxn).

Let Θ denote some subset of “probability measures × transition kernels on
(E,E )”. The canonical statistical model is (EN,E N,(Pµ,Q,(µ,Q) ∈Θ)). Let us de-
note by Pn

µ,Q the distribution of (X0, . . . ,Xn) on En+1. The successive observations
of (Xi) allow to estimate µ,Q.

Let α be a σ -finite positive measure on (E,E ) dominating all the distribu-
tions {µ(dy),(Q(x,dy),x ∈ E)} and assume that µ(dy) = µ(y)α(dy),Q(x,dy) =
Q(x,y)α(dy). Then, the likelihood of the observations (x0, . . . ,xn) is the probability
density function of (X0, . . . ,Xn), Pn

µ,Q, with respect to the measure αn =⊗n
i=0α i(dy)

on En+1, with α i(·) copies of α(·).

dPn
µ,Q

dαn
(xi, i= 0, . . . ,n) = µ(x0)Q(x0,x1) . . .Q(xn−1,xn).

Then, the likelihood function at time n is

Ln(µ,Q) =
dPn

µ,Q
dαn

(X0, . . . ,Xn) = µ(X0)Q(X0,X1) . . .Q(Xn−1,Xn). (A.2.1)
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The associated Loglikelihood is

!n(µ,Q) = logLn(µ,Q). (A.2.2)

A.2.1.1 Maximum Likelihood Method for Markov Chains

Let us consider the case of positive recurrent Markov chains. We follow the sketch
detailed above to study the properties of MLE estimators.

Assume that the parameter set Θ is is a compact subset of Rq.

Definition A.2.1. A family (Qθ (x,dy),θ ∈ Θ) of transition probability kernels on
(E,E )→ [0,1] is dominated by the transition kernel Q(x,dy) if
∀x ∈ E,Qθ (x,dy) = fθ (x,y)Q(x,dy), with fθ : (E×E,E ×E )→ R+ measurable.

Assume that the initial distribution µ is known and let Pθ (resp. Q denote the
distribution of the Markov chain (Xn)with initial distribution µ and transition kernel
Qθ (resp. Q(x,dy). Then the likelihood function and loglikelihood write

Ln(θ) =
dPθ
dQ (X0, . . . ,Xn) = Π n

i=1 fθ (Xi−1,Xi), !n(θ) =
n

∑
i=1

log fθ (Xi−1,Xi).

(A.2.3)
The maximum likelihood estimator is defined as: θ̂n = argsupθ∈Θ Ln(θ).

A.2.1.2 Consistency

Denote by θ0 the true value of the parameter. In order to study the properties of tθ̂n
as n→ ∞, we introduce some assumptions.

(H0): The family (Qθ (x,dy),θ ∈Θ) is dominated by the transition kernel Q(x,dy).
(H1): The Markov chain (Xn) with transition kernel Qθ0 is irreducible, positive re-

current and aperiodic, with stationary measure λθ0(dx) on E.
(H2): λθ0({x,Qθ (x, ·) 1= Qθ0(x, ·)})> 0.
(H3): ∀θ , log fθ (x,y) is integrable with respect to λθ0(dx)Qθ0(x,dy) := λθ0 ⊗Qθ0 .
(H4): ∀(x,y) ∈ E2, θ → fθ (x,y) is continuous w.r.t. θ .
(H5): There exists a function h(x,y) integrable w.r.t. λθ0 ⊗Qθ0 and such that

∀θ ∈Θ , | log fθ (x,y)|≤ h(x,y).

Assumption (H0) ensures the existence of the likelihood, (H1) is analogous for
Markov chains to repetitions in a n sample of i.i.d. random variables, (H2) corre-
sponds to an identifiability assumption, which ensures that different parameter val-
ues lead to distinct distributions for the observations. Assumptions (H3)–(H5) are
regularity assumptions.

Theorem A.2.2. Assume (H0)–(H5) and thatΘ is a compact subset of Rq. Then the
MLE θ̂n is consistent: it converges in Pθ0 -probability to θ0 as n→ ∞.
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Proof. Using that, under (H0),(H1), the sequence (Yn = (Xn−1,Xn),n ≥ 1) is a
positive recurrent Markov chain on (E × E,E × E ) with stationary distribution
λθ0(dx)Qθ0(x,dy), the ergodic theorem applies to (Yn) and yields that, under (H3),

1
n

n

∑
i=1

log fθ (Xi−1,Xi)→ J(θ0,θ) :=
∫ ∫

E×E
log fθ (x,y)λθ0(dx)Qθ0(x,dy) Pθ0 -a.s.

(A.2.4)
Rewriting this equation yields that J(θ0,θ) defined in (A.2.4),

J(θ0,θ) =
∫ ∫

log
fθ (x,y)
fθ0(x,y)

λθ0(dx)Qθ0(x,dy)+A(θ0),

with A(θ0) =
∫ ∫

log fθ0(x,y)λθ0(dx)Qθ0(x,dy). Under (H0),

Qθ (x,dy) = fθ (x,dy)Q(x,dy),

so that

J(θ0,θ) =
∫

λθ0(dx)
∫

log
Qθ (x,dy)
Qθ0(x,dy)

Qθ0(x,dy)+A(θ0)

= −
∫

K(Qθ0(x, ·),Qθ (x, ·)) λθ0(dx)+A(θ0),

where K(P,Q) denotes the Kullback–Leibler divergence between two probabilities.
Recall that it satisfies

- if P<<Q, then K(P,Q) =EP(log dP
dQ ) =

∫
log dP

dQdP= EQ(φ( dPdQ ))with φ(x) =
x log(x)+1− x.

- K(P,Q) = +∞ otherwise.

A well-known property is that K(P,Q)≥ 0 and K(P,Q) = 0 if and only if P=Q a.s.
Assumption (H2) ensures that θ → J(θ0,θ) possesses a global unique maximum at
θ = θ0.

The MLE θ̂n satisfies that θ̂n = Argsupθ (
1
n!n(θ)). The maximum of the right-

hand side of (A.2.4) is θ0. Hence to get consistency, we have to prove that “lim
Argsup 1

n!n(θ)” is equal to “Argsup lim 1
n!n(θ)”, which is θ0. Note that, for all

θ ∈Θ , !n(θ̂n)≥ !n(θ) and J(θ0,θ0)≥ J(θ0, θ̂n). Combining these two inequalities
we get,

0≤ J(θ0,θ0)− J(θ0, θ̂n)≤J(θ0,θ0)−
1
n
!n(θ0)+

1
n
!n(θ0)−

1
n
!n(θ̂n)

+
1
n
!n(θ̂n)− J(θ0, θ̂n)

≤2 sup
θ∈Θ

|J(θ0,θ)−
1
n
!n(θ)|.

Therefore, by taking Θ a compact subset of Rq, we get that J(θ0, θ̂n) → J(θ0,θ0)
Pθ0 - a.s. as n→ ∞. Assumptions (H4),(H5) ensure that J(θ0, ·) is continuous with a
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unique global maximum at θ0 so that the MLE converges to θ0 in Pθ0 -probability.
'(

A.2.1.3 Limit Distribution

This section is based on general results presented in [63]. ForV a vector or a matrix,
let V ∗ denote its transposition. Define the q×q matrix

I (θ0) =
∫ ∫ ∇θ fθ0(x,y) ∇∗

θ fθ0(x,y)
fθ0(x,y)2

λθ0(dx)Qθ0(x,dy). (A.2.5)

Let us introduce the additional assumptions.

(H6) θ → !n(θ) isC2(Θ) Pθ0 -a.s.
(H7) I (θ0) defined in (A.2.5) is non-singular.
(H8)

∫
φθ0(r,x,y)λθ0(dx)Qθ0(x,dy)→ 0 as r→ 0 where

φθ0(r,x,y) = sup{‖ ∇2
θ log fθ (x,y)−∇2

θ log fθ0(x,y) ‖ · ‖ θ −θ0 ‖≤ r}.

We can state the result on the asymptotic normality of the MLE

Theorem A.2.3. Assume (H0)–(H8). Then the MLE θ̂n is asymptotically Gaussian:
under Pθ0 , √

n(θ̂n−θ0)→L Nq(0,I (θ0)−1).

Proof. Under (H6), the score function is well defined and reads as

∇θ !n(θ) =
n

∑
i=1

∇θ log fθ (Xi−1,Xi) =
n

∑
i=1

vi(θ). (A.2.6)

The score function satisfies

Proposition A.2.4. Under assumptions (H0)–(H5), ∇θ !n(θ0) is a q-dimensional
Pθ0 -martingale w.r.t. (Fn)n≥0, which is centered and square integrable.

Proof: By (A.2.6), we have, ∇θ !n(θ0) =∇θ !n−1(θ0)+vn(θ0). We get, using that,
under (H5),

∫
∇θ f = ∇θ (

∫
f ) holds true,

Eθ0(vi(θ0)|Fi−1) = EQ( ∇θ log fθ0(Xi−1,Xi) fθ0(Xi−1,Xi)|Fi−1)

= EQ(∇θ fθ0(Xi−1,Xi)|Fi−1)

= ∇θ EQ( fθ0(Xi−1,Xi)|Fi−1) = ∇θ1= 0.

Noting that Eθ0(∇θ !1(θ0)) = ∇θ (Eθ01) = 0, ∇θ !n(θ0) is a centered martingale.
Consider now the increasing process associated with this martingale. We have

〈∇θ !n(θ0)〉= ∑n
i=1Eθ0(vi(θ0) v∗i (θ0)|Fi−1).

An application of the ergodic theorem yields 1
n ∑vi(θ0) v∗i (θ0)→I (θ0) Pθ0 a.s.

Therefore for j = 1, . . .q, Eθ0〈∇θ !n(θ0)〉 j j → ∞ as n→ ∞ . Applying a central limit
theorem, we get that
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1√
n

∇θ !n(θ0)→Nq(0,I (θ0)).

The matrix I (θ0) is the Fisher information matrix .
A Taylor expansion of the score function ∇θ !n at point θ0 leads, using that

∇θ !n(θ̂n) = 0, to

0=
1√
n

∇θ !n(θ̂n) =
1√
n

∇θ !n(θ0)+
1
n

(∫ 1

0
∇2

θ !n(θ0+ t(θ̂n−θ0))dt
) θ̂n−θ0√

n
.

(A.2.7)
Now, (A.2.4) yields, using (A.2.1),

1
n

∇2
θ !n(θ0)→

∫
λθ0(dx)

∫
∇2

θ (log fθ0(x,y))Qθ0(x,dy) =−I (θ0),

Indeed, the last equality is obtained using Assumptions (H3)–(H6) and

∫ ∇2
θ fθ0(x,y)
fθ0(x,y)

Qθ0(x,dy) = ∇2
θ (
∫

fθ0(x,y)Q(x,dy)) = 0.

Therefore, from expansion (A.2.7), we get,

√
n(θ̂n−θ0) =

(
− 1

n

∫ 1

0
∇2

θ !n(θ0+ t(θ̂n−θ0))dt
)−1( 1√

n
∇θ !n(θ0)

)
. (A.2.8)

Since θ̂n → θ0 in Pn
θ0 -probability we get that the first factor of the r.h.s. of (A.2.8)

converges to I (θ0)−1 under Pθ0 a.s., and that the second factor converges in dis-
tribution under Pθ0 toN (0,I (θ0)). Finally, Slutsky’s Lemma yields that

√
n(θ̂n−

θ0) converges to N (0,I (θ0)−1I (θ0)I (θ0)−1) = N (0,I (θ0)−1) in distribu-
tion. '(

A.2.2 Other Approaches than the Likelihood

It often occurs in practice that the likelihood is difficult to compute. One way to
overcome this problem relies on stochastic algorithms. However, another way round
is to build other processes than the likelihood to derive estimators. These methods
include for the i.i.d. case theM-estimators ([123]) and, for stochastic processes, Es-
timating equations, approximate likelihoods, pseudolikelihoods. ([87]), Generalized
Moment Methods ([64]), Contrast functions ([31]).

A.2.2.1 Minimum Contrast Approaches

What if, instead of the likelihood, another process (contrast process) Un(θ) is used
as for instance the C.L.S. method (in essence think ofUn C−!n))
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Let us assume thatUn(θ) =Un(θ ,X0, . . . ,Xn) satisfies

(H1b) For all θ ∈ Θ , Un(θ) is Fn-measurable and θ → Un(θ) is under Pθ0 a.s.
continuous and twice continuously differentiable on a subset V (θ0).

(H2b) For all θ , n−1Un(θ)→ K(θ0,θ) in Pθ0 -probability uniformly over compacts
subsets of Θ , where θ → K(θ0,θ) is continuous with a unique global mini-
mum at θ0.

(H3b) n−1/2∇θUn(θ0)→Nq(0, IU (θ0)) in distribution under Pθ0 .

(H4b) There exists a symmetric positive matrix JU (θ0) such that

lim
n→∞

sup
|θ−θ0|≤δ

‖ 1
n

∇2
θUn(θ)− JU (θ0) ‖→ 0 as δ → 0 Pθ0 -a.s.

Define the MCE estimator θ̃n associated withUn(θ) as any solution of

Un(θ̃n) = inf
θ∈Θ

Un(θ). (A.2.9)

Then, using similar proofs than in Section A.2.1.1 yields that

Theorem A.2.5. Assume that (H1b)–(H4b) hold. Then, the MCE defined in (A.2.9)

(1) θ̃n → θ0 in Pθ0− probability.
(2)

√
n(θ̃n−θ0)→L Nq(0,JU (θ0)−1IU (θ0)J−1

U (θ0)) under Pθ0 .

Note that contrary to the MLE where JU (θ0) = IU (θ0), the asymptotic covari-
ance matrix of θ̃n is no longer IU (θ0)−1. Analytic properties of matrices yield that
JU (θ0)−1IU (θ0)J−1

U (θ0)) is always greater (as a linear form) than IU (θ0)−1.

A.2.2.2 Conditional Least Squares

A classical approach associated to this method is the Conditional Least Squares
method.
Let (Xn) be an Markov chain on Rp with transition kernel Qθ (x,dy) on Rp and
initial distribution µ . Assume that it is positive recurrent with stationary distribution
λθ (dx).

Define the two functions

g(θ ,x) =
∫

yQθ (x,dy) and

V (θ ,x) =
∫

t(y−g(θ ,x)) (y−g(θ ,x))Qθ (x,dy).

Clearly, Eθ (Xi|Xi−1) = g(θ ,Xi−1) and Varθ (Xi|Xi−1) =V (θ ,Xi−1). We assume
The CLS method is associated with the process
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Un(θ) =
1
2

n

∑
i=1

(Xi−Eθ (Xi|Xi−1))
∗ (Xi−Eθ (Xi|Xi−1)). (A.2.10)

Applying the ergodic theorem to ((Xi−1,Xi), i≥ 1) yields that, under Pθ0

1
n
Un(θ)→ K(θ0,θ) =

1
2

∫ ∫
(y−g(θ ,x))∗(y−g(θ ,x))λθ0(dx)Qθ0(x,dy) a.s.

Rewriting this limit yields that

K(θ0,θ)=
1
2

∫ ∫
(g(θ ,x)−g(θ0,x))∗(g(θ ,x)−g(θ0,x))λθ0(dx)Qθ0(x,dy)+A(θ0)

with
A(θ0) =

1
2

∫ ∫
(y−g(θ ,x))∗(y−g(θ ,x))λθ0(dx)Qθ0(x,dy).

To study the MCE θ̃n = Argmin{Un(θ),θ ∈Θ}, we assume

(A1) For all x ∈ Rp, g(θ ,x) and V (θ ,x) are finite andC2 with respect to θ .
(A2) θ → K(θ0,θ) continuous and λθ0({x,g(θ ,x) 1= g(θ0,x)})> 0.
(A3) The matrix JU (θ) =

∫
(∇θg(θ ,x) ∇∗

θg(θ ,x)λθ (dx) is non-singular at θ0.
(A4) The function φ(δ ,x) = sup||θ−θ0||≤δ ||∇2

θg(θ ,x)−∇2
θg(θ0,x)|| satisfies

∫
φ(δ ,x)λθ0(dx)→ 0 as δ → 0.

Assumption (A1) ensures that Un is well defined, (A2) that θ → K(θ0,θ) has
a global unique minimum at θ0. Assumption (A3),(A4) ensure that (H3b), (H4b)
hold.

Let us study ∇θUn(θ). We have that

0= ∇θUn(θ̃n) = ∇θUn(θ0)+
(∫ 1

0
∇2

θUn(θ0+ t(θ̂n−θ0))dt
)
(θ̂n−θ0). (A.2.11)

The first term of the r.h.s. of (A.2.11) reads as

∇θUn(θ0) =−
n

∑
i=1

(∇θg(θ0,Xi−1))
∗ (Xi−g(θ0,Xi−1)).

Hence, under (A1), ∇θUn(θ0) is a centered L2-martingale under Pθ0 with

〈∇θUn(θ0)〉=
n

∑
i=1

Eθ0

(
(∇θg(θ0,Xi−1))

∗ V (θ0,Xi−1)∇θg(θ0,Xi−1)
)
.

Applying the ergodic theorem yields

1
n
〈∇θUn(θ0)〉n →

∫
(∇θgθ0(x)

∗)V (θ0,x) ∇θgθ0(x)λθ0(dx) := IU (θ0) a.s.
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Therefore, we can apply the central limit theorem for martingales (see Theorem
A.4.2) and obtain,

1√
n

∇θUn(θ0)→L Nq(0, IU (θ0)) under Pθ0 .

For the second term, we get ∇2
θUn(θ0) = ∑n

i=1 ∇θg(θ0,Xi−1)∗∇θg(θ0,Xi−1) which
satisfies

1
n

∇2
θUn(θ0)→ JU (θ0) :=

∫
∇θg(θ0,x)∗ ∇θg(θ0,x) λθ0(dx) Pθ0 a.s.

Therefore under (A3), (A4), JU (θ0) is invertible. Therefore, θ̃n is consistent and√
n(θ̃n−θ0)→N (0,Σ(θ0)) with Σ(θ0) = J−1

U (θ0)IU (θ0)J−1
U (θ0).

A.2.3 Hidden Markov Models

A Hidden Markov Model is, roughly speaking, a Markov chain observed with
noise. This raises new problems for the statistical inference of parameters ruling
the Markov chain model (Xn).
Consider a Markov chain (Xn,n ≥ 0)) with state space E. The term "hidden " cor-
responds to the situation where the Markov chain cannot be directly observable,
Instead of (Xn) , the observations consists in another stochastic process (Yn) whose
distribution is ruled by (Xn). The simplest case is for instance the case of mea-
surements errors Yn = Xn + εn, with (εi) i.i.d. random variables. All the statistical
inference for (Xn) has to be done in terms of (Yn) only, since (Xn) cannot be ob-
served.

For epidemic data, this situation occurs when the exact status of individuals can-
not be observed or when there is a systematic error in the reporting rate of Infected
individuals.

The precise definition of a Hidden Markov Model (HMM) is:

Definition A.2.6. A Hidden Markov Model (HMM) is a bivariate discrete time pro-
cess ((Xn,Yn),n≥ 0) with state spaceX ×Y such that
(i) (Xn) is a Markov chain with state spaceX .
(ii) For all i ≤ n, the conditional distribution of Yi given (X0, . . . ,Xn) only depends
on Xi.

A classical example of Hidden Markov models is obtained as follows:
Let (εn) is a sequence of i.i.d. random variables on E and F(., .) : X ×E → Y a
given measurable function. Then, if Yn = F(Xn,εn), the bivariate sequence (Xn,Yn)
is a Hidden Markov Model.
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It follows from this definition that (Xn,Yn) is a Markov chain on X ×Y , while the
sequence (Yn) is no longer Markov:
L (Yn|Y0, . . . ,Yn−1) effectively depends on all the past observations.

This is why the inference for parameters ruling (Xn) is difficult and rely on spe-
cific tools (see e.g. [22], [124]).

A.3 Results for Statistics of Diffusions Processes

Inference for diffusion processes observed on a finite time-interval presents some
specific properties. For sake of comprehensiveness, a short recap of classical results
for diffusion processes inference is then given.We first present the general frame-
work required for time-dependent diffusions and then detail these results. (see [87]
for a presentation of available results).

On a probability space (Ω ,F ,(Ft , t ≥ 0),P), consider the stochastic differential
equation

dξt = b(t,ξt)dt+σ(t,ξt)dBt ,ξ0 = η . (A.3.1)

We assume that (Bt) is a p-dimensional Brownian motion, that b and σ satisfy
regularity assumptions which ensure the existence and uniqueness of solutions of
(A.3.1) and that η isF0-measurable and that

We detail results on the inference on parameters in the drift and diffusion coeffi-
cient depending on various kinds of observations of (ξt , t ∈ [0,T ]). For this, let us re-
call some basic definitions concerning these processes. The state space of (ξt , t ≤ T )
isCT = {x= (x(t)) : [0,T ]→Rp continuous,CT}, where CT denote the Borel filtra-
tion associated with the uniform topology. Denote by Xt :CT → Rp, Xt(x) = x(t).
the coordinate functions defined for 0≤ t ≤ T . The distribution of ξ T : (ξt , t ∈ [0,T ])
on (CT ,CT ) is denoted by PT

b,σ .

A.3.1 Continuously Observed Diffusions on [0,T]

The distributions Pb,σPb′,σ ′ of two diffusion processes having distinct diffusion co-
efficients are singular. Therefore, we assume that σ(·) = σ ′(·). From a statistical
point of view, this means that σ(·) can be identified from the continuous observa-
tion of (ξt). Consider the parametric model associated to the diffusion (ξt) in Rp:

dξt = b(θ , t,ξt)dt+σ(t,ξt)dBt ,ξ0 = x0. (A.3.2)

Define the diffusion matrix Σ(t,x) = σ(t,x)σ∗(t,x).

Consider the estimation of a q-dimensional parameter θ ∈ Θ , with Θ a subset
of Rq. Then, under conditions ensuring existence and uniqueness of solutions (see
e.g. [82]) and additional assumptions for the Girsanov formula (cf. [67], [96]) on
C([0,T ],Rp),CT ),
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LT (θ) =
dPT

θ
dPT

0
(X) (A.3.3)

= exp
[∫ T

0
Σ−1(t,Xt)b(θ ; t,Xt)dXt −

1
2

∫ T

0
b∗(θ ; t,Xt)Σ−1(t,Xt)b(θ , t,Xt)dt

]
.

The statistical model is (CT ,CT ,(PT
θ ,σ ,θ ∈ Θ)). The loglikelihood is !T (θ) =

logLT (θ). The Maximum Likelihood Estimator is θ̂T s.t.

!T (θ̂T ) = sup{!T (θ),θ ∈Θ}. (A.3.4)

There is no general theory for the properties of the MLE as T → ∞, except in the
case of ergodic diffusions.

Consider the case of an autonomous diffusion ξt satisfying the stochastic differ-
ential equation on Rp:

dξt = b(θ ,ξt)dt+σ(ξt)dBt ; ξ0 C η .

Assume that, for θ ∈Θ ∈ Rq, (ξt) positive recurrent diffusion process with station-
ary distribution λ (θ ,x)dx on Rp. Then, under assumptions ensuring that the statis-
tical model is regular (see [68] for general results and [93] for ergodic diffusions),
then, as T → ∞, the MLE θ̂T is consistent and

√
T (θ̂T −θ0)

L→ Nk(0, I−1(θ0)) under Pθ0 , with

I(θ) = I(θ) =
∫

Rp
∇θb∗(θ ,x)Σ−1(x)∇θb(θ ,x)λ (θ ,x)dx.

A.3.2 Discrete Observations with Sampling ∆ on a Time Interval
[0,T]

Consider the stochastic differential equation (A.3.2), where parameters in the drift
are α and in the diffusion coefficient β .

dξt = b(α, t,ξt)dt+σ(β , t,ξt)dBt ,ξ0 = x0. (A.3.5)

Let T = n∆ and assume that the observations are obtained at times
(tni = i∆ ; i= 0, . . .n) .
The space of observations is ((Rp)n,(B(Rp))n. Let Pn

α,β denote the distribution of
the n-tuple. Contrary to continuous observations, the probabilities Pn

α,β ,P
n
α ′,β ′ are

absolutely continuous, leading to a likelihood Ln(α,β ) for the n-tuple. However, it
depends on the transition probabilities Pθ (X(ti+1) ∈ A|X(ti) = x) of the underlying
Markov chain. The main difficulty here lies in the intractable likelihood. This is a
well known problem for discrete observations of diffusion processes. Alternative
approaches based on M-estimators or contrast processes (see [123] for i.i.d. obser-
vations, [87] for SDE) have to be investigated.
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Several cases can be considered according to T and ∆ with T = n∆ .

(a) T → ∞. Results are obtained for ergodic diffusions.

1- ∆ fixed: Both parameters in the drift coefficient α and in the diffusion coefficient
β can be consistently estimated and ([85]),

√
n
(

α̂n−α0

β̂n−β0

)
L→N (0, I−1

∆ (α0,β0). (A.3.6)

2- ∆ = ∆n → 0 and T = n∆n → ∞ as n→ ∞. As n → ∞, there is a double asymp-
totics ∆n → 0 and T = n∆n → ∞.
Both parameters in the drift coefficient α and in the diffusion coefficient β can be
consistently estimated and the following holds (see [85] and [86]

- Parameters in the drift coefficient α are estimated at rate
√
n∆n.

- Parameters in the diffusion coefficient β are estimated at rate
√
n.

(√
n∆n(α̂n−α0)√
n(β̂n−β0)

)
L→N (0, I−1(α0,β0).) (A.3.7)

(b) T = n∆n fixed and ∆ = ∆n → 0 as n→ ∞.
It presents the following properties.

- Except for specific models, there is no consistent estimators for parameters in
the drift.

- Parameters in the diffusion coefficient can be consistently estimated and satisfy

√
n(β̂n−β0)

L→ Z = η U, with η ,U independent,U ∼N (0, I).

The random variable Z is not normally distributed but Gaussian but has Mixed
variance Gaussian law. It corresponds to a Local Asymptotic Mixed Normal
statistical model (see [123], [67] for general references on LAMN; [36], [48]
and [57] for diffusion processes).

A.3.3 Inference for Diffusions with Small Diffusion Matrix on
[0,T ]

The asymptotic properties of estimators are now studied with respect to the asymp-
totic framework “ε → 0”. Consider the SDE

dξt = b(α,ξt)dt+ εσ(ξt)dBt ,ξ0 = x0.
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Contrary to the previous section, it is possible to estimate parameters in the drift α .
For continuous observations on [0,T ], Kutoyants ([91]) has studied the estimation
of α using the likelihood and proved that the MLE is consistent and satisfies

ε−1(α̂ε −α0)→N (0, I−1
b (α0)) with (A.3.8)

Ib(α) =
∫ T

0
(∇αb)∗(α,z(α, t))Σ−1(z(α, t))∇αb(α,z(α, t))dt.

The Fisher information of this statistical model is Ib(α).

The statistical inference based on discrete observations of the sample path with sam-
pling interval ∆ = ∆n → 0 has first been studied for one-dimensional diffusions
with σ ≡ 1 ([46]), and [118], [56] assuming a parameter β in the diffusion coeffi-
cient σ(β ,x). Under assumptions linking the two asymptotics ε and n, [56] proved
the existence of consistent and asymptotically Gaussian estimators (α̃ε ,n, β̃ε,n) of
(α0,β0), which converge at different rates, parameters in the drift function being
estimated at rate ε−1 and parameters in the diffusion coefficient at rate

√
n= ∆−1/2

n .
(

ε−1(α̂ε,n−α0)√
n(β̂ε,n−β0)

)
−→

n→∞,ε→0
N

(
0,
(
I−1
b (α0,β0) 0

0 I−1
σ (α0,β0)

))
. (A.3.9)

The matrix Ib is the matrix (A.3.8) and the matrix Iσ is

Iσ (α,β )i j = (A.3.10)
(

1
2T

∫ T

0
Tr(∇βiΣ(β ,s,z(α,s))Σ−1(β ,s,z(α,s))∇β jΣ(β ,s,z(α,s))ds

)
,

where Ib(α0,β0) and Iσ (α0,β0) are assumed invertible.

A.4 Some Limit Theorems for Martingales and Triangular
Arrays

A.4.1 Central Limit Theorems for Martingales

This Central Limit Theorem for martingales in R is stated in [63].

Let Mn = ∑n
i=1Xi and 〈M〉n = ∑n

i=1E(X
2
i /Fi−1). Set s2n = EM2

n = E〈M〉n.

Theorem A.4.1. Assume that the sequence (Mn) of L2 centered martingales satisfy
that, as n→ ∞, s2n → ∞ and

(H1): ∀ε > 0, 1
s2n

∑n
i=1E(X

2
i 1|Xi|≥snε |Fi−1)→ 0 in probability.

(H2): 1
s2n
〈M〉n → η2 in probability (η is an r.v. such that, if η2 < ∞, Eη2 = 1).

Then (Mn
sn ,

〈M〉n
s2n

)→L (η N,η2) with η ,N independent r.v.s, N ∼N (0,1).
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Note that Z = ηN satisfies E(exp(iuZ)) = E(exp(−u2η2/2)).

The Lindberg condition (H1) is often replaced by the stronger assumption:

(H1b): ∃ δ > 0, 1
s2+δ
n

∑n
i=1E(|Xi|2+δ |Fi−1)→ 0 in probability.

If the dimension of the parameter is q, the score function ∇θ !n(θ0) is a Pθ0 -
martingale in Rq. So we need theorems for multidimensional martingales in Rq.

Let (Mn) be a sequence of random variables in Rq with M∗
n = (M1

n , . . . ,M
q
n). Then

(Mn) is aFn-martingale if (Mp
n ) is aFn-martingale for p= 1, . . .q.

Assume that (Mn) is a centered L2-martingale in Rq and set Xi = Mi−Mi−1 with
X∗
i = (X1

i , . . . ,X
q
i ).

Then the increasing process 〈M〉n is the q× q random matrix defined by 〈M〉0 = 0
and 〈M〉n−〈M〉n−1 = E(Xn X∗

n |Fn−1) =
(
E(X p

n Xl
n|F n−1)

)
1≤p,l≤q.

Hence, for 1≤ p, l ≤ q, 〈M〉pln = ∑n
i=1E(X

p
i Xl

i |Fi−1).

This theorem is derived from a convergence theorem for triangular arrays stated
in [73].
For each p, assume that E(〈Mp

n 〉) = (spn)2 → ∞ and define

ζ n,p
i =

X p
i
spn

and (ζ n
i )

∗ = (ζ n,1
i , . . .ζ n,q

i ).

Theorem A.4.2. Assume that there exists a positive random matrix Γ such that, as
n→ ∞,

(H1): ∑n
i=1E(ζ n

i (ζ n
i )

∗|Fi−1)→ Γ in probability.
(H2): There exists δ > 0, ∑n

i=1E(‖ζ n
i ‖

2+δ |Fi−1)→ 0 in probability.

Then the following holds
(

n

∑
i=1

ζ n
i ,

n

∑
i=1

E(ζ n
i (ζ n

i )
∗|Fi−1

)
L→
(

Γ 1/2Nq ,Γ
)

with Nq ∼Nq(0, I) and Γ ,Nq independent.

Here again, if Z = Γ 1/2Nq, then, for u ∈ Rq, E(exp(iuZ)) = E(exp(− u∗Γ u
2 )).

A.4.2 Limit Theorems for Triangular Arrays

When dealing with discrete observations with small sampling interval, classical
limit theorems for martingales can no longer be used since the σ -algebras G n

k =
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σ(Z(s),s ≤ k/n) do not satisfy the nesting property. We need general theorems for
triangular arrays as stated in [73].

A.4.2.1 Recap on Triangular Arrays

Let (Ω ,F ,(Ft , t ≥ 0),P) be a filtered probability space satisfying the usual condi-
tions. Assume that for each n, there is a strictly increasing sequence (T (n,k),k≥ 0)
of finite (Ft)-stopping times with limit +∞ and T (n,0) = 0. The stopping rule is
defined as

Nn(t) = sup{k,T (n,k)≤ t}= ∑
k≥1

1T (n,k)≤t .

A q-dimensional triangular array is a double sequence (ζ n
k ),n,k≥ 1) of q-dimensional

variables ζ n
k = (ζ n, j

k )1≤ j≤q. such that each ζ n
k isFT (n,k)-measurable.

We consider the behavior of the sums

Snt =
Nn(t)

∑
k=1

ζ n
k .

The triangular array is asymptotically negligible (A.N.) if

Nn(t)

∑
k=1

ζ n
k

u.c.p.→ 0 i.e. sup
s≤t

|
Nn(s)

∑
k=1

ζ n
k |

P→ 0.

In the sequel, we assume that the T (n,k) are non-random and set G n
k =FT (n,k).

The example we have in mind consists in the deterministic times

T (n,k) = inf{t, [nt]≥ k∆}⇒ Nn(t) = sup{k, k∆
n

≤ t}. (A.4.1)

Triangular arrays often occur as follows: ζ n
k may be a function of the increment

YT (n,k)−YT (n,k−1) for some underlying adapted càdlàg process Y . For discretely ob-
served diffusion processs, we have ζ n

k = X(k∆/n)−X((k−1)∆/n).We first state a
lemma proved in [48].

Lemma A.4.3. Let ζ n
k ,U be random variables with ζ n

k being G n
k -measurable. As-

sume that

(i) ∑n
k=1E(ζ n

k |G n
k−1)→U in P-probability,

(ii) ∑n
k=1E[(ζ n

k )
2|G n

k−1)]→ 0 in P-probability,

Then
n

∑
k=1

ζ n
k →U in P-probability.
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Corollary A.4.4. Let ζ n
k ,U be d-dimensional random variables with ζ n

k being G n
k -

measurable. Assume

(i) ∑n
k=1E(ζ n

k |G n
k−1)→U in P-probability,

(ii) ∑n
k=1E[

∥∥ζ n
k

∥∥2 |G n
k−1)]→ 0 in P-probability,

Then
n

∑
k=1

ζ n
k →U in P-probability.

A.4.2.2 Convergence in Law of Triangular Arrays

Let (ζ n
k ) be a triangular array of d-dimensional random variables such that ζ n

k is
G n
k -measurable.

Theorem A.4.5. Assume that (ζ n
k ) satisfy for Nn(t) defined in (A.4.1)

(i) ∑Nn(t)
k=1 E(ζ n

k |G n
k−1)

u.c.p.→ At with A an Rd-valued deterministic function.

(ii) ∑Nn(t)
k=1 E(ζ n,i

k ζ n, j
k |G n

k−1)−E(ζ n,i
k |G n

k−1)E(ζ
n, j
k |G n

k−1)
P→Ci j

t for 1 ≤ i, j ≤ d and
for all t ≥ 0, where C = (Ci j) is a deterministic continuousM+

d×d-valued func-
tion.

(iii) For some p> 2, ∑Nn(t)
k=1 E(

∥∥ζ n
k

∥∥p |G n
k−1)

P→ 0.

Then, we have

Nn(t)

∑
k=1

ζ n
k

L→ A+Y, w.r.t. the Skorokhod topology, (A.4.2)

where Y is a continuous centered Gaussian process on Rd with independent incre-
ments s.t. E(Y i

t Y
j
t ) =Ci j

t .

Remark: If (ii) holds for a single time t, the convergence ∑Nn(t)
k=1 ζ n

k
L→ At +Yt

for this particular t fails in general. There is an exception detailed below (Theorem
VII-2-36 of [75]).

Theorem A.4.6. Assume that for each n, the variables (ζ n
k ,k ≥ 1) are independent

and let ln be integers, or ∞. Assume that, for all i, j = 1, . . . ,d and for some p> 2,

∑ ln
k=1E(ζ

n,i
k )

P→ Ai,

∑ ln
k=1

(
E(ζ n,i

k ζ n, j
k )−E(ζ n,i

k )E(ζ n, j
k )
)

P→Ci j,

∑ ln
k=1E(‖ζ n

k ‖
p)

P→ 0,

where Ci j and Ai are deterministic numbers. Then the variables ∑ln
k=1 ζ n

k converge
in distribution to a Gaussian vector with mean A = (Ai) and covariance matrix
C = (Ci j).
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A.5 Inference for Pure Jump Processes

In statistical applications, we study likelihood ratios formed by taking Radon–
Nikodym derivatives of members of the family of probability measures (Pθ ,θ ∈
Θ ⊂ Rq) with respect to one fixed reference distribution.

A.5.1 Girsanov Type Formula for Counting Processes

Rather than giving the general expression of the Girsanov formula for semi-martin-
gales (see [75]), we state it first for the case of a counting process on N and then for
multivariate counting processes.

Let X be a stochastic process such that the predictable compensator Λ of X satis-
fies Λ(t) =

∫ t
0 λ (s)ds). assume that, under Pθ , it is a counting process with intensity

λ θ (t)where λ θ (t)> 0 for all t > 0. Denote by T1,T2, . . . the sequence of jump times
of X and let N(t) denotes the number of jumps up to time t. Then

dPθ
dPθ0

|Ft = exp{
N(t)

∑
i=1

[log(λ θ (Ti))− log(λ θ0(Ti))]−
∫ t

0
[λ θ (s)−λ θ0(s)]ds.}

(A.5.1)
Consider now multivariate counting processes N(t) = (N1(t), . . . ,Nk(t)). We re-

fer to Jacod’s formula (see e.g. Andersen [1, II.7]) for a general expression of two
probability measures P, P̃ on a filtered probability space under whichN has compen-
sators ΛΛΛ , Λ̃ΛΛ respectively. Usually, we will have continuous or absolutely continuous
compensators with intensities λl(t), λ̃l(t). Since no jumps can occur simultaneously,
the sequence of jump times Ti is well defined, together with the mark Ji ∈ {1, . . . ,k}
(Ji = l if the jump Ti occurs in Nl (∆Nl(Ti) = 1). The process N.(t) = ∑k

l=1Nl(t)
is a counting process with compensator Λ.(t) = ∑k

l=1Λl(t). Assume P̃ is absolutely
continuous with respect to P (written P̃<< P).

Theorem A.5.1. Assume that P̃<< P. Then

Λ̃l << Λl for all l = 1, . . . ,k, P- a.s.

∆Λ.(t) = 1 for any time t implies ∆Λ̃.(t) = 1, P-a.s.

dP̃
dP |Ft =

dP̃
dP

|F0
∏k

l=1 ∏s≤t λ̃l(t)∆Nl(t) exp(−
∫ t
0 λ̃.(s)ds)

∏k
l=1 ∏s≤t λl(t)∆Nl(t) exp(−

∫ t
0 λ.(s)ds)

=
dP̃
dP |F0 exp

{
k

∑
l=1

N(t)

∑
i=1

[log λ̃l(Ti)− logλl(Ti)]∆Nl(Ti)−
k

∑
l=1

∫ t

0
[λ̃l(s)−λl(s)]ds

}
.

Note that the products in the above formula are just ∏n λ̃Jn(Tn), ∏n λJn(Tn).
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A.5.2 Likelihood for Markov Pure Jump Processes

Let us consider a pure jump process with state space E = {0, . . . ,N} and Q-matrix
Q= (qi j) observed up to time T . The likelihood is

LT (Q) =
N

∏
i=0

∏
j 1=i

qNi j(T )
i j exp(−qi jNi(T )), (A.5.2)

where the process Ni j(t) counts the number of transitions from state i to state j on
the time interval [0, t] and Ni(t) is the time spent in state i before time t:

Ni(t) =
∫ t

0
δ{X(s)=i}ds.

We refer to [72] for a complete study of Marked point processes.
This yields that the maximum likelihood estimator of Q is

q̂i j(T ) =
Ni j(T )
Ni(T )

, for j 1= i and Ni(T )> 0. (A.5.3)

If NT (i) = 0, the process has not been in state i: there is no information about qi j
in the observations and the MLE of qi j does not exist. As for Markov chains with
countable state space, q̂i j(T ) is the empirical estimate of qi j.

A.5.3 Martingale Properties of Likelihood Processes

In statistical applications, we want to consider a whole family of probability mea-
sures P, not necessarily mutually absolutely continuous and therefore cannot apply
the above theorem to obtain dP̃

dP |Ft for each P̃,P considered. However, for any two
probability measures P̃,P, the measure Q= 1

2 (P̃+P) dominates both P̃ and P. We
can therefore calculate dP/dQ and dP̃/dQ and finally set,

dP̃
dP =

dP̃
dQ

/
dP
dQ

where
dP
dQ

> 0,

dP̃
dP = ∞ where

dP
dQ

= 0.

Suppose now that we have a statistical model (Pθ ,θ ∈ Θ) for some subset
Θ ∈ Rq. Suppose that all Pθ are dominated by a fixed probability measure Q. For
simplicity, we assume that all the Pθ ’s coincide on F0 and consider only the abso-
lute continuous case:
under Pθ , N = (N1, . . . ,Nk) has compensator ΛΛΛ θ = (

∫
λ θ
l ), l = 1, . . . ,k) for certain

intensity process λ θ . We consider the likelihood function as depending on both
t ∈ R+ and θ ∈ Θ . Dropping the denominator in Theorem A.5.1 (which does not
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depend on θ ), we have that the likelihood at time t as a function of θ is proportional
to

L(θ , t) = exp(−
k

∑
l=1

∫ t

0
λ θ
l (s)ds) ∏

Tn≤t
λ θ
Jn(Tn),

= exp{
k

∑
l=1

∫ t

0
[logλ θ

l (s)dNl(s)−λ θ
l (s)ds]}.

Remark A.5.2. This is another expression of the general Girsanov formula given in
the appendix of Part I of these notes.

The likelihood process L(θ , t) is a (Q,(Ft))-martingale. Indeed, let Y aFs mea-
surable random variable. We have EQ(YL(θ , t)) = EQ(Y

dPθ
dQ ) = Eθ (Y ) =

EQ(YL(θ ,s)) since Y ∈Fs.
Hence EQ(L(θ , t)|Fs) = L(θ ,s).

Consider now the log-likelihood

logL(θ , t) =
k

∑
l=1

∫ t

0
(logλ θ

l (s)dNl(s)−λ θ
l (s)ds). (A.5.4)

The score process is defined as ∇θ logL(θ , t). Assuming that differentiation may be
taken under the integral sign, we get

∇θ j logL(θ , t) =
∂

∂θ j
logL(θ , t) (A.5.5)

=
k

∑
l=1

∫ t

0
∇θ j logλ θ

l (s) (dNl(s)−λ θ
l (s)ds), j = 1, . . . ,q.

Hence the score process is a (Pθ ,(Ft))- local martingale in Rq. It is a centered
L2-martingale with associated predictable q×q matrix variation process

〈∇θ logL(θ ; ·)〉r, j =
k

∑
l=1

∫ t

0
∇θr logλ θ

l (s)∇θ j logλ θ
l (s) λ θ

l (s)ds. (A.5.6)

The “observed information” at θ is obtained by differentiating again with respect
to θ . If differentiation can be taken under the integral sign, we get

∇2
θrθ j

logL(θ ; t) =
k

∑
l=1

∫ t

0
∇2

θrθ j jλ
θ
l (s)(dNl(s)−λl(s)ds)

−
∫ t

0
∇θr logλ θ

l (s)∇θ j logλ θ
l (s)λ θ

l (s)ds. (A.5.7)

Using (A.5.6) yields that the compensator of the process −∇2 logL(θ ; ·) is
〈∇θ logL(θ ; ·)〉. This is a version of a well-known result: the variance matrix of
the score coincides with the expected information matrix.
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